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ABSTRACT 

DEEP LEARNING BASED FACE DETECCTION AND RECOGNITION IN MWIR AND VISIBLE BANDS 

Suha Reddy Mokalla

In non-favorable conditions for visible imaging like extreme illumination or nighttime, there is a need to collect images 
in other spectra, specifically infrared. Mid-Wave infrared images can be collected without giving away the location of 
the sensor in varying illumination conditions. There are many algorithms for face detection, face alignment, face 
recognition etc. proposed in visible band till date, while the research using MWIR images is highly limited. Face 
detection is an important pre-processing step for face recognition, which in turn is an important biometric modality. 
This thesis works towards bridging the gap between MWIR and visible spectrum through three contributions. First, a 
dual band based deep face detection model that works well in visible and MWIR spectrum is proposed using transfer 
learning. Different models are trained and tested extensively using visible and MWIR images and the one model that 
works well for this data is determined. For this model, experiments are conducted to learn the speed/accuracy trade-
off. Following this, the available MWIR dataset is extended through augmentation using traditional methods and 
generative adversarial networks (GANs). Traditional methods used to augment the data are brightness adjustment, 
contrast enhancement, applying noise to and de-noising the images. A deep learning based GAN architecture is 
developed and is used to generate new face identities. The generated images are added to the original dataset and the 
face detection model developed earlier is once again trained and tested. The third contribution is the proposal of 
another GAN that converts given thermal face images into their visible counterparts. A pre-trained model is used as 
discriminator for this purpose and is trained to classify the images as real and fake and an identity network is used to
provide further feedback to the generator. The generated visible images are used as probe images and the original 
visible images are used as gallery images to perform face recognition experiments using a state-of-the-art visible-to-
visible face recognition algorithm.
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Chapter 1

Introduction

1.1 Motivation

Biometrics is the measurement and statistical analysis of people's unique physical and behavioral

characteristics or traits. The technology is mainly used for identi�cation and access control, or for

identifying individuals under surveillance. The basic premise of biometric authentication is that

every individual can be accurately identi�ed by his/her intrinsic physical and behavioral traits.

There are several types of biometric modalities, including, but not limited to, �ngerprint and retinal

scanning, facial recognition and voice analysis. Face recognition holds high importance since it is

non-intrusive, understandable, and can be collected using a non-contact sensor in a covert manner at

various stand-o� distances. It has a wide variety of applications including, but not limited to access

control to computer and other devices, buildings, auto-screening at airports, for secure banking. It

can be used either independently or can be combined with other facial biometric traits like age,

gender estimation and ethnicity recognition to improve the recognition performance.

Traditionally, FR system comprises of �ve modules - image acquisition, face detection, face

alignment, feature extraction and matching as shown in Figure 1.1 .Image acquisition refers to

capturing images using visible, MWIR (Mid-Wave Infrared) cameras etc. Face detection �nds the

Figure 1.1: Basic Building Blocks of a Traditional Face Recognition System
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Figure 1.2: Machine Learning Approaches - (a) Traditional and (b) Transfer Learning

location of the face in a given image, while face alignment is normalizing a face in an image, so that it

is in the center and the line joining the centers of eyes is parallel to the horizontal axis. Face alignment

helps improve face recognition accuracy. Feature extraction can be de�ned as a process that reduces

the dimensionality of an image by transforming the raw pixels in an image to a re�ned and useful

format, like matrices that are straight forward for matching. These include hand-crafted features like

LBP (Local Binary Patterns), HOG (Histogram of Oriented Gradients) and deep learning features

referred to as embeddings. Face recognition is then performed by matching the generated features

and it is divided into two categories � face identi�cation and face veri�cation. Face identi�cation

is the process of searching for a face in a database consisting many faces, which can be referred as

1-to-n matching where `n' is the number of faces in the database. Face veri�cation is comparing one

face to another, and can be referred as 1-to-1 matching. Accuracy of a face recognition system is

determined using match scores (degree of similarity) between a gallery image (image in the database)

and a probe image (query or input).

The many robust algorithms proposed using traditional and deep learning based methods work

well with images collected in well illuminated environments and are not very e�cient in face recog-

nition (FR) in low-light to no light conditions. The ability to perform face recognition outside the
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visible spectrum (wavelength - 400-700nm) is of prime importance in many surveillance, law enforce-

ment, and military organizations as it is useful in challenging, in-the-wild scenarios, especially when

operating in no-light and low-light conditions. One such spectrum is IR (Infrared) which is classi�ed

into active and passive IR. Active IR comprises of NIR(Near IR) and SWIR (Short Wave IR) at

wavelengths 0.75-1 µm and 1-2.5 µm respectively and passive IR comprises of MWIR (Mid-Wave

Infrared) and LWIR (Long-Wave IR) at 3-5 µm and 8-12 µm respectively. This work is focused

on MWIR spectrum, in which IR radiation emitted from the subject's face in the form of heat

is detected by the camera sensor whenever data is acquired. MWIR sensors provide a signi�cant

capability of acquiring human biometric signatures under obscure environments. In addition, when

operating in the MWIR band, the location of the sensor cannot be detected and the images obtained

are not a�ected by the extreme illumination conditions.

While face recognition is a very important biometric authentication technique, face detection is

an important pre-processing step for face recognition. There are many face detection algorithms

proposed in visible spectrum, however the face detection knowledge available in thermal spectrum

is highly limited. The reason for this is the limited availability of face datasets in the thermal

spectrum. The high cost of thermal cameras and other challenges related to Institutional Review

Boards (IRB) or Export Control Issues contribute to the limited availability of data. Developing an

original deep face detection model requires a deep learning training phase using millions of images

representing each band, as well as tuning of numerous parameters. This is a di�cult task owing

to the aforementioned reasons and the time and computational cost required to train it. Transfer

learning can be used as an acceptable alternative to solve these problems as it requires images in

the order of a few hundreds to thousands and �ne-tuning a small set of parameters and requires

less time to train than it is required to train an original model. Transfer learning can be de�ned

as re-utilizing the knowledge gained from one problem to solve another related problem. This is

addressed as the future of machine learning by many researchers, and is shown in Figure 1.2. Using

this, one or more of the deep learning models developed for face detection or object detection in

general can be used to develop another deep face detection model in MWIR band.

Another important and interesting development in the �eld of deep learning is the introduction of

GANs (Generative Adversarial Networks) �that consists a generative model (G) that generates new

images that are similar to the original images and a discriminative model (D) that discriminates

between original and generated images. The end goal of GANs is to generate images that look

indistinguishable from the original ones. Goodfellow et al. [1] refers to GANs as a two-player minimax

game played by D and G where G is a culprit trying to generate counterfeit money and D is a cop

3



Figure 1.3: Modality gap between Visible and Thermal images

trying to distinguish between the real and fake currency.

The idea of GANs can be used to improve the limited thermal data sets by generating new

identities from the existing face images. This solves the problem of not having enough data to train

a CNN (Convolutional Neural Network) and avoids the expenses of sensors and data collections.

Though, the face detection model developed using transfer learning yields good results, generating

new identities further improves the accuracy. Many variations of GANs are proposed since the

introduction and one of them is the DCGAN (Deep Convolutional GAN) [2]. In DCGAN, the

original GANs are modi�ed by proposing suitable architectural topology and several constraints to

train a successful GAN and develop a discriminator that not only discriminates between real and

fake images, but also performs unsupervised learning tasks such as clustering. We use this as our

base network to augment thermal images and generate new identities. Then we use the generated

images to improve the face detection models.

After DCGANs, another signi�cant development to GANs is conditional GANs. In conditional

GANs, D and G are conditioned on some extra information y, where y could be any auxiliary

information, such as class labels or data from other modalities. The FR algorithms available for

visible band cannot be directly applied to match thermal images to their counterparts due to the

modality gap between the two as shown in Figure 1.3. Conditional GANs are an excellent way to

generate visible images from their MWIR counterparts and these can be used for visible-to-visible

FR using any of the widely available FR algorithms.

1.2 Problem Statement

MWIR imaging became an area of growing interest among researchers and government institu-

tions equally. However, many modalities including face detection, normalization, FR needs to be

developed to be able to be used in practical applications. The challenges here are: 1. Limited

4



availability of datasets to train and test an original deep face model (detection and recognition)

because of the cost of the sensors, 2. The models are expensive to train, even after acquiring the

required datasets, both computationally and economically and 3. Modality gap between the visible

and thermal bands making it di�cult to apply the already developed visible band FR models in

MWIR and cross-spectral matching.

1.3 Contributions of Thesis

In this work, a dual band deep face detection model and a visible-to-thermal FR strategy are

proposed. The contributions of this thesis are three-fold.

First, a deep learning based face detection model that works equally well in MWIR and Visible

bands is proposed. To overcome the problem of limited availability of data to train an original deep

CNN, transfer learning is used which requires images in the order of a few hundreds or a thousands

and the pre-trained models SSD (Single-shot Multibox Detector) [3], R-FCN (Region based Fully

Convolutional Network) [4] and Faster R-CNN (Region based CNN) [5] are �ne-tuned, optimized

and re-trained to achieve high accuracies in thermal and visible band face detection, and trade-o�

between speed and accuracy of deep face detection in thermal band is analyzed. The e�ciency of

these face detection model is further demonstrated by performing same-spectral cross-scenario FR.

Second, to further solve the problem of data availability, GANs are used to develop new face

identities in thermal band increasing the size of dataset to a great extent. These generated images

are added to the original dataset and the models are re-trained. This addition increased the face

detection accuracy and increased the speed to a great extent. This is achieved by implementing

DCGANs, explained in Section 1.1.

Third, a GAN based approach is proposed to overcome the problem of modality gap between

visible and thermal bands by generating visible images from their MWIR counterparts. Prior to

this, transfer learning is used to re-train Facenet [6] FR model using original visible and thermal

images and the results obtained re-con�rm the modality gap between the bands. Facenet is used to

extract features form original visible images and these features are used to condition G and D of

the GAN. Pix2pix [7], an application of conditional GAN that performs image-to-image translation

is used for this purpose with numerous changes in the architectures of G and D networks. After the

visible images are generated, the Facenet model is used to perform visible-to-visible FR without any

training.
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1.4 Organization of Thesis

The rest of the work is organized as follows:

� Chapter 2 describes existing work in detection in visible and thermal bands using traditional

and deep learning approaches, GAN based approaches for data augmentation and same spectral

and cross-spectral FR algorithms.

� Chapter 3 describes the development of a dual band based deep face detection model by

�ne-tuning and optimizing the existing pre-trained models and trade-o� between speed and

accuracy of deep face detection model in thermal band that could detect faces indoor and

outdoor at 5m and 10m images.

� Chapter 4 describes the GAN based image augmentation to generate new face identities in

MWIR band to improve the datasets, thereby improving the e�ciency of the face detection

model.

� Chapter 5 describes the GAN based approach to synthesize visible images from their MWIR

counter parts, in order to be able to use the existing visible-to-visible FR approaches without

further training.

� Chapter 6 presents the results and evaluation of the proposed approach.

� Chapter 7 concludes the work and explains the scope for future work.
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Chapter 2

Related Work

2.1 Face Detection

2.1.1 Face Detection in the Thermal Band

Most of the traditional and deep learning based face detection algorithms are proposed in the

visible spectrum. Some of them are proposed in thermal spectrum, most of which follow traditional

approaches � extracting features from images using feature extractors including HOG, facial land-

mark points etc. Adaboost classi�er with local features such as Haar-like, MB-LBP (Multi-Block

Local Binary Pattern) and HOG (Histogram of Oriented Gradients) is an example [8] for hand-

crafted features. Zheng [9] proposes face and eye glass detection in thermal band that uses region

growth algorithm to segment face and image de-noising and normalization. Murata et al. [10] pro-

pose a face detection algorithm that automatically extracts the target facial region from the thermal

image by focusing on the temperature distribution of the facial thermal images as well as examines

the automation of the evaluation. Kopaczka et al. [11] propose an LWIR (Long Wave Infrared) face

tracking method based on an active appearance model (AAM) to address the problem of in-plane

rotation and occlusion for detection facial landmarks.

One of the very few deep learning based thermal face detection models is proposed by Kwas-

nieska et al. [12] that detects faces in low resolution thermal images. The authors localize objects by

restoring the spatial information about features distribution from the classi�cation network. Kwas-

niewska et al. [13] propose a deep learning approach for face detection and tracking in thermography

using transfer learning technique to re-train the Inception v3 using thermal images and modifying

the last layer of model to improve its localization ability. They demonstrate that this approach can
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be used with low resolution thermal images collected using thermal cameras that can be embedded

into everyday devices like cell phones or an indoor remote monitoring solution.

2.1.2 Face Detection in the Visible Band

There are many face detection algorithms in visible spectrum that use deep learning approaches.

Zhang et al. [14] propose MT-CNN (Multitask CNN) where, the image is �rst re-sized to form an

image pyramid followed by three stages. The �rst stage is Proposal net that obtains several candidate

windows and their corresponding bounding box regression vectors, the second stage is a Re�ne net

that rejects a large number of false candidates and the third stage is Output net that describes face

in more detail and outputs �ve facial landmarks. Each of these stages are followed by NMS (Non-

Maximum Suppression). Farfade et al. [15] propose a multi-view face detection algorithm which

they call DDFD (Deep Dense Face Detector) that does not require pose and landmark annotation

and is able to detect faces in a wide range of orientations. They extracted training samples from

AFLW (Annotated Facial Landmarks in the Wild) dataset [16] and used di�erent data augmentation

strategies and increased the size of the dataset ten times that of the original. Alex-Net [17] is �ne-

tuned and the sliding window approach is selected to decrease the system complexity.

Ranjan et al. [18] propose HyperFace, a single CNN that performs face detection, landmark

localization, pose estimation and gender classi�cation in three modules: the �rst one generates class

independent region proposals and scales them, second is a CNN which takes in the re-sized candidate

regions and classi�es them as face or non-face and provides landmarks for face regions. The third

module is a post-processing step which involves iterative region proposals and landmarks-based

NMS. Yang et al. [19] propose Faceness-Net, which detects faces in di�erent poses and occlusions

in two stages � In the �rst stage, a full image is input to a CNN that generates partness maps of

each face part (hair, eye, nose, mouth and beard) using an attribute aware network for each part

and generates face proposals. In the second stage, face proposals generated in the �rst stage are

re�ned by training a multi-task CNN, where face classi�cation and bounding box regression are

jointly optimized. Wu et al. [20] propose a CNN for facial landmark regression by examining the

intermediate features of a standard CNN trained for landmark detection and show that features

extracted from later, more specialized layers capture rough landmark localizations. They propose a

tweaked CNN by providing a natural means of applying di�erential treatment midway throughout

the network.

Sun et al. [21] propose an improved Faster R-CNN for face detection which is a light head based
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two-stage framework which they call FDNet1.0. Their �ndings suggest that some modi�cations in-

cluding multi-scale training, multi-scale testing, keeping small proposals at training and test stages,

directly selecting top ranked proposals without NMS in the RPN stage for R-CNN, feature concate-

nation, hard negative mining, and model pre-training improved the �nal face detection performance

and implemented them. Cheng et al. [22] propose a two-layer CNN to learn the high-level features

which performs face identi�cation via sparse representation. Sparse Representation Classi�er (SRC)

represents the image by a subset of the training data. They improve its performance via a precisely

selected feature extractor. Sun et al. [23] propose a method for estimation of the positions of facial

keypoints with three-level convolutional networks and the outputs at each level are fused for ro-

bust and accurate estimation and global high-level features are extracted in the initial stages which

help to locate accurate keypoints. Zhang et al. [24] propose a multi-task deep CNN to address the

problems of occlusion and pose variation. They investigate the possibility of improving detection

robustness through multi-task learning and to optimize facial landmark together with heterogeneous

but subtly correlated tasks like headpose estimation and facial attribute inference and developed a

tasks-constrained deep model with task-wise early stopping to facilitate learning convergence.

2.2 GANs for Image Augmentation

Neural networks often require large amounts of data for e�ective functionality. There are many

standard techniques to generate more images from a limited number of images like rotation, �ip etc.

however, the data generated by these techniques is again limited. GANs (Generative Adversarial

Networks) are introduced by Goodfellow et al. [1], in which two networks, namely, generator and

discriminator compete with each other, the former trying to generate data that looks as similar

as possible to the original data and the latter trying to discriminate between the real and fake

distributions. Therefore, adversarial training leads to the generation of new data that looks similar

to the original data. Following this lead many algorithms are developed to generate broader datasets

using GANs.

In [25], Antoniou et al. propose DAGAN (Data Augmentation GAN) in which an encoder takes

an input image and projects it to a lower dimension manifold (bottleneck) and a transformed random

vector is concatenated to the bottleneck which is then passed to the generator. A combination of

UNet [26] and ResNet [27] is used for generator and DenseNet [28] is used for discriminator. Zhu et

al. [29] propose a data augmentation strategy to create a balanced dataset from an unbalanced one

using cycleGANs [30] for emotion classi�cation. They use reference and target images and feed them
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to a cycleGAN, which is used as generator to generate images with rare emotions such as disgust

from sad or happy expressions and they develop a CNN based emotion classi�er. Out of many

variants of GANs, DCGAN [2] became popular which focuses on unsupervised learning of GANs

and implements a set of changes on top of the convolutional GANs to improve stability. All pooling

layers are replaced with strided convolutions for discriminator and fractional-strided convolutions

for generator. Batch Normalization that stabilizes learning by normalizing the input to each unit

to have zero mean and unit variance is used in both the networks. A ReLU activation layer is used

in all layers of the generator except the output, and a leaky ReLU is used in all the layers of the

discriminator. Zhao et al. [31] propose EBGAN (Energy-Based GAN) that views discriminator as

an energy function that attributes low energies near the data manifold and higher energies to the

other regions. This facilitates the use of a variety of architectures and loss functions in addition to

the usual binary classi�er (real or fake) and found that this is more stable and that a single-scale

architecture can be used to generate high-resolution images.

In [32], Frogner et al. propose BEGAN (Boundary Equilibrium GAN) in which they use auto-

encoder as a discriminator and match auto-encoder loss distributions using a loss derived from the

Wasserstein distance [33]. They achieve this by adding an equilibrium term to the GAN objective

to balance the discriminator and generator. Shin et al. [34] introduce a GAN algorithm to generate

synthetic abnormal MRI (Magnetic Resonance Imaging) with brain tumors by adopting image-

to-image translation conditional GAN to translate label-to-MRI (synthetic image generation) and

MRI-to-label (image segmentation) and obtained comparable results when trained on synthetic data

versus when trained on the original data.

2.3 Face Recognition

2.3.1 Same Spectral Matching

There are numerous face recognition algorithms available in the visible spectrum. ArcFace (Ad-

ditive Angilar Margin Loss) [36] is one of the most recent visible face recognition model, which uses

arc-cosine function (dot product) between the CNN feature and the last fully connected layer is equal

to the cosine distance after feature and weight normalization. Additive angular weight is added to

the target angle and all the logits are re-scaled by a �xed feature norm, and the subsequent steps

are exactly the same as in the softmax loss. FaceNet [6] is one of the most popular face recognition

algorithms that de�ned a term called "triplet loss", which uses triplets, containing a pair of objects
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from the same class and another one that is not. FaceNet model learns a mapping from face images

to a compact Euclidean space where distances directly correspond to a measure of face similarity.

Huang et al. [37] propose CLMLE (Cluster based Large Margin Local Embedding) from all the

examples in clusters, rather than only hard examples in clusters by enforcing margins between hard-

mined clusters in the local neighborhood from same and di�erent classes to address the problem

of class imbalanced data in deep learning experiments. This margins introduce a tight constraint

to generate more balanced class boundaries locally. CosFace [38] is proposed by reformulating the

softmax loss as a cosine loss, LMCL (Large Margin Cosine Loss) by normalizing both the features

and weight vectors to remove radial variations. The introduced cosine margin term maximizes

the decision margin in the angular space. Minimum intra-class variance and maximum inter-class

variance are achieved by normalization and cosine decision margin maximization. Masi et al. [39]

propose a face recognition approach that considers and handles pose variability by learning PAMs

(Pose Aware Models) for frontal, half-pro�le and full pro�le faces. In addition, they propose multiple

ideal co-ordinates for out-of-plane face alignment and co-training, which addresses the problem of

training CNN models for extreme poses where relatively few example faces are available for training.

2.3.2 Multi-Spectral Matching

Though there are many face recognition algorithms available in the visible spectrum, they cannot

be directly used for IR (Infrared) images, due to the limited availability of IR data. To overcome

this problem, Lezama et al. [40] propose a NIR-VIS face recognition approach that has two core

components - cross spectral hallucination and low-rank embedding to optimize input and output

of a visible deep model for cross-spectral face recognition. Cross hallucination CNN is trained on

pairs of corresponding NIR-VIS patches that are mined from CASIA NIR-VIS 2.0 [41]. Low-rank

embedding is a geometrically motivated transformation that is learned to restore a within-class low

rank structure while introducing a maximally separated inter-class structure.

Narang et al. [42] propose a SWIR based face recognition system in which they develop an

SSMW (Single Sensor Multi-Wavelength) imaging system that operates in SWIR band and captures

in three di�erent wavelengths of SWIR spectrum. They also develop an automated image quality-

based score-level fusion scheme for the automated classi�cation of multi-wavelength face images to

individual wavelengths and an image quality weighted-based, score level fusion scheme developed

for frontal vs. non-frontal classi�cation. Finally, they determined which SWIR wavelength provides

good quality face images and high recognition rates. Osia et al. [43] propose a fully automated direct
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matching based FR approach that operates when images from either visible or passive IR bands are

used. Input images are �rst geometrically normalized using a pre-processing pipeline, after which

face-based features including wrinkles, veins as well as edges of facial characteristics are detected

and extracted for each operational band. Finally, global and local face-based matching is applied,

before fusion is applied at score level.

To make GANs conditional [44], both the generator and discriminator networks are conditioned

on some extra information such as labels, images from other domains etc. This information is

utilized to use images from one domain and condition the GAN to generate images in other domains

including using thermal images to generate visible images that facilitates cross-spectral matching.

To this end, some algorithms are proposed to match thermal images to visible. TV-GAN (Thermal-

to-Visible GAN) [45] introduces a network with a generator that transforms thermal image into its

visible counterpart that still carries su�cient identity information for the face recognition task. An

identity loss function is introduced in the discriminator, so that the discriminator does not only

provide the fake or real discrimination result, but also provides closed-set face recognition.

Di et al. [46] propose AP-GAN (Attribute Preserving GAN) to generate visible images from

thermal images using the attributes generated using a pre-trained VGG-Face network. AP-GAN

uses U-Net as a building block for the generator and a patch-based discriminator. The adversarial loss

for discriminator has unconditional loss to discriminate between real and fake images and conditional

loss to match real images to reconstructed images. The generator, in addition to the adversarial

loss, has perceptual loss, identity loss, attribute loss and L1-Norm loss between the target and

reconstructed image. Semantic-Guided GAN [47] is another model that performs thermal to visible

matching, using semantic labels extracted by a face parsing network during training. These semantic

labels denote high level facial component information associated with each pixel. Identity loss and

perceptual loss are used in addition to the adversarial loss.

Wang et al. [48] propose a network that combines a generator network with a detector. The

generator is based on CycleGAN and learns bi-directional translation between visible and thermal

images. The detector network is designed following [49] and extracts face shape features, which are

constituted by important landmarks of visible faces. These face shape features help the generator

synthesize visible images of better visual quality and with more realistic identity preserving features.
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Chapter 3

MWIR and Visible Based DeepFace

Detection Model

3.1 Methodology overview

The methodological approach of this work is as follows: �rst step is to manually annotate all

the images to generate bounding box co-ordinates. Second step is to train and validate the deep

learning models, �ne-tune, and determine the model that yields the best results for the data and the

last step is to optimize the selected model further to improve the accuracy and speed and to �nd an

accuracy/speed trade-o�. Figure 3.1 shows the proposed methodological approach for the system.

3.2 Meta Architectures

The deep learning models used to train the face detection are SSD, R-FCN, Faster R-CNN with

VGG-16 [50], ResNet-101 [27], Inception v2 [51], Inception v3 [52], Inception ResNet (v2) [53] and

MobileNet [54] as feature extractors. All the above-mentioned models are trained and tested using

the MWIR and visible data separately and the results obtained from all the combinations of models

and feature extractors are compared with each other. All the machine learning algorithms have one

objective � to minimize the loss. The loss function in [55] is provided below:
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Figure 3.1: Overview of the proposed approach - (a) Images collected in Visible and Thermal
bands, (b) Manual annotation of images to generate bounding boxes, (c) Pre-trained models

trained and tested, (d) Output (Cropped images that are used for face recognition)

L(a, I; θ) = α ∗ 1[a is positive] ∗ lloc(φ(ba; a) − floc(I; a, θ)) + β∗

lcls(ya, floc(I; a, θ)) (3.1)

All the models used in this work follow this loss function where α and β are weights of the

network balancing localization and classi�cation losses, a is the anchor (anchors are predicted boxes

overlaid on the image I at di�erent spatial locations, scales and aspect ratios), ba is the best ground

truth match for a (if exists), ya is class label if anchor is positive i.e. object is present in a (only

face in our case; 1 if positive, 0 if negative), φ(ba; a) is the vector encoding of ba with respect to a,

fcls is discrete class prediction for each anchor and floc is continuous prediction of o�set by which

the anchor needs to be shifted to �t the ground truth bounding box. The meta architectures of

the models used are described below. They are tuned, optimized and tested to determine the most

e�cient model in terms of the speed and detection accuracy.
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3.2.1 Deep face detection models

Faster R-CNN

Faster R-CNN [5] is a relatively fast version of Fast R-CNN [56]. It has two components. First is

an RPN (Region Proposal Network) that takes image as an input and outputs a set of rectangular

object proposals, each with score of the presence of object class in the box. To generate proposals,

a small network is slid over the convolutional feature map output by the last shared convolutional

layer and each sliding window is mapped into a lower-dimensional vector which is fed into two sibling

fully-connected layers � a box regression layer and a box classi�cation layer. The second component

is the Fast R-CNN. Fast R-CNN takes an entire image and a set of box proposals as input. The

network processes the whole image with several convolutional and max pooling layers to produce

a convolutional feature map. Then, a region of interest (RoI) pooling layer extracts a �xed length

feature vector from the feature map for each of the object proposals. Each vector is then fed into

a sequence of fully connected layers that branch into two output layers: one that produces softmax

probability estimates and another layer that outputs four real valued numbers that encode re�ned

bounding-box positions.

R-FCN

R-FCN [4] follows R-CNN in adopting the two-stage object detection strategy explained above.

Candidate regions are extracted by RPN, after which R-FCN classi�es the ROIs (Regions of Interest)

into categories and background. The last layer of R-FCN is a position-sensitive ROI pooling layer

that aggregates the outputs of the last convolutional layer. The backbone architecture of R-FCN is

ResNet-101 which is explained later in this section. The signi�cant change made in the ResNet-101

architecture is reducing the e�ective stride from 32 pixels to 16 pixels, increasing the score map

resolution.

SSD

SSD [3] is a feed-forward CNN that produces a set of bounding boxes with con�dence scores for

the presence of object in those boxes. This is followed by a non-maximum suppression step that

detects the object. The early networks are standard CNN layers that are used for classi�cation in high

quality images called base network and are truncated before any classi�cation layers. Convolutional

feature layers are added to the truncated base network that decrease in size and generates detections

at multiple scales. Each added feature layer produces a �xed set of predictions using a set of
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convolutional networks which are di�erent for each feature layer.

3.2.2 Feature Extractors

MobileNet

MobileNet [54] is basically designed for Mobile Vision applications and is a relatively fast con-

volutional network. It is based on depth-wise separable convolutionals which is a form of factorized

convolutions which factorize a standard convolution into a depth-wise convolution and a 1×1 con-

volution called a point-wise convolution. The depth-wise convolution applies a single �lter to each

input channel and the point-wise convolution applies a 1×1 convolution to combine the outputs of

the former.

Inception v2

Inception [57], popularly known as GoogleNet stands the base architecture for Inception v2 and

Inception v3. It follows the basic idea to operate �lters with multiple sizes on the same level. This

model has 9 inception modules stacked linearly in 22 layers and uses global average pooling at

the end of the last inception module. To address the problem of vanishing gradient [51], which is

common in any very deep classi�er, two auxiliary layers are introduced. Inception v2 is similar

to GoogleNet with the following changes. Representational bottleneck is reduced as reducing the

dimensions drastically may cause loss of information. To achieve this, �lter banks in the module are

expanded. 5×5 convolutions are factorized to two 3×3 convolutions and any n×n convolutions are

factorized to n×1 and 1×n convolutions. This reduces the computational cost, as large convolutions

are extremely expensive compared to the smaller ones.

Inception v3

Inception v3 [52] includes all the upgrades mentioned above for Inception v2. Additionally, the

following details are added to the architecture: RMSProp optimizer, factorized 5×5 convolutions,

batch normalization is applied to the auxiliary layers and label smoothing to prevent over-�tting.

VGG-16

VGG-16 [50] replaces the large kernel-sized �lters (mostly 11×11 and 7×7) with multiple 3×3

�lters. Blocks with the same �lter size are applied multiple times to extract more complex and

representative features. VGG convolutional layers are followed by 3 fully connected layers. Width
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of the network starts at a small value of 64 and increases by a factor of 2 after every sub-sampling

pooling layer.

ResNet-101

ResNet-101 [27] uses referenced mapping instead of un-referenced mapping i.e., the input from

one layer is directly connected to the next layer along with the output from the previous layer. The

intuition behind this approach is that it is easier to use a referenced mapping than it is to optimize

a non-referenced mapping.

Inception ResNet v2

In Inception ResNet v2 [53], residual connections are introduced that add the output of the

convolutional operation of the inception module to the input. To match the depth sizes for residual

connections, 1×1 convolutions are used after tthe original convolutions. Pooling operation is replaced

to favor residual connections. Networks with residual units deeper in the architecture made the

network unstable and this problem is addressed by scaling the residual activations to 0.1 to 0.3.

3.3 Parameter tuning

Deep learning models explained in the above section are combined with all the aforementioned

feature extractors explained and all the choices for training are made closely following the original

work [55] such as convolutional layers to be used for generating region proposals for region-based

networks, number of region proposals, usage of multiple feature maps, output stride of ResNet

etc. ArgMax matching is used for matching anchors (generated bounding boxes) with ground truth

instances in which anchors are discarded if the overlap between anchor and ground truth is lower than

a threshold (0.5 IoU). Smooth L1 loss [58] is used for all the experiments following the original work.

Learning rate is varied from 0.002 to 2e-6 for each of the combination of model and feature extractor.

Di�erent optmizers are trained and tested, which include AdaGrad, Momentum, RMSProp and

Adam optimizers.

3.3.1 Momentum Optimizer

Momentum optimizer helps accelerate SGD (Stochastic Gradient Descent) in the relevant di-

rection and dampens oscillations. It is achieved by adding a fraction γ (called momentum) of the

update vector of the past time step to the curernt update vector. The momentum term increases for
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dimensions whose gradients point in the same directions and reduces updates for dimensions whose

gradients change directions. The default value of γ is 0.9.

3.3.2 AdaGrad Optimizer

Adagrad optimizer adapts the learning rate to the parameters, performing smaller updates (larger

learning rate) for parameters associated with frequently occurring terms and larger updates (larger

learning rate) for infrequent terms. The default learning rate value for AdaGrad optimizer is 0.01

and ε (smoothing term that avoids division by 0) is 1e-8.

3.3.3 RMSProp Optimizer

RMSProp (Root Mean Square Propagation) optimizer is an extension of AdaGrad optimizer that

seeks to reduce its aggressive and monotonically decreasing learning rate. It divides the learning

rate by an exponentially decaying average of squared gradients. The default momentum value is 0.9.

3.3.4 ADAM Optimizer

Adam optimizer computes adaptive learning rates for each parameter. It stores exponentially

decaying average of past squared gradients (similar to RMSProp) and exponentially decaying average

of past gradients (similar to momentum) as the �rst moment (the mean) and the second moment

(the variance) respectively. Default values for the �rst and second estimates are 0.9 and 0.999

respectively and that of ε is 1e-8.

3.4 Faster R-CNN with ResNet-101 (Proposed Model)

Results obtained from the experiments show that the Faster R-CNN model with ResNet-101

performed better than the other models for our data. This section includes a brief description of

the training parameters for this particular model. The main di�erence in the implementation of the

Faster R-CNN is that the Adam optimizer [59] is used instead of the momentum optimizer. This

optimizer is found to be the most e�ective in this case than other optimizers after training and

testing the models with Momentum, AdaGrad and RMSProp optimizers. The Adam optimizer is

used with the default values of 0.9 and 0.999 for the �rst and second moment estimates respectively,

and Epsilon is set to 1e-8. This optimizer learns the learning rates itself, i.e. it adapts the learning

rate as the loss decreases. Note also that the mini-batch size for RPN training is set to be 64 while
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for box classi�er is set to be 1. Though the network performs well, the detection time is higher than

the other networks. To address this problem, further experiments are performed by reducing the

number of proposals in the Fast R-CNN, which reduces the time required for the RPN to propose

regions, thereby reducing the detection time. However, the speed is increased at the expense of

accuracy of the system. This is further explained in Chapter 6. Basic blocks of Faster R-CNN is

shown in Figure 3.2 and di�erence between a regular and a residual connection is shown in Figure

3.3.

Figure 3.2: Overview of Faster R-CNN model

Figure 3.3: Network (a)without and (b) with a residual connection

3.5 Same Spectral face Recognition

Same spectral cross-scenario (indoor vs outdoor) face recognition experiments are performed to

further demonstrate the e�ciency and bene�ts of the proposed automated face detection framework.

The results are compared against the face recognition experiment results obtained using manually

cropped faces. FaceNet [6] face recognition model is used for visible face recognition. Thermal face

recognition is performed using Histogram of Oriented Gradients (HOG) and Linear Binary Pattern
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(LBP) hand-crafted features. These are fused using SS (Simple Sum) score-level fusion, thereby

forming a single distance metric.
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Chapter 4

Improving MWIR DeepFace

Detection Accuracy Using Data

Augmentation - Traditional and GAN

Approach

Fig 4.1 shows the proposed methodology followed in this work to increase the size of the database

and perform various experiments to validate the impact of di�erent image augmentation techniques.

The Faster R-CNN with ResNet101 model for face detection used in all the experiments in this work

is the model that is proposed and developed in Chapter 3. The �rst step is to augment the data

using di�erent traditional image augmentation techniques like brightness, contrast adjustment, and

noising and de-noising algorithms. The second step is to use the generated data to train and validate

the face detection model to study the positive and negative e�ects of using di�erent image processing

techniques. The learning rate is changed each time generated images are added to the training and

test datasets. In each experiment, 90% of the data is used for training and the remaining 10% is

used for testing. Care is taken that equal percentage of data from each domain (original and each

augmentation technique) is used for training and testing. Then, GANs are used to develop new

identities for addition to the original dataset used to train and test the Faster R-CNN model.
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Figure 4.1: Overview of the proposed approach - Data Augmentation

4.1 Traditional Image Augmentation Techniques

Image enhancement techniques are used to augment the data and to �nd the positive and negative

impacts of using such techniques on the MWIR images. The image enhancement techniques used

are brightness, contrast and �ltering. Brightness is varied to add darker and brighter images to the

dataset. When brightness of an image is increased, all the pixels' values in the image are increased,

making the entire image lighter and when brightness of an image is decreased, pixel values are

decreased, making the entire image darker.

The second image augmentation technique used is contrast enhancement. Three types of con-

trast enhancement techniques are used in this study. One is the regular contrast enhancement which

saturates the top and bottom 1% of the pixel values. The second is histogram equalization where

the most frequent intensity values are spread out. The third contrast enhancement method used is

CLAHE (Contrast Limited Adaptive Histogram Equalization), which is similar to histogram equal-

ization. CLAHE di�ers from histogram equalization in that it uses tiles of an image at a time instead

of using the entire image at once.

The third augmentation technique used is applying noise and then de-noising all the images.

Gaussian and Salt & Pepper noise is applied to images as these types of noise are common in

images. Additionally they do not alter the appearance of objects in an image drastically compared

to Poisson or Speckle noise [60]. Then Wiener and Median �lters are applied to remove Gaussian

and Salt & Pepper noise respectively, since these are proved to work for these particular kinds of
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noise.

4.2 GAN Augmentation

GANs are used here to generate new face identities in thermal spectrum. The generator and

discriminator architectures are explained below. The guidelines laid out by Radford et al. in [2] are

followed to develop the GAN architecture.

4.2.1 Generator Architecture

� All the fully connected layers in the vanilla GAN are replaced with deep convolutional layers.

Also, spatial pooling layers are replaced with fractional-strided convolutions for generator.

This allows the generator network to learn its own upsampling.

� Generator is built using four fractionally strided convolutional layers.

� No fully connected layers are used in any of the hidden units.

� Each of the deconvolutional layer is followed by a Batch Normalization layer except the last

one.

� ReLU (Recti�ed Linear Unit) is used as activation for all the hidden units.

� Input to the generator is a noise vector which can be either uniform or normal. We use uniform

distribution in this case as we need diversity in the generated images and since uniform noise

has high entropy, it facilitates the generation of highly diverse output images.

� The output layer of the generator is a Tangent Hyperbolic activation function. Generator

architecture is shown in Fig 4.2.

Figure 4.2: Generator Architecture
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4.2.2 Discriminator Architecture

� In the discriminator, all the spatial pooling layers are replaced with strided convolutional

layers. This helps the discriminator learn its own downsampling.

� Discriminator comprises of three fully convolutional layers, followed by a fully connected layer

that outputs a single logit. Each convolutional layer reduces the size of the input by half.

� Each of the convolutional layers, except the �rst, is followed by a Batch Normalization layer.

� All the hidden units use LeakyReLU activation function.

� The output layer of the discriminator is a sigmoid activation function. The discriminator

architecture is shown in Fig 4.3.

Figure 4.3: Discriminator Architecture

For generator and discriminator, number of feature maps depends on the size of the convolution

window, 256 in our network.

4.2.3 Mode Collapse

Mode collapse is a problem that occurs while training GANs, when G is trained extensively

without updates to D. The problem can be de�ned as follows: the generator �nds an optimal output

image that successfully fools the discriminator into thinking that it is a real image and tries to

generate more instances of that one image regardless of the input provided, collapsing the mode to one

point (image in this case). Instead of generating new thermal face images of di�erent identities, the
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generator keeps generating more images of one or two identities. To solve this problem, an additional

layer is included towards the end of the discriminator network before the sigmoid activation � a

minibatch discrimination layer [61].

To achieve minibatch discrimination, we send output from the generated (fake images) and real

images to the discriminator in separate mini batches. The discriminator now has an additional task

to discriminate between each image in a mini batch of fake images to the rest of the images in the

same mini batch. Similarity `s' between an image (xi) in the mini batch and all the other images in

the mini batch is calculated by discriminator. If the mode starts to collapse, the similarity between

the generated images increases and this in turn penalizes the generator. To allow minibatch discrim-

ination, a layer to calculate similarity is added to the discriminator before the sigmoid activation. To

keep this addition simple and cost e�ective, HOG features are extracted from the generated images

and are used to measure the similarity using L1-Norm.

4.2.4 GAN Loss Functions

The loss function proposed by Goodfellow et al. in [1] is used with the addition of loss from the

HOG features for minibatch discrimination, and can be de�ned as below:

LGAN = Ex,y[logD(x, y)] + Ex,z[log(1 − D(x,G(x, z))] − LHOG, (4.1)

where LHOG is the loss from minibatch discrimination layer calculated using L1-Norm, and is

obtained as follows:

LHOG =

N∑
i=1

LHOGi (4.2)

where

LHOGi =

N−1∑
j=1



xi − xj



1

(4.3)

where xi is the HOG of the input image, xj are the HOG of the rest of the images from the

minibatch and N is the number of images in the minibatch.
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Chapter 5

Thermal-to-Visible Face Recognition

using GANs

5.1 Methodological Approach

The methodology of the proposed thermal-to-visible GAN face matcher, is as follows: Faces are

detected and cropped from all the visible and thermal images. These cropped images are then saved

and geometrically normalized by locating the eye centers manually. The geometrically normalized

visible faces are used to generate features (embeddings) using the Facenet model, which are used

to condition the generator and the discriminator networks. Once the features are generated, the

conditional GAN is trained and the generated visible images are used as probe images against the

original visible gallery and face matching is performed using Facenet face recognition. The entire

methodology is presented in Figure 5.1.

5.2 CNN Architecture

The CNN architecture used has the following building blocks � 1. Face Detection network to

detect faces from visible and thermal face images 2. A feature extractor to extract features from

visible images, 3. A generator network, 4. A discriminator network 5. An identity network.
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Figure 5.1: Overview of the proposed approach to generate visible images from thermal - thin solid
line shows the �ow of thermal images, dotted line-visible images, thick solid line-generated visible

images and dashed line-feedback

5.2.1 Face Detection

Visible and thermal faces are detected using the face detection models developed in Chapter 3.

These faces are geometrically normalized by manually locating the eye centers from each image and

rotating the image so that the eye centers are on a horizontal line and the image is cropped. This

generated images of size 256×256.

5.2.2 Feature Extractor

Facenet [6] face recognition model is proven to be a highly reliable and robust face matcher.

Therefore, this is used without any training to extract features from visible face images which are

used to condition generator and discriminator networks. The Facenet model used here is obtained

by training an Inception Resnet model using 200 million face thumbnails and the face recognition

accuracy over LFW Dataset was 99.63%. The network generates an embedding f(x) from an image

x into a feature space, such that the squared distance between images of the same identity is smaller

than that of di�erent identities. A 224×224 window size waas used due to the fact that it is the
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closest in size to our image, 256×256. The 256×256 window size achieved the highest accuracy among

the others (160×160, 96×96).

5.2.3 Generator Network

Pix2pix [7] serves as a base network for our GAN architecture. Following this work, we use a U-

Net encoder based generator network. The inputs for this network are the geometrically normalized

thermal images and the embeddings generated by the feature extractor network work as condition

for the generator. Vanilla GANs use noise as input to the generator, however in this case, thermal

images are used as input. If noise is completely omitted, the generator produces deterministic results

and if noise is provided as input alongside images, the generator simply learns to ignore the noise as

the training progresses. To avoid this, noise is applied only as dropout on several layers of generator.

The generator has the following architecture:

CL64-CL128-CL256-CL512-CL512-CL512-CL512� CDR512-CDR1024-CDR1024-CDR1024-CDR512-

CR256-CR128-CT

Figure 5.2: Generator Architecture using U-Net Decoder �
CL:Convolution-BatchNorm-LeakyReLU, CDR:Convolution-BatchNorm-Dropout-ReLU, T:

Tangent Hyperbolic Function

where CLk denotes Convolution-BathNorm-LeakyReLU layer with k �lters, with the exception

of the �rst layer of the encoder where BatchNorm is not applied and CDRk denotes Convolution-

BatchNorm-Dropout-ReLU layer with a dropout rate of 50%. The architecture is represented in

Figure 5.2. All the convolutions are 4×4 spatial �lters applied with stride 2 and convolutions in the

encoder down-sample by a factor of 2 and in the decoder up-sample by a factor of 2. The CT layer

is the convolution applied to map to the number of output channels followed by a Tanh activation.
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All the leaky ReLUs have a slope of 0.2. As mentioned earlier, noise is applied as dropout, in this

work it is Gaussian with '0' mean and a standard deviation of 0.01.

5.2.4 Discriminator Network

The patch-based discriminator in pix2pix is replaced by a pre-trained Inception ResNet v1 model

in this work. The pre-trained Inception ResNet model classi�es images into various categories from

the ILSVRC [62] dataset. This model is re-trained to classify the images as real or fake. The last

layer of this network receives 1792 dimensional vector as input, followed by average pooling, dropout

and softmax layers. In general, if the generator and discriminator networks are trained at the same

rate, discriminator starts classifying all the images generator generates as fake, which makes it

di�cult for the generator to converge. To overcome this, discriminator has trained at a slower rate

than generator, usually by dividing the objective function by 2 when training the discriminator.

In this case, since we �ne tune and use a robust classi�er as discriminator, it is necessary to train

the discriminator at an even slower rate. This is achieved by dividing the objective function when

training the discriminator by 4.

5.2.5 Identity Network

An identity network is introduced to provide G with more feedback about the identity of the

image being generated. This network is again a pre-trained Facenet model, re-trained and �ne tuned

along side D, to provide feedback to the generator about the identity of the generated images. The

Facenet model is re-trained using triplet loss method [6].

As the name suggests, the triplet loss method uses triplets of data to train the network. Each

triplet consists of an anchor image, a positive image and a negative image, where the anchor and the

positive image belong to the same identity and the negative image is of any other di�erent identity.

The aim of the training is to ensure that, in all the triplets, the positive image is closer to the

anchor than the negative image in the embedding space, which live on the d-dimensional Euclidean

hypersphere as shown in Figure 5.3. Thus, the relation between the three images in a triplet can be

de�ned as:



xai − xp
i



2
2
+ α <



xai − xni


2
2
∀ (xai , xp

i , xni ) ∈ τ (5.1)

where xi
a is the anchor image, xi

p is the positive image and xi
n is the negative image in the

triplet and τ is the set of all possible triplets in the data set. α is a margin enforced between positive
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Figure 5.3: Illustration of Triplet Training

and negative pairs. If all the possible triplets are used for training, it becomes impossible for the

network to converge and the the triplets that already satisfy equation 5.1 would not contribute to

the training. To ensure fast convergence, it is important to select triplets that do not satisfy the

above equation, which means, for any xi
a, xi

p is selected such that the distance between xi
a and

xi
p is maximum (argmaxxp

i



 f (xai ) − f (xp
i )



2
2
) and xi

n such that the distance between xi
a and xi

n

is minimum (argminxni



 f (xai ) − f (xni )


2
2
). The data set for training original facenet model consists

about 200 million images, so they used online hard mining to select hard triplets from with in a

mini-batch. Since our data has only around 456 images, we do not use any mining technique to

select triplets, rather compute all the possible argmin and argmax and use the triplets from these

distances. After training, this network provides feedback to generator in the form of the identity

number.

The basic building blocks of the inception resnet v1 are shown in Figure 5.4. The Reduction

network is less expensive while also being an e�cient way to reduce the dimensionality.

Figure 5.4: Basic building blocks of Inception Resnet v1
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5.3 Objective Function

Our thermal-to-visible GAN is optimized by minimizing the following loss function:

LFGAN = LGAN + λ1L1 + λtLt (5.2)

where LGAN is the adversarial loss for GAN, L1 is the L1 loss and Lt is the triplet loss. λ1 and

λt are weights for L1 and triplet losses respectively.

5.3.1 Adversarial Loss

The GAN loss is:

LGAN = Ex,y[logD(x, y)] + Ex,z[log(1 − D(x,G(x, z))], (5.3)

where X is the input thermal image, Y is the embedding generated by the feature extractor and

z is the dropout noise. G tries to minimize this loss, while D tries to maximize it.

5.3.2 L1 loss

Generator is able to fool the discriminator with the above loss functions, however using L1 loss

between real and generated images proved to provide the generator enough feedback to be able to

generate near ground truth images.

L1 = ‖y − G(x, z)‖1 (5.4)

5.3.3 Triplet Loss

Triplet loss function, used in the identity network described above is de�ned as:

Lt =

N∑
i=1

[


 f (xai ) − f (xp

i )


2
2
−



 f (xai ) − f (xni )


2
2
+ α] (5.5)

where f (xai ), f (xp
i )andf (xni ) are the embeddings of anchor, positive and negative images respec-

tively.

After the images are generated, Wiener �lter with window size [5 5] is used to de-blur the images
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Chapter 6

Experimental Evaluation and Results

All the experiments are performed using Ubuntu 16.04/18.04 LTS 64-bit on a Titanx GPU in

TensorFlow.

6.1 Face Detection in Thermal and Visible Spectrum

The steps include manually annotating all the images to generate bounding boxes for ground

truth labels, training and testing several models, �ne-tuning.

6.1.1 Datasets

Images in the thermal and visible bands are collected at two di�erent stand-o� distances � 5m

and 10m and in indoor and outdoor environments. Therefore, a total of four categories for each

of thermal and visible bands are used in this study from a total of 57 subjects and around 6000

images in total (3000 from each band). No image augmentation or image pre-processing techniques

are used. The scenarios used are 5m�indoor, 5m�outdoor, 10m�indoor, 10m�outdoor.

6.1.2 Training and Parameter Tuning

Learning rate is varied from 0.002 to 2e-6 for each of the combination of model and feature

extractor using AdaGrad, Momentum, Adam and RMSProp optimizers which lead to a total of 720

experiments, summarized in Table 6.1. These experiments are repeated for visible and thermal data

separately with 90% of the data for training and the remaining 10% for validation.

For all the combinations of models and feature extractors, for learning rates below 1e-4, the
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Table 6.1: Accuracy of detector using di�erent models assessed

Model Learning rate mAP-Thermal (%) mAP-Visible (%)

SSD with VGG 16

1e-4

63.7 64.2

SSD with ResNet 101 68.6 66.7

SSD with Inception v2 67.3 67.8

SSD with Inception v3 68.6 67.2

SSD with Inception ResNet v2 70.2 69.8

SSD with MobileNet 64.6 62.8

R-FCN with VGG 16 72.6 72.8

R-FCN with ResNet 101 86.5 88.7

R-FCN with Inception v2 81.9 83.6

R-FCN with Inception v3 76.2 75.4

R-FCN with Inception ResNet v2 78.6 80.2

R-FCN with MobileNet 67.2 68.1

Faster R-CNN with VGG 16 78.3 79.6

Faster R-CNN with Resnet 101 92.6 93.7

Faster R-CNN with Inception v2 89.6 88.4

Faster R-CNN with Inception v3 87.2 89.3

Faster R-CNN with Inception ResNet v2 89.8 92.7

Faster R-CNN with MobileNet 85.3 83.8

SSD with VGG 16

3e-5

69.8 69.2

SSD with ResNet 101 74.3 72.9

SSD with Inception v2 64.6 66.2

SSD with Inception v3 72.6 73.2

SSD with Inception ResNet v2 77.8 78.2

SSD with MobileNet 70.3 72.9

R-FCN with VGG 16 77.6 82.7

R-FCN with ResNet 101 91.2 88.4

R-FCN with Inception v2 78.3 77.2

R-FCN with Inception v3 82.7 84.2

R-FCN with Inception ResNet v2 80.4 82.8

R-FCN with MobileNet 70.2 69.8

Faster R-CNN with VGG 16 82.6 87.5

Faster R-CNN with Resnet 101 98.4 99.2

Faster R-CNN with Inception v2 93.8 93.6

Faster R-CNN with Inception v3 92.6 94.8

Faster R-CNN with Inception ResNet v2 93.7 92.6

Faster R-CNN with MobileNet 89.2 87.3

models did not converge. After extensive training and validation experiments, 3e-5 as learning rate

is found to be optimal for all the models. Therefore, the results obtained using learning rate values

of 1e-4 and 3e-5 are presented in Table 6.1 using Adam optimizer. The accuracy of all our models

is evaluated using mAP (mean Average Precision) metric, which is the average of all the precision

values over the recall range of 0 to 1.
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Figure 6.1: Thermal face detection accuracy for(a) learning rate of 1e-4, (b) learning rate of 3e-5

Figure 6.2: Visible face detection accuracy for(a) learning rate of 1e-4, (b) learning rate of 3e-5

SSD model with MobileNet resulted in 74.3% and 72.9% mAP (mean Average Precision) over the

thermal and visible sets respectively and is the fastest among all with 1ms for single detection. SSD

with ResNet-101 yielded an mAP of 74.3.5% and 72.9% over thermal and visible sets respectively.

Faster R-CNN with ResNet-101 yielded the highest mAP over thermal and visible data sets with

98.4% and 99.2% with 60ms for each detection task.

6.1.3 Experiments by reducing the number of proposals in the RPN for

Faster R-CNN and R-FCN

In all the above experiments, the number of proposals generated by RPN during detection time

is 300. Speed can be reduced by decreasing the number of these proposals. Therefore, another set
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of experiments were performed by reducing the number of proposals in R-FCN and Faster R-CNN

models with ResNet-101. The number of proposals used in the above set of experiments is 300 and

this number is reduced by 50 each time. For R-FCN, when number of proposals were decreased,

time taken for single detection remained the same (2ms), however accuracy decreased by a large

amount. For 150 proposals, time taken for a single detection for Faster R-CNN decreased to 20ms,

while the mAP remained at 95.28%, after which speed increased only a little and mAP decreased

more.

Table 6.2: Accuracy of Faster R-CNN for di�erent number of region proposals

Number of proposals Thermal (%) Visible (%) time (ms)

300 98.40 99.20 60
250 98.17 96.54 54
200 96.87 96.19 45
150 95.28 95.72 20
100 84.88 86.54 17
50 76.26 72.55 12

Table 6.3: Accuracy of R-FCN for di�erent number of region proposals

Number of proposals Thermal (%) Visible (%) time (ms)

300 91.20 88.40 60
250 88.29 86.67 54
200 85.94 82.53 45
150 84.28 81.90 20
100 72.78 70.53 17
50 65.37 62.48 12

Speed-Accuracy trade-o� curves are shown in Figure 6.3.

Figure 6.4 shows two examples of images where the detection is successful and two examples

where it is not. A large percentage of images used in the training and test sets have the subject

looking at the camera. The algorithm failed in the images where this is not the case, i.e., it failed

when the subject is looking in other direction.

6.1.4 Face Recognition Experiments

For thermal face recognition, using conventional FR approach (SS score-level fusion of HOG and

LBP), the Rank-1 face identi�cation accuracy values yielded are 95.26% and 85.78% for the 5m and

10m distances respectively. For visible, these are 99% and 97.4% for the 5m and 10m distances

respectively. In contrast, when the same FR models were used but the face images were manually

cropped, the yielded accuracy is 97.67% (5m MWIR) and 91.20% (10m MWIR) and 100% in both

5m and 10m visible band face data sets. Face recognition experiments and the results are presented
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Figure 6.3: Speed-Accuracy Trade-o� curves for Faster R-CNN and R-FCN with change in number
of proposals of RPN

Figure 6.4: (a,b)-Images where face detection worked, (c,d)-Images where face detection failed

in Table 6.4.

Table 6.4: Face Recognition Results - I:Indoor, O:Outdoor

Datasets Gallery Probe Manual (%) Automated (%)

Visible
5m Indoor 5m Outdoor 100 99

10m Indoor 10m Outdoor 100 97.4

Thermal
5m Indoor 5m Outdoor 97.67 96.19

10m Indoor 10m Outdoor 91.20 86.54
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6.2 Data Augmentation to Improve Detection Performance in

MWIR Spectrum

6.2.1 Datasets

Data sets used are thermal face images, collected at two di�erent distances (5m and 10m) and

two di�erent scenarios (indoor and outdoor). This contributes to a total of four scenarios i.e., 5m,

indoor; 5m, outdoor: 10m, indoor and 10m outdoor. Data from 56 di�erent individuals is used in

this study constituting a total of 3000 thermal face images.

6.2.2 Traditional Image Enhancement

For all the enhancement techniques presented in this section, images generated using one method

and one parameter are added to the original images and the face detection model is trained and

tested. At the end, all the images generated using one technique changing all the parameters are

included to train and test the face detector and this increased the size of the dataset by a large

amount. Instead of changing the learning rate for each of the experiments, batch size is �xed to be

the same. The learning rate is only changed when all images from an augmentation technique are

used for training and testing to 3e-6.

Brightness

The �rst set of experiments were performed by varying brightness of images. Brightness is

changed in increments of 10 until the brightness of each pixel is increased to 50 and the images of

each brightness level are added to the the original data and are used to train and validate the Faster

R-CNN model. At the end, all the images are used at once to train and test the model. Images with

increased and decreased brightness levels are shown in Figures 6.5 and 6.6 and the mAP values for

proposals of the RPN from 300 to 50 are presented in Table 6.5 and Fig 6.7.

Table 6.5: Accuracy of FRCNN for di�erent brightness levels

Proposals +10 +20 +30 +40 -10 -20 -30 -40 -50 All Data

300 98.64 97.95 98.90 98.82 98.76 98.85 98.82 99.01 98.63 99.64

250 98.28 98.66 98.59 98.67 98.23 98.26 98.77 98.38 97.26 99.18

200 96.89 97.23 96.54 97.63 96.98 96.90 97.26 97.38 98.23 97.43

150 95.78 96.89 95.27 96.54 95.57 95.60 96.29 96.24 95.98 96.88

100 87.66 86.47 87.28 86.26 85.03 85.38 86.24 87.23 86.98 87.03

50 78.29 77.98 76.20 77.49 77.28 76.46 77.23 78.91 77.29 77.95
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Figure 6.5: Images generated by varying brightness - Subject1

Figure 6.6: Images generated by varying brightness - Subject2

Contrast Enhancement

Three types of contrast enhancement techniques are used for this purpose. Images generated are

shown in Fig 6.8 and results are presented in Table 6.6 and 6.9.

Table 6.6: Accuracy of FRCNN for di�erent contrast enhancement methods

Proposals imadjust histeq CLAHE All Data

300 98.67 99.03 98.98 99.23

250 99.23 99.05 98.34 99.35

200 96.89 96.43 96.98 97.80

150 96.75 97.20 97.03 97.64

100 85.19 86.28 86.48 87.27

50 76.46 77.43 77.96 78.02
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Figure 6.7: mAP vs number of proposals of RPN for varying brightness values

Figure 6.8: Images generated through contrast enhancement � left to right � original image,
regular contrast enhancement, histogram equalization, CLAHE

Applying Noise and De-noising the Images

The next image processing technique used is applying noise and �ltering out the noise. Gaussian

noise is applied to the images with a mean of '0' and a standard deviation of 0.025. This applied

Gaussian noise is then �ltered out using Wiener �lter with 5×5 as the size of the neighborhood

window used to estimate the local mean and variance. Salt & Pepper noise is applied to the original

images with a density of 0.02 i.e., 2% of the pixels are a�ected. Then, median �lter is used to

de-noise the images. Fig shows original, noisy and �ltered images. Images generated by applying

Gaussian noise and Wiener �lter are shown in Figure 6.10 and by applying Salt & Pepper noise

and median �lter are shown in Figure 6.11. The accuracy of face detector for di�erent number of

proposals of RPN is shown in Table 6.7 and presented in Fig 6.12.
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Figure 6.9: mAP vs number of proposals of RPN for di�erent contrast enhancement techniques

Figure 6.10: Images generated by noising and de-noising the images, Left�to�right, Original
image, Gaussian noise applied, Wiener �lter applied

From Tables 6.5, 6.6 and 6.7, it can be observed that the accuracy increased by a small amount

for any of the augmentation techniques while the time required to train the models increased by a

large amount for each of these augmentation techniques. By augmenting the data using traditional

augmentation techniques, a robust model is trained that works well with noisy images, bright images,

dark images etc.
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Figure 6.11: Images generated by noising and de-noising the images, Left�to�right, Original
image, Salt and Pepper noise applied, Median �lter applied

Table 6.7: Accuracy of FRCNN for di�erent noising and de-noising algorithms

Proposals Gaussian noise wiener �lter Salt and Pepper noise Median �lter All images

300 98.23 98.72 98.76 98.58 99.67

250 97.99 98.20 98.27 98.45 99.40

200 97.16 97.91 97.77 98.23 99.15

150 95.47 96.38 96.44 96.47 97.42

100 85.26 86.43 87.21 87.13 89.25

50 77.10 78.00 77.85 78.24 79.56

6.2.3 GAN Data Augmentation

Original thermal face dataset used for face detection in Chapter 3 is used here to train the GAN.

This includes 6000 images from thermal spectrum.

Pre-processing

Face detection is applied to the original images and all the images are cropped to include only the

face area. These images are resized to 256×256, This is the window size for our GAN architecture

and are scaled to the range of [-1,1] for tanh activation.

Adversarial Training

The model is trained with mini-batch SGD (Stochastic Gradient Descent) with a mini-batch size

of 32. All the weights are initialized with a zero-centered mean with standard deviation of 0.02. In
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Figure 6.12: mAP vs number of proposals of RPN for di�erent types of noise and �lters

the leaky ReLU, the slope of the leak used is 0.2 in all the layers. The training process is accelerated

using an ADAM optimizer with tuned hyper-parameters. The learning rate used is 2e-5. Default

values for the �rst and second estimates of the ADAM optimizer are 0.9 and 0.999 respectively and

that of ε is 1e-8. However, the value of 0.9 for the �rst estimate resulted in training oscillation and

instability. This is solved by reducing its value to 0.5. The model converged after 150 epochs and

this took 200 hours using a Titanx GPU. After the images are generated, similarity score using HOG

is calculated once again between each image generated and rest of the generated images.

Figure 6.13: Instances of generated faces using GANs

The images that are too similar are rejected and this resulted in the generation of 62 new faces

in thermal spectrum, few instances of generated faces are shown in Fig 6.13 The generated images
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are used to train the Faster R-CNN face detector alone and are then used with the original images.

The learning rate used when training with only the generated images with original and generated

images together is 3e-5. mAP is calculated at 300 to 50 proposals. Results are tabulated in 6.8 and

are presented in Fig 6.14.

Table 6.8: Accuracy of FRCNN for original, generated and original+generated images

Proposals Generated Original+Generated

300 97.26 100

250 98.25 99.96

200 97.13 99.88

150 95.73 99.83

100 85.76 92.67

50 75.92 80.68

Figure 6.14: mAP of the Faster R-CNN when trained with original, generated and
original+generated images vs number of proposals of RPN

6.3 Thermal-to-Visible Face Recognition

6.3.1 Datasets

MWIR and visible images collected at a 5m and 10m distances, indoor and outdoor are used for

all the thermal-to-visible experiments. The data set includes images from 51 subjects, 16 in visible

and 16 in thermal for each subject, resulting in a total of 3264 images.
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6.3.2 preliminary Experiments

Two preliminary experiments are conducted to understand the e�ciency of FaceNet model for

matching original visible images to their thermal counterparts. These are explained below:

� Experiment 1 � Facenet model is used to match original visible-to-thermal images without

re-training. The Rank-1 accuracy yielded here is 8.24%

� Experiment 2 � Facenet model is re-trained with a learning rate of 0.00002 using ADAM

optimizer (0.5, 0.999) for 100 epochs with a batch size of 1. The accuracy yielded here is

11.76%. The train-test split is 90-10.

6.3.3 GAN Implementation

The original Inception style Facenet model is trained on 200 million face thumbnails of visible

images. It is used without any training to extract features (embeddings) from visible face images in

our dataset. The GAN network is trained with default values for ADAM optimizer (0.5, 0.999), with

a batch size of 1 for a total of 200 epochs. The initial learning is �xed at 0.0002 and is decreased

after 125 epochs by a factor of 1/10 after every 5 epochs. The value for λ1 is 10 (following [46])

and λt is 0.5. The identity network is trained using the same initial learning rate of 0.0002 for the

�rst 100 epochs and is then decreased by a factor of 1/100 for every 10 epochs. The parameter and

hyper parameter values assigned for the �nal experiments are decided after running experiments

with di�erent combinations of weights. This network is evaluated over 51 subjects out of which 85%

(42 subjects) are used for training with 32 images for each subject � 16 visible and 16 thermal.

Since the size of our dataset is too small, all the networks are trained using 5-fold cross validation.

6.3.4 GAN Experiments

A number of experiments are conducted with GAN, adding di�erent networks and weights to

generate visible images from thermal images. This is followed by performing visible-to-visible face

matching experiments using Facenet.

� Experiment 3 � First, the pix2pix [7] is trained without any changes to the network using

the original U-Net encoder and patch based discriminator with a patch size of 70×70. We

also trained and tested pixelGAN that matches an image to another through pixel by pixel

matching and image GAN of size 256×256, however the results using 70×70 patch are visually

pleasing and yielded better recognition accuracy. However, the accuracy is very low at 13.23%
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Table 6.9: Rank-1 Face Recognition Accuracy - (1) is pre-trained feature extractor, (2) pre-trained
discriminator, (3) identity network

Network Rank-1 Recognition Accuracy (%)

Facenet model 7.26

Facenet model after re-training 11.76

pix2pix 13.23

pix2pix with (1) 58.66

pix2pix with (1) and (2) 87.98

pix2pix with (1), (2) and (3) 92.83

pix2pix with (1), (2) and (3) with de-blurring 97.63

� Experiment 4 � For the next experiments, the patch based discriminator is replaced by a

pre-trained Inception ResNet model [53], and is �ne tuned and optimized to be able to classify

images into fake and real categories. The pre-trained weights derived from training the model

with COCO dataset are used for transfer learning here. The accuracy increased signi�cantly

to 58.66% by using a pre-trained model for discriminator.

� Experiment 5 � For the next set, a pre-trained Facenet model is used to extract features

from the visible images and the embeddings generated are used to condition the GAN. The

pre-trained Facenet model weights obtained by training Inception ResNet v1 on ILSVRC []

dataset are used directly to extract the features without any re-training. The addition of this

pre-trained feature extractor increased the face recognition accuracy to 87.98%.

� Experiment 6 � Last addition is the identity network, which is again a pre-trained Facenet

model with weights from ILSVRC. This model is retrained using original visible and generated

visible images. This yielded a Rank-1 face recognition accuracy of 92.83%. Images are gener-

ated with distinct features of individuals after 100 epochs of training, however the generated

images are noisy. After 200 epochs, images started losing quality and therefore, the training

is stopped at 200 epochs and that is where the model converged.

� Experiment 7 � Finally, synthetic visible images are de-noised using Wiener �lter. After

this step, the recognition accuracy increased to 97.63%. The images generated using the �nal

model with all the components and de-noising are shown in Figure 6.15 along with the original

MWIR and visible images.

All the experiments and results are summarized in Table 6.9 and the CMC (Cumulative Match

Characteristic) curves for di�erent networks are presented in Fig 6.16.

Since the test set for all the above experiments is very small (9 subjects), the �nal model, GAN
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Figure 6.15: Output from GAN � left to right � original MWIR image, images generated after
25, 50, 100, 150 and 200 epochs, de-blurred image and original visible image

Figure 6.16: Face Recognition Accuracy - (1) is pre-trained feature extractor, (2) is pre-trained
discriminator, (3) is identity network

with all the added components is trained using 70% of the data for training using cross-validation

and is tested on the remaining 30% of the data and de-noising is applied to the generated images.

For this experiment, the Rank-1 accuracy is found out to be 97.58%.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

In this thesis, the problem of availability of data is solved by using transfer learning which uses

the pre-trained models. Transfer learning reduces the number of images required to develop a new

deep learning model by a large amount. It also reduces the computation cost and training time

required for the model to converge. By developing models using transfer learning, knowledge from

existing models can be used to train new models instead of training an original model. Di�erent

pre-trained state-of-the-art models are combined with other models for feature extraction and are

trained using thermal and visible data. Thereby proposing a dual band based deep face detection

model that works almost equally well in visible and thermal bands. Faster R-CNN is determined

to be the model that works better than any other model trained with our data at a learning rate

of 3e-5. The other models trained and tested are R-FCN and SSD. SSD is the fastest among the

three models and R-FCN and Faster R-CNN detected at the same speed. The Faster R-CNN and

R-FCN models are further tested by reducing the number of proposals of the RPN from 300 to 50

by reducing 50 at a time to arrive at an optimal trade-o� between speed and accuracy. The optimal

number of proposals that achieved a good speed/accuracy trade-o� is 150 where the accuracy is

95.28% for Faster R-CNN and the time for single detection is 12 ms. Beyond that, the accuracy of

the detector dropped by a high amount. To follow up, face recognition experiments are conducted

using traditional methods for thermal data and using Facenet model for visible images using the

cropped faces from the face detectors and using faces that are manually cropped. The results yielded

using the automatically cropped images are comparable to that of the manually cropped images.
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Addition of data can still be useful to improve the performance of deep learning models. The

second part of the thesis focuses on augmenting the data to further improve the Faster R-CNN face

detection accuracy, speci�cally when less number of proposals are used. Traditional data augmenta-

tion methods like changing the brightness of the images, contrast enhancement, applying noise and

denoising the images are used to increase the size of the dataset signi�cantly. This helped in training

a robust model that could detect faces from images that are not perfect. The detection accuracy

increased by a small amount by this. Then, a GAN is proposed to generate new face identities that

can be used to train the face detector. The generator and discriminator architectures are developed

using fractional-strided and strided convolutions respectively. Mode collapse occurs while training

a GAN, an issue that arises when the generator �nds one or two images that fools the discriminator

successfully and keeps generating these despite the randomness of the input noise. This problem is

addressed by adding a similarity calculation layer right before the sigmoid layer of the discriminator

network which penalizes the generator, if the mode starts to collapse. This addition increased the

accuracy of the detector by a great amount, speci�cally when less number of proposals are used.

There are many state-of-the-art models available to perform face recognition in visible spectrum

images, however these models cannot be directly used to develop cross spectral face recognition

models due to the modality gap. A feasible solution is to convert images in one spectrum to another.

The third contribution is the proposal of a thermal-to-visible image conversion GAN that can be used

to convert thermal images to their visible counterparts facilitating the use of the existing state-of-the-

art visible-to-visible face recognition models to be used for recognition. The pix2pix GAN is taken

as a base for our model which is a conditional GAN that takes an image or any other information as

condition for generator and discriminator. Facenet model is used to extract features from original

visible images that can be used to condition generator and discriminator networks. A pre-trained

Inception ResNet classi�er is used as discriminator and is trained to classify images as real or fake.

In addition to using a pre-trained discriminator model, Facenet model is used as an identity network

that penalizes generator further and is trained using triplet loss. Thermal images are input to the

generator and it outputs their visible counterparts. The visible counterparts generated using this

model are used as probe set against the original visible images as gallery images. The Rank-1 face

recognition accuracy yielded using the facenet face matcher is 97.63%.
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7.2 Future Work

In this work, a pre-trained model is used as a discriminator to generate visible images to thermal

images, however the GAN used to augment thermal images in 4 does not use a pre-trained model.

The training time required for this model to converge is 100 hours as transfer learning is not used

here. In future work, this discriminator will be replaced with a pre-trained model, thereby reducing

the training time. Also, the boundaries of the GAN in 4 can be pushed further to generate more

images. The generated images can be combined with the original images as real images to the

discriminator, generating more new face identities. Noisy images etc. can also be included in the

dataset to generate visibl eimages from thermal to further improve the performance of GAN.
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