1,433 research outputs found

    A high performance hardware architecture for one bit transform based motion estimation

    Get PDF
    Motion Estimation (ME) is the most computationally intensive part of video compression and video enhancement systems. One bit transform (IBT) based ME algorithms have low computational complexity. Therefore, in this paper, we propose a high performance systolic hardware architecture for IBT based ME. The proposed hardware performs full search ME for 4 Macroblocks in parallel and it is the fastest IBT based ME hardware reported in the literature. In addition, it uses less on-chip memory than the previous IBT based ME hardware by using a novel data reuse scheme and memory organization. The proposed hardware is implemented in Verilog HDL. It consumes %34 of the slices in a Xilinx XC2VP30-7 FPGA. It works at 115 MHz in the same FPGA and is capable of processing 50 1920x1080 full High Definition frames per second. Therefore, it can be used in consumer electronics products that require real-time video processing or compression

    R3^3SGM: Real-time Raster-Respecting Semi-Global Matching for Power-Constrained Systems

    Full text link
    Stereo depth estimation is used for many computer vision applications. Though many popular methods strive solely for depth quality, for real-time mobile applications (e.g. prosthetic glasses or micro-UAVs), speed and power efficiency are equally, if not more, important. Many real-world systems rely on Semi-Global Matching (SGM) to achieve a good accuracy vs. speed balance, but power efficiency is hard to achieve with conventional hardware, making the use of embedded devices such as FPGAs attractive for low-power applications. However, the full SGM algorithm is ill-suited to deployment on FPGAs, and so most FPGA variants of it are partial, at the expense of accuracy. In a non-FPGA context, the accuracy of SGM has been improved by More Global Matching (MGM), which also helps tackle the streaking artifacts that afflict SGM. In this paper, we propose a novel, resource-efficient method that is inspired by MGM's techniques for improving depth quality, but which can be implemented to run in real time on a low-power FPGA. Through evaluation on multiple datasets (KITTI and Middlebury), we show that in comparison to other real-time capable stereo approaches, we can achieve a state-of-the-art balance between accuracy, power efficiency and speed, making our approach highly desirable for use in real-time systems with limited power.Comment: Accepted in FPT 2018 as Oral presentation, 8 pages, 6 figures, 4 table

    Real-Time Dense Stereo Matching With ELAS on FPGA Accelerated Embedded Devices

    Full text link
    For many applications in low-power real-time robotics, stereo cameras are the sensors of choice for depth perception as they are typically cheaper and more versatile than their active counterparts. Their biggest drawback, however, is that they do not directly sense depth maps; instead, these must be estimated through data-intensive processes. Therefore, appropriate algorithm selection plays an important role in achieving the desired performance characteristics. Motivated by applications in space and mobile robotics, we implement and evaluate a FPGA-accelerated adaptation of the ELAS algorithm. Despite offering one of the best trade-offs between efficiency and accuracy, ELAS has only been shown to run at 1.5-3 fps on a high-end CPU. Our system preserves all intriguing properties of the original algorithm, such as the slanted plane priors, but can achieve a frame rate of 47fps whilst consuming under 4W of power. Unlike previous FPGA based designs, we take advantage of both components on the CPU/FPGA System-on-Chip to showcase the strategy necessary to accelerate more complex and computationally diverse algorithms for such low power, real-time systems.Comment: 8 pages, 7 figures, 2 table

    Embedded FIR filter design for real-time refocusing using a standard plenoptic video camera

    Get PDF
    Copyright 2014 Society of Photo-Optical Instrumentation Engineers and IS&T—The Society for Imaging Science and Technology. One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.A novel and low-cost embedded hardware architecture for real-time refocusing based on a standard plenoptic camera is presented in this study. The proposed layout design synthesizes refocusing slices directly from micro images by omitting the process for the commonly used sub-aperture extraction. Therefore, intellectual property cores, containing switch controlled Finite Impulse Response (FIR) filters, are developed and applied to the Field Programmable Gate Array (FPGA) XC6SLX45 from Xilinx. Enabling the hardware design to work economically, the FIR filters are composed of stored product as well as upsampling and interpolation techniques in order to achieve an ideal relation between image resolution, delay time, power consumption and the demand of logic gates. The video output is transmitted via High-Definition Multimedia Interface (HDMI) with a resolution of 720p at a frame rate of 60 fps conforming to the HD ready standard. Examples of the synthesized refocusing slices are presented

    On the Hardware/Software Design and Implementation of a High Definition Multiview Video Surveillance System

    Get PDF
    published_or_final_versio

    Memory-efficient belief propagation for high-definition real-time stereo matching systems

    Get PDF
    Tele-presence systems will enable participants to feel like they are physically together. In order to improve this feeling, these systems are starting to include depth estimation capabilities. A typical requirement for these systems includes high definition, good quality results and low latency. Benchmarks demonstrate that stereo-matching algorithms using Belief Propagation (BP) produce the best results. The execution time of the BP algorithm in a CPU cannot satisfy real-time requirements with high-definition images. GPU-based implementations of BP algorithms are only able to work in real-time with small-medium size images because the traffic with memory limits their applicability. The inherent parallelism of the BP algorithm makes FPGA-based solutions a good choice. However, even though the memory traffic of a commercial FPGA-based ASIC-prototyping board is high, it is still not enough to comply with realtime, high definition and good immersive feeling requirements. The work presented estimates depth maps in less than 40 milliseconds for high-definition images at 30fps with 80 disparity levels. The proposed double BP topology and the new data-cost estimation improve the overall classical BP performance while they reduce the memory traffic by about 21%. Moreover, the adaptive message compression method and message distribution in memory reduce the number of memory accesses by more than 70% with an almost negligible loss of performance. The total memory traffic reduction is about 90%, demonstrating sufficient quality to be classified within the first 40 positions in the Middlebury ranking.This work has been partially supported by the CDTI under project CENIT-VISION 2007-1007 and the CICYT under TEC2008-04107

    Low energy HEVC and VVC video compression hardware

    Get PDF
    Video compression standards compress a digital video by reducing and removing redundancy in the digital video using computationally complex algorithms. As spatial and temporal resolutions of videos increase, compression efficiencies of video compression algorithms are also increasing. However, increased compression efficiency comes with increased computational complexity. Therefore, it is necessary to reduce computational complexities of video compression algorithms without reducing their visual quality in order to reduce area and energy consumption of their hardware implementations. In this thesis, we propose a novel technique for reducing amount of computations performed by HEVC intra prediction algorithm. We designed low energy, reconfigurable HEVC intra prediction hardware using the proposed technique. We also designed a low energy FPGA implementation of HEVC intra prediction algorithm using the proposed technique and DSP blocks. We propose a reconfigurable VVC intra prediction hardware architecture. We also propose an efficient VVC intra prediction hardware architecture using DSP blocks. We designed low energy VVC fractional interpolation hardware. We propose a novel approximate absolute difference technique. We designed low energy approximate absolute difference hardware using the proposed technique. We propose a novel approximate constant multiplication technique. We designed approximate constant multiplication hardware using the proposed technique. We quantified computation reductions achieved by the proposed techniques and video quality loss caused by the proposed approximation techniques. The proposed approximate absolute difference technique and approximate constant multiplication technique cause very small PSNR loss. The other proposed techniques cause no PSNR loss. We implemented the proposed hardware architectures in Verilog HDL. We mapped the Verilog RTL codes to Xilinx Virtex 6 or Xilinx Virtex 7 FPGAs and estimated their power consumptions using Xilinx XPower Analyzer tool. The proposed techniques significantly reduced power and energy consumptions of these FPGA implementation

    VHDL modeling and synthesis of the JPEG-XR inverse transform

    Get PDF
    This work presents a pipelined VHDL implementation of the inverse lapped biorthogonal transform used in the decompression process of the soon to be released JPEG-XR still image standard format. This inverse transform involves integer only calculations using lifting operations and Kronecker products. Divisions and multiplications by small integer coefficients are implemented using a bit shift and add technique resulting in a multiplier-less implementation with 736 instances of addition. When targeted to an Altera Stratix II FPGA with a 50 MHz system clock, this design is capable of completing the inverse transform of an 8400 x 6600 pixel image in less than 70 ms
    corecore