307 research outputs found

    Parameterized Approximation Algorithms for Bidirected Steiner Network Problems

    Get PDF
    The Directed Steiner Network (DSN) problem takes as input a directed edge-weighted graph G=(V,E)G=(V,E) and a set D⊆V×V\mathcal{D}\subseteq V\times V of kk demand pairs. The aim is to compute the cheapest network N⊆GN\subseteq G for which there is an s→ts\to t path for each (s,t)∈D(s,t)\in\mathcal{D}. It is known that this problem is notoriously hard as there is no k1/4−o(1)k^{1/4-o(1)}-approximation algorithm under Gap-ETH, even when parametrizing the runtime by kk [Dinur & Manurangsi, ITCS 2018]. In light of this, we systematically study several special cases of DSN and determine their parameterized approximability for the parameter kk. For the bi-DSNPlanar_\text{Planar} problem, the aim is to compute a planar optimum solution N⊆GN\subseteq G in a bidirected graph GG, i.e., for every edge uvuv of GG the reverse edge vuvu exists and has the same weight. This problem is a generalization of several well-studied special cases. Our main result is that this problem admits a parameterized approximation scheme (PAS) for kk. We also prove that our result is tight in the sense that (a) the runtime of our PAS cannot be significantly improved, and (b) it is unlikely that a PAS exists for any generalization of bi-DSNPlanar_\text{Planar}, unless FPT=W[1]. One important special case of DSN is the Strongly Connected Steiner Subgraph (SCSS) problem, for which the solution network N⊆GN\subseteq G needs to strongly connect a given set of kk terminals. It has been observed before that for SCSS a parameterized 22-approximation exists when parameterized by kk [Chitnis et al., IPEC 2013]. We give a tight inapproximability result by showing that for kk no parameterized (2−ε)(2-\varepsilon)-approximation algorithm exists under Gap-ETH. Additionally we show that when restricting the input of SCSS to bidirected graphs, the problem remains NP-hard but becomes FPT for kk

    Structural Parameters, Tight Bounds, and Approximation for (k,r)-Center

    Get PDF
    In (k,r)-Center we are given a (possibly edge-weighted) graph and are asked to select at most k vertices (centers), so that all other vertices are at distance at most r from a center. In this paper we provide a number of tight fine-grained bounds on the complexity of this problem with respect to various standard graph parameters. Specifically: - For any r>=1, we show an algorithm that solves the problem in O*((3r+1)^cw) time, where cw is the clique-width of the input graph, as well as a tight SETH lower bound matching this algorithm\u27s performance. As a corollary, for r=1, this closes the gap that previously existed on the complexity of Dominating Set parameterized by cw. - We strengthen previously known FPT lower bounds, by showing that (k,r)-Center is W[1]-hard parameterized by the input graph\u27s vertex cover (if edge weights are allowed), or feedback vertex set, even if k is an additional parameter. Our reductions imply tight ETH-based lower bounds. Finally, we devise an algorithm parameterized by vertex cover for unweighted graphs. - We show that the complexity of the problem parameterized by tree-depth is 2^Theta(td^2) by showing an algorithm of this complexity and a tight ETH-based lower bound. We complement these mostly negative results by providing FPT approximation schemes parameterized by clique-width or treewidth which work efficiently independently of the values of k,r. In particular, we give algorithms which, for any epsilon>0, run in time O*((tw/epsilon)^O(tw)), O*((cw/epsilon)^O(cw)) and return a (k,(1+epsilon)r)-center, if a (k,r)-center exists, thus circumventing the problem\u27s W-hardness

    On optimal comparability editing with applications to molecular diagnostics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The C<smcaps>OMPARABILITY</smcaps> E<smcaps>DITING</smcaps> problem appears in the context of hierarchical disease classification based on noisy data. We are given a directed graph <it>G </it>representing hierarchical relationships between patient subgroups. The task is to identify the minimum number of edge insertions or deletions to transform <it>G </it>into a transitive graph, that is, if edges (<it>u</it>, <it>v</it>) and (<it>v</it>, <it>w</it>) are present then edge (<it>u</it>, <it>w</it>) must be present, too.</p> <p>Results</p> <p>We present two new approaches for the problem based on fixed-parameter algorithmics and integer linear programming. In contrast to previously used heuristics, our approaches compute provably optimal solutions.</p> <p>Conclusion</p> <p>Our computational results demonstrate that our exact algorithms are by far more efficient in practice than a previously used heuristic approach. In addition to the superior running time performance, our algorithms are capable of enumerating all optimal solutions, and naturally solve the weighted version of the problem.</p

    Minimum Stable Cut and Treewidth

    Get PDF
    A stable or locally-optimal cut of a graph is a cut whose weight cannot be increased by changing the side of a single vertex. Equivalently, a cut is stable if all vertices have the (weighted) majority of their neighbors on the other side. Finding a stable cut is a prototypical PLS-complete problem that has been studied in the context of local search and of algorithmic game theory. In this paper we study Min Stable Cut, the problem of finding a stable cut of minimum weight, which is closely related to the Price of Anarchy of the Max Cut game. Since this problem is NP-hard, we study its complexity on graphs of low treewidth, low degree, or both. We begin by showing that the problem remains weakly NP-hard on severely restricted trees, so bounding treewidth alone cannot make it tractable. We match this hardness with a pseudo-polynomial DP algorithm solving the problem in time (?? W)^{O(tw)}n^{O(1)}, where tw is the treewidth, ? the maximum degree, and W the maximum weight. On the other hand, bounding ? is also not enough, as the problem is NP-hard for unweighted graphs of bounded degree. We therefore parameterize Min Stable Cut by both tw and ? and obtain an FPT algorithm running in time 2^{O(?tw)}(n+log W)^{O(1)}. Our main result for the weighted problem is to provide a reduction showing that both aforementioned algorithms are essentially optimal, even if we replace treewidth by pathwidth: if there exists an algorithm running in (nW)^{o(pw)} or 2^{o(?pw)}(n+log W)^{O(1)}, then the ETH is false. Complementing this, we show that we can, however, obtain an FPT approximation scheme parameterized by treewidth, if we consider almost-stable solutions, that is, solutions where no single vertex can unilaterally increase the weight of its incident cut edges by more than a factor of (1+?). Motivated by these mostly negative results, we consider Unweighted Min Stable Cut. Here our results already imply a much faster exact algorithm running in time ?^{O(tw)}n^{O(1)}. We show that this is also probably essentially optimal: an algorithm running in n^{o(pw)} would contradict the ETH

    Scalable Community Detection

    Get PDF
    • …
    corecore