30 research outputs found

    Index to 1986 NASA Tech Briefs, volume 11, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1986 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    Index to 1985 NASA Tech Briefs, volume 10, numbers 1-4

    Get PDF
    Short announcements of new technology derived from the R&D activities of NASA are presented. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This index for 1985 Tech Briefs contains abstracts and four indexes: subject, personal author, originating center, and Tech Brief Number. The following areas are covered: electronic components and circuits, electronic systems, physical sciences, materials, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    The 31st Aerospace Mechanisms Symposium

    Get PDF
    The proceedings of the 31st Aerospace Mechanisms Symposium are reported. Topics covered include: robotics, deployment mechanisms, bearings, actuators, scanners, boom and antenna release, and test equipment. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms

    39th Aerospace Mechanisms Symposium

    Get PDF
    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA Marshall Space Flight Center (MSFC) and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 39th symposium, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 39th AMS was held in Huntsville, Alabama, May 7-9, 2008. During these 3 days, 34 papers were presented. Topics included gimbals and positioning mechanisms, tribology, actuators, deployment mechanisms, release mechanisms, and sensors. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components

    Shaping the future by engineering: 58th IWK, Ilmenau Scientific Colloquium, Technische Universität Ilmenau, 8 - 12 September 2014 ; programme

    Get PDF
    Druckausgabe erschienen im Universitätsverlag Ilmenau: Shaping the future by engineering : 58th IWK, Ilmenau Scientific Colloquium, Technische Universität Ilmenau, 8 - 12 September 2014 ; programme / Department of Mechanical Engineering, Technische Universität Ilmenau. [Hrsg.: Peter Scharff. Red.: Andrea Schneider] Ilmenau : Univ.-Verl. Ilmenau, 2014. - 155 S. ISBN 978-3-86360-085-

    New trends in electrical vehicle powertrains

    Get PDF
    The electric vehicle and plug-in hybrid electric vehicle play a fundamental role in the forthcoming new paradigms of mobility and energy models. The electrification of the transport sector would lead to advantages in terms of energy efficiency and reduction of greenhouse gas emissions, but would also be a great opportunity for the introduction of renewable sources in the electricity sector. The chapters in this book show a diversity of current and new developments in the electrification of the transport sector seen from the electric vehicle point of view: first, the related technologies with design, control and supervision, second, the powertrain electric motor efficiency and reliability and, third, the deployment issues regarding renewable sources integration and charging facilities. This is precisely the purpose of this book, that is, to contribute to the literature about current research and development activities related to new trends in electric vehicle power trains.Peer ReviewedPostprint (author's final draft

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    An investigation into heat dissipation from a stationary commercial vehicle disc brake in parked conditions.

    Get PDF
    Detailed understanding of heat dissipation from a stationary disc brake is of considerable importance for vehicle safety. This is essential for both park braking on inclines and for preventing brake fluid boiling in hydraulic brakes. Despite the experience proving the significance of such conditions, there is very little published data dealing with this phenomenon, and even ECE Regulation 13 does not specify hot parking braking performance. The problem of heat dissipation from stationary brake may appear simplistic but it is actually more complex than from a rotating disc, due to the lack of symmetry through or a dominant mode of heat transfer as natural convection is the only driving force behind the airflow. All three heat transfer modes exist in a transient process, with complex heat transfer paths within and between brake components. This Thesis investigates the cooling performance of a Commercial Vehicle (CV) brake whilst in stationary conditions. The research is predominantly orientated towards the thermal aspects of Electric Parking Brake (EPB) application in CVs. Contraction of large brake components after hot parking may lead to vehicle rollaway on inclines, with tragic consequences. An extensive theoretical and experimental study was conducted. An analytical model of a disc brake in free air was developed, enabling good prediction of disc temperatures and average surface convective heat transfer coefficients (hcₒnv) over the entire cooling range. A comprehensive CFD modelling of the 3-dimensional flowfield around the disc brake was also conducted, as well as predicting the surface convection coefficient distribution. Shear Stress Turbulence model was found to be most suitable for such studies. FE models were created to predict temperatures in all components of the brake assembly. A special Thermal Rig was developed for experimental validations, which uses an induction heater for heating the disc brake, and numerous surface mounted and embedded thermocouples for measuring component temperatures, as well as ‘free standing’ for determining air temperatures in specific points. IR cameras provided further temperature field information. The results clearly show little influence of the conductive heat dissipation mode. The study also showed, for the experimental arrangement used, a constant value of surface emissivity (ɛ = 0.92). With well-defined conductive and radiative heat dissipation modes, the emphasis was placed on investigating convective heat dissipation from a stationary disc brake. It has been demonstrated that the anti-coning straight vane design of brake disc does not cool effectively in stationary conditions. Expected ‘chimney effects’ in disc vent channels do not materialise due to large scale recirculation regions preventing airflow from entering the channels, which drastically reduces the convective cooling. Complex thermal interactions between the large assembly components are explained, with typical cooling time being just over an hour for disc brake cooling from 400°C to 100°C. Extracted heat transfer coefficients were used for establishing a complex FE assembly model, which enables accurate prediction of temperatures of individual components over the entire cooling period. The developed approach is used for predicting temperature of the existing brake assembly but is equally suited for generating new designs with more favourable characteristics. In addition to being a powerful design tool for assisting in EPB design and validation process, the methodology developed offers wide applications, such as thermal optimisation of the caliper housing for the installation of continuous wear monitoring sensors, smart slack adjusters (for low friction drag brakes), etc. EPBs in passenger cars have been successfully used for over 10 years now. They use a relatively simple approach for ensuring safe parking from hot by over-clamping (applying approximately twice the required actuating force) and re-clamping (repeated application after the vehicle has been parked). Large CV actuating forces prevent the use of over-clamping as this could damage the disc, whilst re-clamping would need to be repeated several times over a much longer period of time, requiring the vehicle battery to power the electronic systems for a longer period of time without recharging. Neither approach is acceptable, requiring a more in- depth thermal study of the CV brake in stationary conditions, as investigated in this Thesis. In addition to technical, there are marketing and financial aspects which make EPB introduction and acceptance in commercial vehicles very different to passenger car applications. Such an investigation was conducted, exploring the market the CV EPB will be sold in and whether it would accept the new technology. Two questionnaire analyses were carried out, with the second giving the respondent detailed information about the EPB. It was found that using an informed, knowledge based approach yielded more positive feedback to the proposed product. The outcome may be even considered more contrary than expected, rather than instigating mistrust, the new CV EPB technology created interest. Furthermore, reports of pneumatic malfunction indicated that independence from the pneumatic system should be used as the key selling point for the EPB, for all beneficiary segments.Engineering and Physical Sciences (EPSRC)Eng

    ESSE 2017. Proceedings of the International Conference on Environmental Science and Sustainable Energy

    Get PDF
    Environmental science is an interdisciplinary academic field that integrates physical-, biological-, and information sciences to study and solve environmental problems. ESSE - The International Conference on Environmental Science and Sustainable Energy provides a platform for experts, professionals, and researchers to share updated information and stimulate the communication with each other. In 2017 it was held in Suzhou, China June 23-25, 2017
    corecore