8 research outputs found

    A Survey of Developable Surfaces: From Shape Modeling to Manufacturing

    Full text link
    Developable surfaces are commonly observed in various applications such as architecture, product design, manufacturing, and mechanical materials, as well as in the development of tangible interaction and deformable robots, with the characteristics of easy-to-product, low-cost, transport-friendly, and deformable. Transforming shapes into developable surfaces is a complex and comprehensive task, which forms a variety of methods of segmentation, unfolding, and manufacturing for shapes with different geometry and topology, resulting in the complexity of developable surfaces. In this paper, we reviewed relevant methods and techniques for the study of developable surfaces, characterize them with our proposed pipeline, and categorize them based on digital modeling, physical modeling, interaction, and application. Through the analysis to the relevant literature, we also discussed some of the research challenges and future research opportunities.Comment: 20 pages, 24 figures, Author submitted manuscrip

    Learning Gradient Fields for Scalable and Generalizable Irregular Packing

    Full text link
    The packing problem, also known as cutting or nesting, has diverse applications in logistics, manufacturing, layout design, and atlas generation. It involves arranging irregularly shaped pieces to minimize waste while avoiding overlap. Recent advances in machine learning, particularly reinforcement learning, have shown promise in addressing the packing problem. In this work, we delve deeper into a novel machine learning-based approach that formulates the packing problem as conditional generative modeling. To tackle the challenges of irregular packing, including object validity constraints and collision avoidance, our method employs the score-based diffusion model to learn a series of gradient fields. These gradient fields encode the correlations between constraint satisfaction and the spatial relationships of polygons, learned from teacher examples. During the testing phase, packing solutions are generated using a coarse-to-fine refinement mechanism guided by the learned gradient fields. To enhance packing feasibility and optimality, we introduce two key architectural designs: multi-scale feature extraction and coarse-to-fine relation extraction. We conduct experiments on two typical industrial packing domains, considering translations only. Empirically, our approach demonstrates spatial utilization rates comparable to, or even surpassing, those achieved by the teacher algorithm responsible for training data generation. Additionally, it exhibits some level of generalization to shape variations. We are hopeful that this method could pave the way for new possibilities in solving the packing problem

    PAVEL: Decorative Patterns with Packed Volumetric Elements

    Full text link
    Many real-world hand-crafted objects are decorated with elements that are packed onto the object's surface and deformed to cover it as much as possible. Examples are artisanal ceramics and metal jewelry. Inspired by these objects, we present a method to enrich surfaces with packed volumetric decorations. Our algorithm works by first determining the locations in which to add the decorative elements and then removing the non-physical overlap between them while preserving the decoration volume. For the placement, we support several strategies depending on the desired overall motif. To remove the overlap, we use an approach based on implicit deformable models creating the qualitative effect of plastic warping while avoiding expensive and hard-to-control physical simulations. Our decorative elements can be used to enhance virtual surfaces, as well as 3D-printed pieces, by assembling the decorations onto real-surfaces to obtain tangible reproductions.Comment: 11 page

    Autocomplete Element Fields

    Get PDF
    Aggregate elements are ubiquitous in natural and man-made objects. Interactively authoring these elements with varying anisotropy and deformability can require high artistic skills and manual labor. To reduce input workload and enhance output quality, we present an autocomplete system that can help users distribute and align such elements over different domains. Through a brushing interface, users can place and mix a few elements, and let our system automatically populate more elements for the remaining output. Furthermore, aggregate elements often require proper direction/scalar fields for proper arrangements, but fully specifying such fields across entire domains can be difficult or inconvenient for ordinary users. To address this usability challenge, we formulate element fields that can smoothly orient all the elements based on partial user specifications without requiring full input fields in any step. We validate our prototype system with a pilot user study and show applications in design, collage, and modeling

    Tile-based Pattern Design with Topology Control

    Get PDF
    International audiencePatterns with desired aesthetic appearances and physical structures are ubiquitous.However, such patterns are challenging to produce - manual authoring requires significant expertise and efforts while automatic computation lacks sufficient flexibility and user control.We propose a method that automatically synthesizes vector patterns with visual appearance and topological structures designated by users via input exemplars and output conditions.The input can be an existing vector graphics design or a new one manually drawn by the user through our interactive interface.Our system decomposes the input pattern into constituent components (tiles) and overall arrangement (tiling).The tile sets are general and flexible enough to represent a variety of patterns, and can produce different outputs with user specified conditions such as size, shape, and topological properties for physical manufacturing

    Fabricable Tile Decors

    Get PDF
    International audienceRecent advances in 3D printing have made it easier to manufacture customized objects by ordinary users in an affordable manner, and therefore spurred high demand for more accessible methods for designing and fabricating 3D objects of various shapes and functionalities. In this paper we present a novel approach to model and fabricate surface-like objects composed of connected tiles, which can be used as objects in daily life, such as ornaments, covers, shades or handbags.Our method is designed to maximize the efficiency and ease of fabrication. Given a base surface and a set of tile elements as user input, our method generates a tight packing of connected tiles on the surface. We apply an efficient and tailored optimization scheme to pack the tiles on the base surface with fabrication constraints. Then, to facilitate the fabrication process, we use a novel method based on minimal spanning tree to decompose the set of connected tiles into several connected patches. Each patch is articulated and can be developed into a plane. This allows printing with an inexpensive FDM printing process without requiring any supporting structures, which are often troublesome to remove. Finally, the separately printed patches are reassembled to form the final physical object, a shell surface composed of connected user-specified tiles that take the shape of the input base surface. We demonstrate the utility of our method by modeling and fabricating a variety of objects, from simple decorative spheres to moderately complex surfaces, such as a handbag and a teddy bear. Several user controls are available, to distribute different type of tiles over the surface and locally change their scales and orientations

    Autocomplete element fields and interactive synthesis system development for aggregate applications.

    Get PDF
    Aggregate elements are ubiquitous in natural and man-made objects and have played an important role in the application of graphics, design and visualization. However, to efficiently arrange these aggregate elements with varying anisotropy and deformability still remains challenging, in particular in 3D environments. To overcome such a thorny issue, we thus introduce autocomplete element fields, including an element distribution formulation that can effectively cope with diverse output compositions with controllable element distributions in high production standard and efficiency as well as an element field formulation that can smoothly orient all the synthesized elements following given inputs, such as scalar or direction fields. The pro- posed formulations can not only properly synthesize distinct types of aggregate elements across various domain spaces without incorporating any extra process but also directly compute complete element fields from partial specifications without requiring fully specified inputs in any algorithmic step. Furthermore, in order to reduce input workload and enhance output quality for better usability and interactivity, we further develop an interactive synthesis system, centered on the idea of our autocomplete element fields, to facilitate the creation of element aggregations within different output do- mains. Analogous to conventional painting workflows, through a palette- based brushing interface, users can interactively mix and place a few aggregate elements over a brushing canvas and let our system automatically populate more aggregate elements with intended orientations and scales for the rest of outcome. The developed system can empower the users to iteratively design a variety of novel mixtures with reduced workload and enhanced quality under an intuitive and user-friendly brushing workflow with- out the necessity of a great deal of manual labor or technical expertise. We validate our prototype system with a pilot user study and exhibit its application in 2D graphic design, 3D surface collage, and 3D aggregate modeling
    corecore