54 research outputs found

    Multi-Tenant Cloud FPGA: A Survey on Security

    Full text link
    With the exponentially increasing demand for performance and scalability in cloud applications and systems, data center architectures evolved to integrate heterogeneous computing fabrics that leverage CPUs, GPUs, and FPGAs. FPGAs differ from traditional processing platforms such as CPUs and GPUs in that they are reconfigurable at run-time, providing increased and customized performance, flexibility, and acceleration. FPGAs can perform large-scale search optimization, acceleration, and signal processing tasks compared with power, latency, and processing speed. Many public cloud provider giants, including Amazon, Huawei, Microsoft, Alibaba, etc., have already started integrating FPGA-based cloud acceleration services. While FPGAs in cloud applications enable customized acceleration with low power consumption, it also incurs new security challenges that still need to be reviewed. Allowing cloud users to reconfigure the hardware design after deployment could open the backdoors for malicious attackers, potentially putting the cloud platform at risk. Considering security risks, public cloud providers still don't offer multi-tenant FPGA services. This paper analyzes the security concerns of multi-tenant cloud FPGAs, gives a thorough description of the security problems associated with them, and discusses upcoming future challenges in this field of study

    Reconfigurable Network Stream Processing on Virtualized FPGA Resources

    Get PDF
    The software defined network and network function virtualization are proposed to address the network ossification issue in current Internet infrastructure. Network functions and services are implemented as software applications to increase the programmability of network. However, involving general purpose processors in data plane restricts the bandwidth of network services. Therefore, to keep both the bandwidth and flexibility, a FPGA platform is suggested as a reconfigurable platform to deliver high bandwidth virtual network functions on data plane. In this paper, the FPGA resource has been virtualized by interconnecting partial reconfigurable regions to deliver high bandwidth reconfigurable processing on network streams. With the help of partial reconfiguration technology, network functions on our platform can be configured without affecting other functions on the same FPGA device. The on-chip interconnect system is further evaluated by comparing with existing network-on-chip system. A reconfiguration process is also proposed and demonstrated that it can be performed on our platform. The process can happen in the real time of network services and it is able to keep the original function working during the download of partial bitstream
    corecore