On the Hardware/Software Design and Implementation of a High

it Definition Multiview Video Surveillance System
Author(s) Chan, SC; Zhang, S; Wu, J; Tan, HJ; Ni, JQ; Hung, YS
St IEEE Journal on Emerging and Selected Topics in Circuits and
Systems, 2013, v. 3 n. 2, p. 248-262
Issued Date | 2013
URL http://hdl.handle.net/10722/189089
Rights IEEE Journal on Emerging and Selected Topics in Circuits and

Systems. Copyright © IEEE.

248 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 3, NO. 2, JUNE 2013

On the Hardware/Software Design and
Implementation of a High Definition
Multiview Video Surveillance System

S. C. Chan, Member, IEEE, Shuai Zhang, Jia-Fei Wu, Hai-Jun Tan, J. Q. Ni, and Y. S. Hung

Abstract—This paper proposes a distributed architecture for
high definition multiview video surveillance system. It adopts
a modular design where single view/stereo intelligent internet
protocol (IP)-based video surveillance cameras are connected
to a front-end field programmable gate array (FPGA) board(s)
which are connected to a back-end local video server through the
IP network. The data intensive video analytics (VA) algorithms
such as background modeling, connected component labeling and
single view object tracking are implemented in the FPGA using
an efficient fix-point based architecture. Each back-end video
server is equipped with a storage and graphics processing units
for supporting high-level VA and other processing algorithms
such as video decompression/display, mean depth estimation and
consistent labeling. A real-time prototype system was constructed
to illustrate the architecture and VA algorithms involved. Satis-
factory results were obtained for both publicly available data set
and real surveillance video data.

Index Terms—Field programmable gate array (FPGA), graphics
processing unit (GPU), intelligent video surveillance (IVS), in-
ternet protocol (IP) camera, object tracking, video analytics (VA).

I. INTRODUCTION

ITH low-cost and high-resolution digital cameras, large
W scale internet protocol (IP)-based security or surveil-
lance systems can be conveniently connected to form distributed
smart camera networks. An important application of such dis-
tributed cameras network is intelligent video surveillance (IVS)
because of its importance in commercial and social security. A
survey of early works in intelligent distributed surveillance sys-
tems can be found in [27]. The technological evolution of video
surveillance systems started with conventional analogue CCTV
systems [28], which consist of a number of cameras, usually
charge-coupled device (CCD) sensors, located at different loca-
tions and connected to certain control rooms for human moni-

Manuscript received February 01, 2013; accepted March 12, 2013. Date of
publication May 13, 2013; date of current version June 07, 2013. This work was
supported by the Innovation and Technology fund (ITF) of Innovation and Tech-
nology Commission (ITC) of Hong Kong under Project ITS/554/09FP. This
paper was recommended by Guest Editor V. Tam.

S. C. Chan, S. Zhang, J.-F. Wu, and Y. S. Hung are with the Department of
Electrical and Electronic Engineering, The University of Hong Kong, Hong
Kong (e-mail: scchan@eee.hu.hk; szjeff@eee.hku.hk; jfwu@eee.hku.hk;
yshung@eee.hku.hk).

H.-Jun Tan and J. Q. Ni are with the Department of Communication and In-
formation System, Sun Yat-sen University, Guangzhou 510275, China (e-mail:
tanhaijun2007@126.com; issjqni@mail.sysu.edu.cn).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JETCAS.2013.2256822

toring or recording. However, these analogue systems are lim-
ited by relatively low video resolution and the flexibility in en-
forcing data security, storage and retrieval, video analytics (VA)
and other automated processing. On the contrary, in IP video
surveillance systems [29], IP cameras can be readily connected
to different computing devices, or even mobile devices, through
the IP network. Different from analogue systems, digital rep-
resentation and transmission over IP-based network offer im-
proved data security and flexibility through encryption and au-
thentication methods, which are highly desirable. Consequently,
the capturing, transmission and support of VA in IVS systems
[11],[20]-[22],[25],[30], [31] have received much attention re-
cently. However, the high computational requirement of various
VA tasks increases dramatically with the number and resolution
of cameras. The use for high-definition (HD) videos at 720 p or
1080 p resolution will further increase the computational com-
plexity. Therefore, most IVS systems developed are limited in
the support of VA functions and resolution both locally at the
cameras and distributedly over the network. Hence, it calls for
more computationally efficient VA algorithms, software/hard-
ware and system architectures to achieve real-time IVS at HD
resolution.

On the architecture side, traditional IVS systems are usu-
ally developed on industrial PC platform [20], [21]. Despite
the more convenient programming environment, such platforms
are often criticized for its stability and reliability, especially in
continuous operation under long period of time. Hardware em-
bedded system-based architecture [22] has received much at-
tention recently in IVS local camera architecture. For instance,
the TI digital signal processors (DSPs) are used in [22] for both
low-level and high-level VA tasks. Accordingly, VA tasks which
were developed for software-based system need to be redevel-
oped in order to suit the streamlined dataflow in the DSP and
possible hardware accelerators.

These motivate us to study in the paper the design and
construction of an IVS to meet the emerging needs of higher
resolution, VA, etc. In particular, we propose a distributed IVS
system supporting HD, multiview processing, and real-time
VA tasks using both embedded hardware in front-end IP cam-
eras and distributed servers in back-end. A block diagram of
the proposed system is shown in Fig. 1. It adopts a modular
design where multiple front-end intelligent IP-based video
surveillance cameras are connected to a back-end video server.
Each server is equipped with storage and optional graphics
processing units (GPUs) for supporting high-level VA and

2156-3357/$31.00 © 2013 IEEE

CHAN et al.: ON THE HARDWARE/SOFTWARE DESIGN AND IMPLEMENTATION OF A HIGH DEFINITION MULTIVIEW VIDEO SURVEILLANCE SYSTEM 249

:,»"Front-end ~~~~~~~~~~~~~~~~~~~~~~~~ SR Back-end----
p

PCame}A

? (Bere] |

: R ; GPU based
> = Server

P Camera/ FPGA

-

IP Camera

Client for
Preview

GPU based

GPU based
Server Server
Network

Client for
Preview

Client for
Preview

Client for
Preview

Fig. 1. Block diagram of the proposed high definition multiview intelligent video surveillance system.

processing algorithms such as real-time decoding and object
tracking for the captured video. The servers are connected
to the IP network for supporting distributed processing and
remote data access.

The DSP-based surveillance camera is equipped with real-
time algorithms for streaming compressed videos to the server.
The VA tasks are performed using hardware due to its high
computation requirement. The proposed system is designed for
static cameras in large scale monitoring of humans and vehi-
cles. It can be used for example in security monitoring, traffic
flow measurement, accident detection on highways, speeding
detection, etc. Hence, the VA tasks developed mainly focus on
real-time HD multiview detection/tracking of moving objects,
leading to a description about the activities of the objects in the
environment.

There are mainly five major parts in our multiview tracking
system, namely: background modeling (BM), connected com-
ponent labeling (CCL), single view objects tracking, mean
depth estimation, and consistent global objects labeling. Unlike
[22], low-level VS tasks such as BM, CCL, and single view
objects tracking are performed in field programmable gate
arrays (FPGA), whereas high-level VAs such as mean depth
estimation, multiview tracking and consistent global objects
labeling are done in back-end server as it involves communi-
cations between different cameras. The graphics processing
unit (GPU) servers are also equipped with more sophisticated
tracking algorithm such as particle filtering [16], [17], etc.,
to meet different system requirements. A prototype system
of the proposed IVS has been constructed. The IP cameras
are based on TI-DM8127 [4], [5], which can output 720p
HD videos and 1080p FHD videos at 60 frames/s (fps). The
front-end VA hardware accelerator is developed in the Inravium
TB-6S-LX150T-IMG2 FPGA development board while the
GPU-based video server is based on an Intel i7 3.30 GHZ
CPU with 8 GB RAM and 3 GTX295 GPUs. HD videos are
transmitted from the IP cameras to the FPGA board through

the HDMI interface. The TB-6S-LX150T-IMG2 development
board contains a Xilinx Spatan-6 XC6SLX150T FPGA and
three pieces of DDR3 SDRAM. It is also equipped with HDMI
input as well as output. The processed results such as the
position and size of the tracked objects are sent back to the IP
cameras or servers through the serial port or IP network. In
order to overcome the speed limitation and extensive hardware
resources for supporting the stated functions in the front-end,
new hardware algorithms are developed to support real time
processing of HD videos. Moreover, thanks to the parallel
nature of the GPU, complicated high-level VA tasks also can
be realized in real-time. The VA hardware and algorithms were
tested for security monitoring applications using both publicly
available data set and real video data captured by our IP cam-
eras. Satisfactory performance is obtained which substantiates
the validity and usefulness of the proposed architecture and
processing hardware and algorithms.

The rest of the paper is organized as follows. Section II sum-
marizes the proposed system architecture and VA tasks, their
functionalities and design challenges. The hardware design
of the low-level VA tasks developed is given in Section III.
Section IV is devoted to the high-level VA tasks developed
for mean depth estimation, multiview objects tracking and
consistent global objects labeling. Experimental results and
simulations are shown in Section V. Finally, conclusion is
given in Section VI.

II. VIDEO SURVEILLANCE SYSTEM ARCHITECTURE
AND HARDWARE DESIGN

As mentioned earlier, the proposed IVS consists of front-end
IP cameras with hardware accelerated low-level VAs and
back-end servers for distributed processing and high-level VAs.
Each GPU-based server is equipped with a storage and GPU(s)
for recording the compressed videos and supporting high-level
VA and other processing algorithms. The video server receives
compressed video and tracking results from the IP cameras (or

250 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 3, NO. 2, JUNE 2013

Front-end (FPGA)
=T o T E e B S e ey A
:_ View 1 | Back-end (GPU-based Server)
Framg T
racked
—|||Background g{:);nzzt::t Single View || BM results :
|| Modelting (-3 “PIREER L3t Objects | land Tracked objects
I (BM) (CCL) Tracking I Obj ects Mean Depth . ;’G!f)l?al Ill),d\;sw,
______________ | Estimation : osiiomand;: ”g
§ > Post Application
I_ — 7_ __________ - i and Recording
| View I Multiview |
Frame Object Tracking
_>| Background g:;::icnt::t Single View :
ing |-- ---p Object
| Modelling > Labeling 4 jects
| (BM) (CCL) Tracking ||
______________ J

Fig. 2. Pipeline of the video analytics functions developed for the high definition multiview intelligent video surveillance system.

directly from FPGA boards for tracking results). It also decodes
and displays the compressed videos for monitoring, multiview
VA, and records the video data into local storage. The display
and storage modules of the proposed video servers are devel-
oped using DirectShow Software Development Kit (SDK).
Using DirectShow, our application can perform high-quality
video and audio playback and capture. The video server can
receive video data from the remote IP cameras and display the
videos in different windows for monitoring.

On the other hand, the low-level data intensive VA algo-
rithms such as BM, single view objects detection and tracking
are better performed at the front-end so that immediate action
can be taken. Given the limited processing power of the surveil-
lance cameras, it is desirable to perform more complicated high-
level VA algorithms mentioned at the back-end server of the dis-
tributed server network. Fig. 2 shows the block diagram of the
VA pipeline, which consists of two major processing units. The
front-end processing unit is located at the camera side where
low-level VAs such as BM and single view object detection
and tracking are implemented. On the other hand, high-level VA
tasks are implemented on the back-end processing unit, which is
based on a GPU-based server connected to the distributed server
network. We now summarize in turn the major functionalities
and design challenges of the front-end and back-end.

1) Front-End Processing Unit: This processing unit takes in
new video frames captured by stereo IP cameras. It performs
BM, CCL, and single view object detection and tracking on the
FPGA. In our system, BM is implemented using an adaptive
GM model (GMM)-based background model which performs
foreground/background segmentation for each pixel captured.
Traditional pixel-level GMM-based BM algorithms [13], [14]
employ a fixed number of components. In the proposed system,
an adaptive GMM [12], [26] is employed so that an appropriate
number of components for each pixel can be automatically se-
lected when updating the GMM parameters. This improves pro-
cessing speed, since the read/write operations of the GMM pa-
rameters can be significantly reduced. After BM, if new objects
are detected, an improved CCL is used to further refine the BM
results. To allow the front-end to work completely on its own

for alarm reporting etc., single view object detection/tracking
are also implemented in the front-end.

The main design challenge of the proposed front-end
processing unit is the high memory and computational require-
ments and limited resources in FPGA. For instance computing
the probability density function (pdf) and updating GMM
parameters in BM involve division and exponential operations,
which are hardware expensive and limited in speed. Moreover,
it is expensive to implement floating-point calculation in the
FPGA. Hence, a carefully designed fixed-point quantization
scheme has to be devised to reduce the hardware resources
required, while preserving the required accuracy. In the single
view object detection/tracking module, traditional object
tracking method such as mean shift [15] or particle filtering
[16], [17] are also hardware expensive.

To address these design challenges, a number of simplified
or improved methods are proposed to reduce the hardware re-
sources required while preserving good general purpose perfor-
mance. For instance, fixed-point processing is used throughout
the hardware module to reduce the resources required. Hard-
ware efficient table look-up methods are devised to replace the
division and exponential operations in the BM module, while
preserving the required accuracy and achieving a higher oper-
ating speed. Furthermore, an enhanced two-pass algorithm for
CCL is developed for foreground mask cleaning.

In the single view tracking module, which is based on blobs
(objects) matching, a simplified hardware object tracker uti-
lizing the velocity information is proposed to reduce hardware
resource at slight expense of performance. More precisely, our
method uses the GM results and velocity of moving object as
input. The key advantage of our tracker is that it avoids em-
ploying color information (color histogram) and feature points
which will require much hardware resources in HD resolution
as compared to traditional trackers [15]-[17]. Furthermore, our
tracker can also handle short term occlusions by using velocity
matching.

2) Back-End Processing Unit: The purpose of the back-end
processing unit is to perform VA tasks which require data from
multiple cameras and possible distributed processing over the

CHAN et al.: ON THE HARDWARE/SOFTWARE DESIGN AND IMPLEMENTATION OF A HIGH DEFINITION MULTIVIEW VIDEO SURVEILLANCE SYSTEM 251

network. It can also complement, if necessary, the limited per-
formance of the front-end low-level VA tasks due to power and
cost constraints by performing sophisticated tracking and re-
lated postprocessing algorithms with GPU acceleration.

In the proposed system, mean depth estimation and multiview
consistent global object labeling of moving objects are sup-
ported. Depth information is becoming increasingly important in
high-level multiview VA tasks because of its usefulness in more
reliable tracking, localization and speed estimation. However,
traditional dense stereo/multiview depth estimation algorithms
usually require high computational complexity, especially at
720 p or 1080 p resolution. On the other hand, mostIVS systems,
mainly focus on the location of moving objects rather than the
detailed 3-D structure. Therefore, the depth accuracy required is
considerably lower than some computer vision tasks such as 3-D
reconstruction and modeling. Hence, it calls for more computa-
tionally efficient depth estimation method for IVS applications.
In our proposed system, the BM results are utilized to compute
the mean depth of newly detected and tracked objects. By as-
suming that the IP cameras are calibrated, the mean depths of
the tracked objects can be determined using object-based stereo
matching. Other feature-based approaches can also be applied.
This considerably simplifies the depth estimation process and the
detail will be discussed in Section IV. Furthermore, the proposed
single view tracking framework can be extended to multiview
tracking across multiple cameras with the help of mean depth
estimation and the details can be found in Section IV. We now
discuss the design and implementation of the low-level VA
algorithms developed in FPGA.

III. DESIGN AND IMPLEMENTATION OF LOW-LEVEL VIDEO
ANALYTICS ALGORITHMS ON FPGA

As mentioned earlier, the low-level data intensive VA algo-
rithms are better performed at the camera side so that imme-
diate action can be taken. Due to limited processing power of
surveillance cameras, it is highly desirable to implement these
algorithms in hardware, which serves as a co-processor to the
main controller such as a DSP. In general, these low-level VA
tasks include 1) updating the background model at each pixel, 2)
blob extraction using CCL so as to detect possible foreground
objects, and 3) tracking of detected objects for recording and
high-level analysis.

While there are previous works on hardware design of BM
[26], CCL [9], [10] and single view object tracking [6], it is
usually targeted for standard definition. In this work, we propose
new hardware architectures for BM, CCL, and object detection
and tracking for HD videos. It differs from the previous works
in [6], [9], [10], [26] in the following aspects.

1) new table lookup methods are employed to a) implement
division in updating the GMM parameters to significantly
overcome the speed and resource limitation of the divider
intellectual property core (IP core) in FPGA, and b) to im-
plement the exponent function required in GMM update
using a piecewise look-up table method to significantly re-
duce the table size and hence hardware resource.

2) Fixed-point implementation: as floating-point implemen-
tation is hardware expensive, fixed-point quantization
method with different fixed lengths is employed in

updating the parameters of GMM components and com-
puting the pdf

3) Enhanced two-pass algorithm for CCL: an enhanced
two-pass algorithm based on multi-pass algorithm and
two-pass algorithm is proposed. It achieves similar perfor-
mance as two-pass algorithm with a lower computational
complexity and simpler implementation in FPGA as
multi-pass algorithm.

4) In single view tracking, several new techniques such as
image frame classification in bounding box distance mea-
sure [1], [6], new storage strategy in blob-list updating,
and use of velocity information in occlusion handling and
tracking are proposed to reduce the hardware resource and
achieve real-time operation.

We first describe the principle of BM and the proposed hard-
ware architecture and implementation in Section III-A below.
The design and hardware implementation of the blob extracting
using CCL and single view objects tracking will be described in
Sections I11-B and III-C, respectively. The outputs of these pro-
cessing modules are foreground/background masks and tracked
blobs (objects) lists. In Section IV, these proposed techniques
will be further extended to multiview objects tracking with
mean depth estimation and consistent global objects labeling.

A. Background Modeling

1) Adaptive Gaussian Mixture Model: The main objective of
pixel-based BM is to decide whether the pixel under considera-
tion belongs to the background (BG) or foreground (FG). This
can be formulated as a Bayes model selection problem by com-
puting the Bayes factor [12] which is the ratio of the posterior
probabilities of current pixel being the BG or FG. More pre-
cisely, let the pixel under consideration at time ¢ be (). The
following Bayesian factor I? is used to make the inference or
decision:

p(BG1EY) p (9 BG) p(BO)
Cp (FG|z®) Cp (z® | FG) p(FG)

)

If R is small, the pixel is detected as FG and vice versa. In
general, we do not know the distribution of the FG, and hence
it is common to assume that it takes a uniform distribution with
p(z® | FG) = ¢pq. Consequently, if a pixel’s value satisfies

P (.’L’(t) 2)

where ¢y, 1S an appropriate threshold value to be chosen for de-
tection, this pixel is treated as BG. The remaining task is then
to update p(z® | BG), which is called the background model,
from previous data y. For clarity, we shall denoted the associ-
ated model by p(2'¥ | x, BG).

In order to adapt to scene changes such as change of illumina-
tion, the data set y should be updated continuously with a time
window of 7" samples. Consequently, the data set at time # be-
comes x7 = {z', ', ..., 2"~ T}. For each incoming sample,
the training set xyr and the corresponding density are updated.
As these samples may contain both BG and FG information, the
density estimated is actually p(z* | x1, BG 4 FG). Since the
BG model changes slowly, the new FG samples will usually cor-
respond to an outlying mode in the overall distribution, which

BG) > ¢inr = Repg

252 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 3, NO. 2, JUNE 2013

can then be separated. To model p(z® | x7, BG + FG), an ef-
ficient approach is based on the GMM with M components as
follows:

P (aj(t) | xT.BG + FG)
M 5
= &N (m“); i), (o40) I) 3)
m=1
where ;15,? and (&5,?)2 represent the estimated mean and vari-
ance for each Gaussian component, respectively. frf,tl), m =
1,..., M, is respectively the estimated probability of the mth

component, and they sum up to one. An online recursive algo-
rithm for updating the GMM parameters can be derived [12]

w0l pa(of) ~ 7S V) —aer @)
i) = D ol (o f70)) 880 5)

(&g))z - (655,’”)2 + ot (oz / wfp)

X ((657?) e - (aﬁff”) 2) 6)
where 6,,(,? =2 — /7,5,?, cr is the leaky or forgetting factor,
and the constant « is used to control the influence of the current
data and it is usually chosen as o: = 1/7". 05,? is the ownership
of each component and it depends on the status of the compo-
nent. In [12], the status of a component is said to be “close” if its
Mahalanobis distance D,,, (m(t)) defined below is small enough,
say less than three, which means that the input sample is suffi-
ciently close to that component. Therefore, the ownership ogf;,)
of that component is set to 1 and others are set to 0

D, (:r(t')) - \/ (6£?)T 5 / (&%*”)2. (7)

If there is no “close” component in all the A/ components then a
new component should be generated with fr%tj) 1= q, [L(\tf) 1=

) and (r}(\tf) 11)2 = o, where o is an appropriate initial vari-
ance. Moreover, the maximum number of the components is fi-
nite, therefore the component with the smallest weight should be
discarded accordingly. Using this algorithm, the intruding fore-
ground objects usually appear as clusters with small weights.
So the background can be roughly separated from the mixed in-
formation by retaining the major clusters for building the back-
ground model

p (:L'(” |XT:BG) = i N (l‘“);ﬂfﬁ)» (652’))21)
m=1

where B is obtained by arranging the weights of the components
in descending order as follows:

B
B = argming <Z 70 > (1 — cf)> : (8)

m=1

cy 1s the estimated fraction of the foreground objects [12]. If a
new sample comes into an image and stays for a long enough
time, it will also be considered as background object when its
weight becomes larger than c.

Num Weight Mean R Mean G Mean B Variance
3bit | 13bit | 12bit 12bit 12 bit | 12 bit

compl | comp2 compM | compl -
1T 1 T

T T
X(t) X(t+1)

Fig. 3. Storage format of the GMM components.

2) Design and Hardware Implementation of BM: From
(4)—(6), one can see that the mean, ownerships and variances
of each Gaussian component need to be updated for each new
incoming pixel. As this operation has to be performed for each
pixel in an image frame, it calls for very high computational
requirement, especially for HD videos. Fortunately, as the
updating is performed for each pixel in an independent manner,
it can be performed in parallel using hardware. In this work,
we focus on hardware implementation using FPGA because of
its reconfigurability, programmability using hardware descrip-
tion language (HDL) and high-level of integration. However,
there are still two important problems to be addressed. Firstly,
updating of the GMM parameters involves division operation,
which consumes much hardware resources and is usually slow
in speed. In our FPGA implementation, real-time operation
cannot be achieved if the divider intellectual property core (IP
core) is used even though it takes up a large number of look-up
tables (LUTs). Secondly, in order to compute the background
model, one needs to implement the exponential function, which
is also hardware intensive. Finally, fixed-point arithmetic has
to be used instead of floating-point arithmetic, as the latter is
extremely hardware expensive. To address these important is-
sues, we shall propose new table lookup methods to implement
division and exponential function. A fixed-point analysis is
performed to determine appropriate wordlengths in updating
the various quantities in computing the GMM and pdf.

The storage format of the GMM parameters for each pixel
is summarized in Fig. 3. It can be seen that the number of the
GMM components, “Num,” is stored in the entry of the first
GMM parameter, “compl.” The “Num” field of the remaining
GMM components of the same pixels are set as zero. Since
the GMM parameters of each pixel are stored sequentially, the
number of the GMM components for each pixel can be accessed
conveniently.

The whole hardware architecture of the BM module is shown
in Fig. 4. It mainly contains three parts: GMM updating/clas-
sification module, GMM parameters buffer and data memory.
GMM updating module is in charge of computing the pdf of GM
and updating the parameters of the GMM. GMM parameters
buffer is used to realize the serial-to-parallel/parallel-to-serial
conversion. Two DDR3 SDRAMs are served as data memory
in our system.

As the parameters of each GMM component for each pixel
are stored sequentially and the updating of each component in
each pixel is done in parallel, serial-to-parallel conversion is
used to retrieve the GMM parameters from the memory (the
read operation) and forward them in parallel to the GMM up-
dating/classification module at the same time. Parallel-to-se-

CHAN et al.: ON THE HARDWARE/SOFTWARE DESIGN AND IMPLEMENTATION OF A HIGH DEFINITION MULTIVIEW VIDEO SURVEILLANCE SYSTEM 253

Background/

Pixel 20 (1) o A A0 (ADN2 O
> D) 0 A6 rore— Tt

compl i
Normalize(7,)

A1) Al Al1-1)\2 ;
A) —

¥

Del(77,,=0)

compl

apnq
s1apaweted
WD

compM

aanq
sipweted
WD

Jlvaed-0)-jeLIag

SDRAM

GMM updating/classification

[ELI3S-0)-[[EAE

Fig. 4. Overview architecture of the background modeling.

rial conversion is also used when the parameters are written
back from the module to the memory in the write operation.
In order to continuously update the GMM background model,
two DDR3 SDRAMSs are accessed in Ping-Pong fashion so as
to retrieve and store the GMM parameters. We switch the read
and write operation for each DDR3 SDRAM at the rising edge
of every vertical sync signal [18]. By using a variable GMM
components, the bandwidth in read/write operations can be sig-
nificantly reduced.

In Fig. 4, GMM parameters of one pixel enter the GMM up-
dating/classification module concurrently. After retrieving the
number of GMM components, the ownership 05,? can be ob-
tained from the Mahalanobis distance D,,L(m(f)) in (7). If none
of 05,? is “1,” a new GMM component will be generated and
the inputting pixel is detected as FG. Otherwise, the parameters
will be updated according to (4)—(6). After the weights # are
normalized, the B most significant clusters can be determined
according to (8). The inputting pixel will be detected as BG or
FG according to the threshold ¢;y,,. Before outputting the up-
dated GMM parameters, the GMM component whose fr,(,f) is 0
will be deleted. The operation of the GMM updating/classifi-
cation module for each pixel can be divided into four steps: 1)
computing the ownership for each component; 2) updating the
GMM parameters; 3) computing the Gaussian mixture pdf and
4) wordlength determination.

a) Ownership Computation: The pixel and its corre-
sponding GMM parameters compi, ¢ = 1,...,M are latched
into the GMM classification module at the rising edge of
each pixel clock simultaneously. Then the number of GMM
components is extracted from the first entry, comp1. In order to
decide whether a component is “close” or not, we evaluate

PR (). ()= ()

instead of (7), so as to avoid the hardware intensive divider. To
detect whether a given component is “close” with a threshold
value of 3 for D,,(z®), one can compare (65)76% in (9)
against 9- (&,(ffl))2. If the former is larger, then this component
is “close” and the ownership 05,? will be set to 1, otherwise it
will be set to 0. So 05,? of each component will be obtained at
the same time.

b) GMM Parameter Updating: From (4)—(6), we can
see that the variables (3}(,?, (é",(,tl))Té;,? and ™" are obtained
during the ownership computation. These data will be reused
by storing them in register blocks. The factor «/ fr,(rt,,) in both
(5) and (6), however, requires a division. In order to reduce
the large hardware resource and overcome the speed limitation

of the divider intellectual property (IP) core in FPGA, a table

®

400

300

exp(-y/512)

200

100

0 2000 4000

v

6000 8000

Fig. 5. Tllustration of exp(—¥/512).

TABLE I
QUANTIZATION STEPS FOR DIFFERENT W

Quantization steps for

¥ different segments
0~511 1
512~1023 2
1024~2047 4
2048~4095 8
4096~8191 32

look-up is employed, which will be further elaborated later in
this section.
¢) Probability Density Function Computation: In order
to select the most significant 3 GMM components for each
pixel, one needs to evaluate the pdfin (3), which requires the
evaluation of the exponential function. There are many ways to
implement an exponential function on FPGA which includes
the CORDIC IP core, Taylor expansion, and Table-driven
methods [19]. Considering the precision and complexity in
background model, a piecewise look-up table method is adopted
in this work to implement the exponent function. Since the gra-
dient of the pdf exp(—(z® — [Lg;,))T(:L'(t) - [Lgr?)/(2(5-7(1§,))2))
decreases quite rapidly, we divide the argument into different
ranges, each with a different wordlength to approximate the
exponential function. To this end, we first scale up the argument
¢ = (2® — idNT (O — 2DY/2(658)2) by 512 to obtain
an integer for addressing the table. Therefore, ¥ = 512 x ¢ is
used as an entry to the table. We found that a 13-bits table is
sufficient for our purpose and hence ¥ ranges from 0 to 8191.
Thus the value of the table contains e¢xp(—¥/512), which is
shown in Fig. 5. In order to further reduce the table size to
save hardware resource while maintaining a similar accuracy,
we further divide the range of Fig. 5 into several segments.
Segment with a high gradient is assigned a small quantization
step while those with low gradient will be assigned a large
quantization step. Hence the number of bits used to store the
corresponding value of the exponential function is different
at different segment/range of ¥ so as to reduce the overall
storage. The quantization steps of each segment used are shown
in Table L.
After GMM parameters are updated, frf,tL) needs to be normal-

ized as %) — 7Y /> # and a similar look-up table is used

254 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 3, NO. 2, JUNE 2013

again to replace the division IP core. Afterward, all the GMM
components of a pixel will be sorted in descending order of 7?7(,? .
According to (8), the first I3 largest clusters can then be iden-
tified and retained. The probability densities of the 3 GMM
components are processed concurrently to reduce the processing
time. The accumulation of the I3 probability densities will be
compared with ¢, to determine whether the pixel under con-
sideration belongs to the background or not (2). Before out-
putting the GMM parameters, the component whose weight is
zero will be deleted so as to adjust the number of GMM compo-
nents adaptively. To improve the performance of memory op-
eration, the Xilinx MIG Core with a 128-bit data bus is uti-
lized to control the memory operation [19]. In order to make
full use of the Xilinx MIG Core data bus, we use a 64-bits reg-
ister to store one GMM component which contains its weight,
mean and variance. So we can handle 2 GMM components per
read/write on the Xilinx MIG Core. As it is hardware expensive
to use floating-point calculation, fixed-point computation with
different fixed wordlengths is used in updating the GMM com-
ponents and computing their pdfs.

d) Wordlength Determination: Range of frT(ﬁ_): According
to (4), we can see that the minimum updating step size is
acy. If we choose the update rate as &« = 0.002 and the
leaky factor as ¢ = 0.05, then this minimum updating step
size is wer = 0.0001. Since the maximum value of 7?5,? is
1, when we take ey = 0.0001 as the smallest step, then
the maximum steps of 7r,(f,) will be “10000.” In our imple-
mentation, we set max(fr,(,?) = 8191 steps so as to fit into
the nearest power-of-two number and the smallest step being
acy = 0.0001. Consequently, a 13-bit register with a range
from 0 to 8191 will be sufficient to represent fr,,(,tL).

Range of [LS,? and related quantities: Also from (5), it can
be found that the factor «/ 7?5,? determines the accuracy in up-
dating [LS,?. The minimal value of a/ 7%,(,? is o when frf,tl) =1.
We found that a 9-bit register with a minimal quantization step
0f 0.002 gives satisfactory results. As the video input is in 24-bit
RGB color format (8 bits per component), an 12-bit register is
used to represent /)Sf;,) whose 4-bit LSB are decimal in (5) so that
the representation can be fitted into the Xilinx MIG Core data
bus while achieving an appropriate accuracy. In other words, we
use 36-bit to represent the various means [LE,’? in the RGB color
space.

The quantization of the variance is quite similar to the quan-
tization of mean in (6). We found that good performance can be
obtained if the variance is represented by 12 bits. The remaining
3 bits from the 64-bit register of the bus are used to indicate
the number of GMM components used for the corresponding
pixel. So the system can support at most 8 GMM components
per pixel, which is sufficient for most applications. These 3
bits are only valid in the first GMM component while others’
will be set to 0. Using this information, adaptive parallel-to-se-
rial and serial-to-parallel conversion can be conveniently per-
formed. Table II shows the Logic resources required for imple-
menting the proposed adaptive GMM.

3) Connected Component Labeling (CCL): In preparation
for object tracking, CCL is usually performed to detect con-
nected regions in foreground/background binary images. Pos-

TABLE 11
LOGIC RESOURCES REQUIRED IN THE IMPLEMENTATION

Resource type Resource requirement ~ Percentage utilization

Slice Registers 4719 2%
Slice LUTs 2874 3%
SDP48Als 16 8%

D E C| D | E
B A F B A A F
I H G

(@) (b) (©

8 connected neighbors Forward scan mask Backward scan mask

Fig. 6. Neighborhood of the current pixel A and the mask used in the first scan.

sible blobs can be obtained from the resulting binary image
using a thresholding step. Several algorithms have been pro-
posed for CCL [7]-[10]. Reference [7] presents a run-length
encoding algorithm which can reduce the number of sequen-
tial operations significantly and the processing time is signifi-
cantly lower than the approach in [9]. However, it may incur
high memory requirement for HD videos. Unlike some other
CCL algorithms that produce the labeled image, [8] proposed
a single-pass streamed algorithm that extracts the data required
to compute the features during the first pass. Although this al-
gorithm does not need to produce a labeled image, its imple-
mentation on FPGA is more complex. In [9], an 8-connectivity-
based multi-pass algorithm was proposed, which is quite easy
to be implemented on FPGA. However, the number of passes
through the image depends on the complexity of the connected
components. Another two-pass algorithm, which keeps track of
the pairs of equivalent labels whenever two parts of a compo-
nent with a single label merge, was proposed in [10]. A bank
switched structure was proposed to enable two adjacent frames
to be processed simultaneously. When the first labeling pass is
performed on current frame, the relabeling pass is performed
on the previous frame. In this paper, we proposed an enhanced
two-pass algorithm based on [9] and [10]. The proposed method
has a similar performance as [10] but having a lower computa-
tional complexity and it is easy to be implemented on FPGA.
As the background image is scanned in a raster fashion, a
provisional label is assigned to the object pixel in the first pass
while the final label assignment is performed in the second pass
(relabeling pass) according to the final equivalent table. The first
labeling pass includes forward and backward scan. As an illus-
tration, Fig. 6(a) shows the target pixel A, which is surrounded
by eight neighbors from B to I, whereas Fig. 6(b) and (c) shows
the masks used for forward and backward scans, respectively.
In the forward scan, the line containing C, D and E is the re-
sult of the backward scan of the last line. If the current pixel
A belongs to the object pixel, it is assigned the minimum value
among its 4 neighbor labels in the forward scan mask. Other-
wise, it is assigned a value of 0. If none of its 4-connected neigh-
bors belong to the object pixel, then the current pixel A is as-
signed a new label. An equivalent case occurs when two object

CHAN et al.: ON THE HARDWARE/SOFTWARE DESIGN AND IMPLEMENTATION OF A HIGH DEFINITION MULTIVIEW VIDEO SURVEILLANCE SYSTEM 255

00)
1 | 1 B |13 il 9 C «oD <«oFE g o Forward scan buffer <
3 1 Z 11 |2 {
‘ B 4O0OA +——F0 Background image
I v
@) o) it Back;:;f;;:irscan A O> F SDRAM
0)0 00 First labeling pass
1|1 2 4|5 1)1 & 2|5
1)1 4 2 2|4
| 5 2 2 L D) ; ; - 2l Second scan buffer g
|] Labeled
5] [2]2]2]2 7 BB i
Equivalent table
(©) (d)

Fig. 7. An example using our proposed CCL algorithm. (a) Forward scan for
the third line and the equivalent table, (b) backward scan for the third line and
the equivalent table, (c) first labeling pass and the equivalent table, (d) second
labeling pass and the equivalent table.

pixels with the same label are assigned two different labels in
the first scanning pass. This occurs when D does not belong to
the object while either C or B, E and A belong to the object. And
the two equivalent labels are stored in a table for relabeling. In
the backward scan, the current pixel is assigned the minimum
label between itself and its neighbor F. When A and F is a pair
of equivalent label, then the following procedure will be used
for labeling. If none of A and F has any other equivalent rela-
tionships, then their equivalent relationship is removed from the
equivalent table or else they will be reserved. In this way we can
shorten the equivalent table and benefit the relabeling pass.

When compared with [9] and [10], our enhanced two-pass
algorithm is beneficial when the BG image is processed by a
morphology filter. More precisely, our method, unlike [9] and
[10], will not generate a pair of equivalent data in the corner of
the blobs, which will usually occur when morphology operation
is performed on a BG image. In the relabeling pass, the object
pixel is assigned the final label according to the final equivalent
table, which is generated in the first labeling pass. Fig. 7 shows
an example of the proposed CCL method, where green squares
and white squares represent respectively the FG and BG pixels.
Suppose that two new labels “3” and “4” are generated by the
forward scan in the third line as in Fig. 7(a). In 7(b), by applying
the backward scan mask, the pixel with label “3” is set to “1”
because it is connected to its right hand side pixel with label
“1.” In addition, the pair of equivalent labels is deleted from the
equivalent table. In this way, the length of the equivalent table
can be shortened in the first labeling pass. The equivalent table
and final CCL results of first labeling pass and second labeling
pass are shown in Fig. 7(c) and (d).

Since the process of connected component is based on pixel,
the pixel clock is used as our operation clock. In order to save
processing time, the backward scan is performed following the
forward scan. As for 720p videos, it costs 1650 pixel clocks
to transmit each line of one image and meanwhile 1280 pixel
clock are occupied by the forward scan. So there are only 370
pixel clocks remaining for the backward scan. To address this
problem, we extract four adjacent pixels per pixel clock for the
backward scan. By so doing, only 320 pixel clocks are required

Second labeling pass

Fig. 8. Architecture of the connected component processing.

Splitting ‘ old Input Blobs

Blobs Blobs

i

Yes

elocity AL Al \’fbcclu \:\,\
atcing | ‘ Y
Y

- T— : -
Matched m;m < Splitting_ Blobs
Blobs) =) N Matching +
Occlusion Handling Blob-list Updating Yes No. Blob-list
Updating
Input ol Oeaiish Blobs Matching +
Blobs Blobs H“ ‘;]‘_‘"“ Blob-list Updating
T a g .
andling (As a new object)
L : |
YE@NE X

Unmatched

A A
Matched
Blobs

Blobs

Blobs Matching +
Blob-list Updating

Occlusion
Handling

Blobs Matching

Fig. 9. Block diagram of single view objects tracking.

which allows the forward and backward scans to be performed
in a pipelined fashion. The architecture of the CCL is illus-
trated in Fig. 8. It contains two parts which are first labeling
pass and the second labeling pass. In first labeling pass, forward
scan and backward scan are performed for every line in back-
ground image. The result of the first labeling pass is stored in
the SDRAM. The final labeled image will be obtained by using
the final equivalent table in the second labeling pass.

B. Single View Objects Tracking

As discussed earlier in Section II, single view objects tracking
is performed using blobs matching. More precisely, if a new
blob in a frame is matched to an old blob in the blob-list of cur-
rent frame, this new blob can be considered to be successfully
tracked. The object tracking contains three major operations: 1)
blobs matching, 2) blob-list updating, and 3) occlusion handling
as shown in Fig. 9.

It can be seen from Fig. 9 that the input blobs are first passed
through the occlusion detection. If it is not occluded, blobs
matching and blob-list updating, to be described in the sequel,
will be used for matching and tracking, otherwise, occlusion
handling will be activated to handle the occlusion. In occlusion
handling, we mainly deal with the key problem of how to track
the objects correctly when objects split again after occlusion. In

256

Matched
Blobs

Matched Matched
Distance Matrix
Thresholding ‘ Blobs
and | Associating
De-ambiguity

Input Blobs

Bounding
Box Distance
Measure

Fig. 10. Block diagram of blob matching based on bounding box distance.

blobs matching, it is used to judge whether the input blobs can
be matched with the old blobs stored in blob-list. After blob
matching, the blob-list needed to be updated in the blob-list
updating module. There are three types of blobs in the blob-list,
which include old blobs, matched blobs, and unmatched blobs.
They are stored at their respective space or unit. For instance,
the old blobs in previous frame are stored in the old blobs unit
(OBU), whereas, the matched blobs unit (MBU) and unmatched
blobs unit (UBU) are used to store the matched and unmatched
blobs in current frame, respectively. As new blobs may arise
while old or unmatched blobs may disappear, they needs to be
continuously updated.

The complete hardware implementation of the proposed
tracker poses several design challenges. Some of them and the
proposed solution are summarized below.

1) In blobs matching, image frame classification is employed
to reduce the computational complexity involved in com-
puting the bounding box distance measure.

2) It is common to use a fixed value to perform the distance
matrix thresholding. However, the performance is unsatis-
factory when the scene is complicated. A velocity assisted
distance matrix thresholding is therefore developed for im-
proving the overall performance.

3) While it is common to employ dynamic storage [3] to up-
date the bloblist in software implementation of the tracker,
implementing dynamic storage at HDL or hardware is
rather difficult. A new “Multiple Single-Step Updating”
(MSSU) method, to be described later in this section, is
therefore proposed for blob-list updating.

4) Though particle filtering and mean shift are frequently
used for object tracking and handling occlusion, their
hardware implementation is demanding. A simplified
hardware object tracker utilizing the velocity information
is therefore proposed to reduce hardware resource at
slight performance degradation. We now discuss these
operations in turn.

1) Blobs Matching: Blobs matching plays an important role

in single view objects tracking and its implementation block di-
agram is summarized in Fig. 10. We can see that it contains three
major operations, i.e., bounding box distance measure calcu-
lation [1], distance matrix thresholding and de-ambiguity, and
blobs association. In our application, an image frame classifica-
tion approach is adopted to reduce the complexity of computing
the bounding box distance measure. Moreover, the velocity of
the input blob is utilized to estimate the threshold in distance
matrix thresholding, which can considerably enhance its perfor-
mance. The three operations of blobs matching are discussed as
follows.

a) Bounding Box Distance Measure: The blob can be de-
scribed by a bounding box which indicates its profile and some

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 3, NO. 2, JUNE 2013

4
4 . 4

Fig. 11. Image frame classification. Blue area shows the location of old blob
t;. Areas A, B, and C are classified according to bounding box distance
Donix(bis t5).

other parameters such as size and velocity. Usually, the distance
between two bounding boxes is measured by the Euclidean dis-
tance between their centroids. However, a key drawback of this
measure is that a large jump may appear when two moving ob-
jects merge or split. On the other hand, if the bounding box dis-
tance between two blobs, say A and B, is measured, by the dis-
tance between the centroid of A and the closest point on B, then
even if the merging or splitting happens, the variation of the
bounding box distance will not be large. Thus, the undesirable
large jump effect can be eliminated by using this property [1].
For each input image frame, the process attempts to associate
each input blob with one of the old blobs in the OBU. This is ac-
complished by first constructing a distance matrix indicating the
distance between each of the input blobs and old blobs. The rows
of the matrix are the old blobs and the columns are the input
blobs. The elements in this matrix are the bounding box dis-
tances between them. It can be seen from Fig. 11 that an image
frame can be classified into three areas. The blue area C' indi-
cates the location of an old blob and the new input blob will
appear either in the other two areas, A and B. Conventionally,
square root operation is used to calculate the bounding distance.
However, if the new input blob is in area A, then the square root
operations can be simplified to the absolute value of their hori-
zontal or vertical ordinates, which can reduce considerably the
computational complexity. Therefore, the following simplified
method is proposed for calculating the bounding box distance:

Dmtx(biv t/) =

f min (|mbi — T |5 |Tby — Ty) , b;c A
1o, = Yo, |, Ly, — v, |
Ve =)+ ()

. \/(n:bh v)+ (= Yp,)° b B
min 3 o

\/(:m,z. —x1,)" + (U — Yo;)
\/(.’L‘bi ¢TJ)2 + (yz;i l/,q])2

L0, b, e C

(10)

where b; and £; are the ith input blob and jth old blob with
centroids located at (xp,,us,) and (zy;,y:,), respectively.
(T/ljvypj)v (‘TZJ'?ygj)'/ (:[’.7’_7'7ypj)7 and (z,,,y,;) are the coor-
dinates of top-left, bottom-left, top-right, and bottom-right
junctions of the jth old blobs A, B, and C are classified areas
of the image frame as illustrated in Fig. 11.

CHAN et al.: ON THE HARDWARE/SOFTWARE DESIGN AND IMPLEMENTATION OF A HIGH DEFINITION MULTIVIEW VIDEO SURVEILLANCE SYSTEM 257

b) Distance Matrix Thresholding and De-Ambiguity:
Once the bounding box distance has been computed, an ap-
propriate threshold is used to obtain a binary matching matrix,
which associates an input blob with an old blob. Note that
the threshold is crucial since it determines the accuracy of the
association. If it is too small, some existing objects may be
unable to match with their new positions in the input blobs and
hence be dropped. On the contrary, ambiguities may arise if it
is set too large.

In this work, an improved threshold selection method is pro-
posed so that the matching errors can be remarkably reduced.
More precisely, the velocity of the input blob is utilized to es-
timate the threshold. One way to estimate the velocity of the
input blob is Kalman filtering (KF) [2]. However, the imple-
mentation of KF in hardware is rather complicated given that
many other tasks have to be implemented on the same FPGA
board. To compute the velocity of the blobs, the displacement
between the centroids of two matched blobs during successive
frames is needed. As the old and input blobs have not yet been
matched in current image frame, the blob’s velocity is estimated
from its values in the previous n frames as

1o (b
~(t) i) = = ~(t—3) 11
6 =150 o (1)

where 17((,t)(z‘) is the estimated velocity of the 4th object in the

image frame at time ¢. Once the estimated velocity is available,
the displacements of each blob during successive image frame
can be estimated, which can be used to derive the binarization
threshold for the :th object at time 7 as
T (i) = 878/ F (12)
where F' is the frame rate. Once all thresholds are available,

the following operations can be implemented to obtain a binary
matching matrix:

DIJ(Z7J) — { 17 if (Dmtm(i) < (1 + O()Tét)(%))
0, otherwise

where Dy (4,) is the binary value in the binary matching ma-
trix, and ¢, j are indexes of the row and column, respectively. o
is a forgetting factor for the threshold variation. Consequently,
we obtain a corresponding matrix containing more than one
nonzero elements in each row or column. Every nonzero ele-
ment in the matrix indicates that one input blob and one old
blob has been matched, and vice versa.

It may happen that more than one old blobs may correspond
to the same input blob. To tackle this problem, we propose to use
information such as the size of the blobs in addition to velocity
to resolve the ambiguity. This is motivated by the fact that the
size of the blob usually does not change significantly for suc-
cessive image frames. In general, the size of the input and old
blobs can be obtained from the coordinates of the bounding box
as

s(w) = |z — x|,

s(h) = |yp — vl (13)

Matched UBU

MBUE I

MBU OBU

Update the OBU

Update the MBU and UBU

Fig. 12. Operation diagram of updating the members of blob-list.

where s(w) and s(h) represent the width and height of the blobs,
respectively. (z;,«,) and (y,,y,) are the coordinates of the
bounding box along the z-axis and y-axis. When an ambiguity
occurs, the old blob with a size closest to the input blob is
chosen as the true object. The corresponding matrix is updated
accordingly.

¢) Blobs Association: The objective of this last operation
in blobs matching is to associate the matched blobs in current
frame to the tracked blobs in previous frames. First we generate
an unique identity number (ID) for each matched blob in MBU
in the current frame. The matched blob’s ID is a 8-bit number
used to distinguish the matched blobs. Next, a register-table is
employed to store the IDs. Finally, they are packed together with
the synchronizing signals, i.e., data enable and vertical synchro-
nization. The IDs will be used later for labeling matched objects
in display.

2) Blob-List Updating: Blob-list updating mainly contains
three steps, i.e., MBU updating, UBU updating and OBU up-
dating. More precisely, we need to replace the old matched blobs
in the MBU by the new matched blobs and update the UBU by
new unmatched blobs. Then, the OBU is updated by combining
the MBU and UBU into one unit. It is known that one of the
most convenient and efficient approaches to implement blob-list
updating is dynamic storage [3], where the matched and un-
matched blobs are put into appropriate addresses using pointers
or variable arrays in high level programming languages, such as
C++ and Java. An simple procedure of blob-list updating are
shown in Fig. 12. We assume that the input blobs, blob 1 and
blob 3, are matched according to the OBU. Then we begin to
update the blob-list. First, blob 1 and blob 3 are written into
MBU. Then, the UBU is updated by unmatched blobs, blob
2 and blob 4. Lastly, blobs in MBU and UBU are combined
to update the OBU. However, in Verilog HDL, it is very diffi-
cult to use dynamic storage to update the blob-list because no
pointers and variable arrays can be used. For instance, one needs
to preserve the matched blobs in the OBU, while replacing the
old unmatched blobs by new unmatched blobs in the UBU. To
handle this problem, we propose a “Multiple Single-Step Up-
dating” (MSSU) method to update the blob-list without dynamic
storage.

Briefly, the proposed MSSU involves three major steps.
The first and third steps are the same as in blobs-list updating
mentioned above. In the second step, instead of writing all
unmatched blobs into UBU, only the first unmatched blob is
put in the corresponding address of UBU. Followed by the
operation of MSSU, the recursive operation is executed in the
next frame until all of the new unmatched blobs are written
into UBU. It should be noted that though much time is required
to complete the whole updating progress due to the quantity

258 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 3, NO. 2, JUNE 2013

UBUOET 2 T3 1747

MBUI

JOBU[I

f(m)

UBULCT T 21314 OBU
f(m+2)

Fig. 13. Example of MSSU process.

of unmatched blobs, the influence of MSSU to the system
performance is negligible for high enough frame rate, which is
up to 30 fps or above. For illustration, an example operation
of the proposed MSSU is shown in Fig. 13. It can be seen that
there are two matched blobs, i.e., blob 2 and blob 3, in the
mth frame, both of which are pushed into MBU after being
matched with the blobs in OBU. On the other hand, in the
unmatched blobs, i.e., blob 1 and blob 4, only the former one is
written into the UBU. Then, the MBU and UBU are combined
to generate the new OBU in the mth frame, which is treated as
the referenced unit in the next frame. The above operation is
repeated in the following frame to find out the new unmatched
blob. Moreover, it can be observed from this example that only
two MSSU operations are required to update the blob-list since
there are two new unmatched blobs.

3) Occlusion Handling: It is known that occlusion between
different objects may affect considerably objects tracking. Par-
ticle filtering [16], [17], and mean shift [15] have been proposed
to address short term occlusion problems. However, the imple-
mentation of particle filtering or mean shift requires consider-
ably hardware resources. Here, we propose a simpler alterna-
tive, aiming at a lower hardware requirement. More precisely,
overlapping objects are treated as new objects when occlusion
occurs. Thus, the problem reduces to how to track correctly the
objects when objects split again after occlusion. For instance,
we need to ensure consistency of the blob’s IDs before and after
occlusion, which we referred to as “occlusion recovery.” During
occlusion recovery, the corresponding blobs after splitting are
searched in the old matched blobs. However, the position of
each blob may change considerably, which makes the bounding
box distance measure unreliable. Hence, the key problem during
occlusion recovery is to find out the correspondence between
the blobs after the splitting. Fortunately, it is observed in out-
door scene with reasonable chosen camera location that most
of the occlusions does not last for a very long time. So the mo-
tion direction and velocity value are highly correlated in suc-
cessive image frames, especially at high frame rates. Therefore,
it is proposed to use the velocity information in matching the
corresponding objects during occlusion recovery. After the re-
covery, the matching mode turns back to bounding box measure

Matched Matched Matched

. | De-ambiguity ~Blobs
> and Blobs
Associating

Input Blobs .
Motion

1 Direction |
Matching

Velocity
Value
Matching

Fig. 14. Velocity matching mechanism.

as shown in Fig. 9. Otherwise, the velocity matching will con-
tinue to execute until the end of recovery. The block diagram of
velocity matching mechanism is shown in Fig. 14. It can be seen
that there are three operations, i.e., motion direction matching
(MDM), velocity value matching (VVM) and de-ambiguity and
blobs associating. In MDM, the input blobs are considered as
matched only when they have the same direction with the old
blobs. In VVM, a feasible variation range is used for matching.
More precisely, if the velocity of an input blob #; and an old
one v, satisfy v, € ((1 — Mw,, (1 + M)w,.), where A is user
defined normalized variation factor and is set to 0.125 in our
paper, then the blobs can be considered as matched, and vice
versa. Once both of the above velocity parameters of the input
blobs are matched, these blobs can be deemed to be matched.
It should be mentioned that since multiple matched blobs may
be obtained, one can employ the function of de-ambiguity to
determine the best matched object and the implementation of
blobs association is similar to the operation in blobs matching.

IV. HIGH-LEVEL VIDEO ANALYTICS (VA) ALGORITHMS
WITH DISTRIBUTED GPU-BASED SERVERS

As mentioned, the low-level VA algorithms are better per-
formed at the camera side so that immediate action can be taken.
It is desirable to perform more complicated high-level VA al-
gorithms, such as global object labeling and tracking, in a dis-
tributed server network. This is because the IP cameras in a
certain region can transmit the processed information, such as
the compressed videos and blob size and location to its associ-
ated server for storage. On the other hand, the server can fuse
such blob information, probably with the help of other servers,
to perform global labeling and tracking of selected object or
target. With high-speed internet connections, these servers can
freely exchange information to perform even more sophisticated
global processing in a distributed manner.

In this section, we shall illustrate this concept through two im-
portant intermediate VA tasks, namely: 1) mean depth estima-
tion of tracked object, and 2) multiview object tracking where
an object is global tracked over multiple cameras by assigning
to it a global label. To our best knowledge, few IVS systems
compute the depth map of objects due to the high arithmetic
complexity and relatively low reliability. In our work, we only
focus on the mean depth value, which is more reliable to com-
pute and requires less computational resources. Moreover, we
shall propose a new multiview tracking algorithm, which incor-
porates the mean depth information to provide a more reliable
handoff between cameras. By using GPU acceleration, both of
them can be implemented in real-time and they only consumes
little system resources.

1) Mean Depth Estimation: As reliability is increasing im-
portant in IVS system, the inclusion of depth information is be-
coming more critical to high-level VAs. However, conventional

CHAN et al.: ON THE HARDWARE/SOFTWARE DESIGN AND IMPLEMENTATION OF A HIGH DEFINITION MULTIVIEW VIDEO SURVEILLANCE SYSTEM

Fig. 15. Tllustration of FOV lines and brightness calibration. Black lines in (a)
and (b) show the FOV lines in adjacent views, respectively. Image (c) is the
original view of (a) before brightness calibration.

depth estimation is time consuming and its reliability is some-
what limited. Therefore, we shall focus on mean depth of ob-
jects. To reduce the complexity in finding their mean depths,
we utilize the results of BM and focus only on those detected re-
gion. We then employ stereo matching with GPU acceleration to
compute depth values inside the detected object so as to estimate
its mean depth. More precisely, the foreground mask detected is
used to extract the texture of the object from the stereo captured
by the IP cameras. Thanks to the reduced data size, a GPU accel-
erated stereo matching can be implemented readily to achieve
real-time implementation. In our implementation, we employ
conventional block matching method [23] to obtain dense depth
values of the moving object. Other feature point-based method
may also be applicable. The computed depth values will include
depth values arising from the object as well as those coming
from the background. To reliably estimate the mean depth of
the foreground, the median value, and possibly other robust es-
timator, is used.

2) Multiview Objects Tracking: We now describe how multi-
view tracking can be performed in our IVS framework. An im-
portant advantage of our system is that the single view tracking
results described in Section III can be readily extended to the
tracking of multiple objects across multiple cameras. More pre-
cisely, the process can be divided into three steps. 1) Determina-
tion of the field-of-view (FOV) lines of each camera. 2) Bright-
ness calibration of neighboring cameras, and 3) Consistent la-
beling across cameras when a new object is detected in one or
more views. Since the cameras are assumed to be calibrated,
the FOV lines of each view can be easily defined. We assume
that the surveillance IP cameras involved in such tracking are
static, since pan—tilt—-zoom (PTZ) surveillance usually involves
active vision and the strategies can be very different from our
situations. Therefore, steps 1) and 2) in our case can be per-
formed at the beginning of the monitoring and only an addi-
tional step of consistent labeling is required in online applica-
tions. Fig. 15 shows an example of multiview video surveil-
lance system where FOV lines of each view are drawn in black
with brightness calibration performed. The consistent (global)
objects labeling method proposed in our system is motivated
by the prior work in [24]. Unlike 3-D reconstruction schemes
which project the location of each object in the world coordinate

259

system, this method uses color dissimilarity and distance of ob-
ject to FOV line to obtain consistent handoff of tracking-object
labels across cameras. Therefore, it is efficient and the compu-
tational complexity is very low. However, if two objects have
similar color distribution and distances to FOV lines are encoun-
tered, its performance will significantly degraded. Fortunately,
in our system, mean depth of moving object is estimated online
and hence it can further improve consistent labeling to obtain
more reliable handoff, which will be described next.

3) Depth-Assisted Consistent Labeling: When the nth object
O enters view V; ¢ = 1,..., N, where N is the number of
views, the visibility of each view of O} is first checked. If O}
is only visible in V;, then a new global label is assigned to O .
Otherwise, OF should be visible in other cameras defined in
their own blob list By, . Then the corresponding global label in
the global blob list B¢ is searched in the following steps.

a) A List of Corresponding Candidates in Other Stereo
Views is Generated for Each Object (OY) as Follows: For each
stereo view V; j € N and j # ¢, we search the object list for
objects O which are very similar to OF with d(O7}", L;) <
£ that moves toward the visible region of V; from V;, where
d(O7, L) isthe minimum distance between the object position
of 07" and the FOV line L%. / is a tolerance threshold which can
be set to an appropriate small constant value [24].

b) Computation of Dissimilarity Measures: By assuming
that the distance to the FOV line is Gaussian distributed, the
likelihood of matching two objects in terms of the distance to
FOV line can be written as

1 2 m 3 2
P OZL7 o) = —— (Zid (O7,L%) /20,
d (iy) V2roy

where o4 controls the scale or width of the region for selecting
possible candidate matches. In [24], the likelihood of color dis-
similarity of two objects is similarly defined as

(14)

1 2 2
P. (0", O™) = (37d' (hih;)/20;
(07, 07") = 75—
where h; and h; are the color distributions (histograms) of O}’
and Q7" respectively. d(hy, ha) is the Bhattacharyya distance
between two distributions.

To further reduce the ambiguity of handoff between adjacent
views due to errors in estimating object position, FOV lines and
similarity distribution between two objects, we introduce the
depth dissimilarity of two objects as follows:

(15

, n my _— 1 —d”? (O;",O;"')/Za'g,
Py (O] Noy)= 7\/%%’@ : d
where d'(0]', 0") measures the mean depth difference between
O} and O in view j, which can be computed from the proce-
dure described in Section IV-A.

¢) Assignment of Label: For each candidate, the likelihood
of assigning the global label of O} and O}" is defined as the
product of Py, P, and Py

(16)

P (07,07

=Py (O;”, O;”) P, (();”, ();-”) Py (()?, O;»”) .17

If the object with the highest likelihood as computed in (17) has
been globally labeled in the global blob list B¢, then we assign

260 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 3, NO. 2, JUNE 2013

soemria| souwa|

ie | screms | screene

|

oase |
Gesh show_|

s ste| _ow ‘
|

Toinifyies 10506346

sexsme |

(b)

Fig. 16. (a) Proposed system IVS system. (b) Graphic user interface (GUI)
of the software developed for the real-time monitoring among different video
streams from remote IP cameras.

its global label to O} . Otherwise, a new global label is assigned
to both of them.

V. EXPERIMENTAL RESULTS

In order to evaluate the hardware system design and VA
algorithms, extensive experiments have been carried out. The
VA algorithms are tested on public datasets PETS2001 [32] and
real data that are captured by the IP cameras. TI-DM8127 1P
cameras with 60 fps and are used for capturing. The resolution
of the PETS2001 data set is 768 x 576 and those of the IP
cameras is 720 p/1080 p for DM8127. From the results, we find
that the system can steadily capture, stream, display and store
HD videos. Fig. 16(a) shows the constructed prototype of the
proposed IVS based on the proposed architecture in Fig. 1. It
shows the GPU-based video server, IP cameras, FPGA board
and the graphic user interface (GUI) of the software developed.
Fig. 16(b) shows an enlarged view of the GUI, which can
receive and display nine different 720 p/1080 p video streams
simultaneously. The GUI can also individually control each
specific video stream of the IP cameras, such as start, stop and
pause. The video server supports two formats for recording the
video data into files: 1) raw data format; and 2) compressed
video streams. A proposed IVS GUI demo can be found at:
http://youtu.be/SI3eeMUbljk. Furthermore, VA algorithms can
successfully run at 20-25 frame/s on the GPU-based video
servers. Here, we compare our results with color-based par-
ticle filtering [16] on PETS2001 dataset. Color-based particle

Fig. 17. Single view objects tracking with occlusion handling on PETS2001
dataset. The labeled rectangles indicate different tracked objects. Blue rectan-
gles show the particle filtering tracking result and red rectangles show our single
view tracking result.

TABLE III
COMPARISON OF MAXIMUM FRAME RATE ON FPGA AND GPU-BASED SERVER

RESOLUTION FRAME RATE
720p 60fps
FPGA 1080p 30fps
720p 25fps
GPU-based server 1080p 17fps
TABLE IV

TIME AND RESOURCE USAGE

TIME RESOURCE USAGE
USAGE LUTs REGs
BM 16.67ms 5066 7781
CCL 33.33ms 10937 1534
Single view tracking 19.73ns 2676 2634
Others Na 4728 7659
TOTAL 33.3ms 23407 19608

filtering algorithms have received great attention recently
because of its ability to handle clutter and occlusions. They
use color distribution (histogram) as object representation, and
the procedure can be broadly divided into four parts named
observation, propagation, estimation and random sampling.
However, as mentioned before, the computational complexity
of particle filtering methods are very high and are generally
hardware expensive. Fig. 17 shows the single view objects
tracking result of the PETS2001 data set. The results of the
proposed tracking method and particle filtering are shown in
red rectangles and blue rectangles, respectively. It can be seen
that both methods can successfully track the moving objects
in this data set. Because of the use of color information in
[16], particle filtering can still precisely assign correct labels to
different occluded objects during occlusion. In our single view
tracking algorithm, the occluded objects are merged as a new
object [Fig. 17(b)] and are split after occlusion [Fig. 17(c)].
The occlusion is also successfully handled since blob IDs of
different objects remain valid after occlusion split.

The maximum processing frame rates of the BM, CCL and
single view objects tracking with FPGA and GPU-based server
implementations are shown in Table III. We can see that the
processing speed of the FPGA significantly outperforms the
GPU-based server both in 720 p and 1080 p resolution. The
time and resource usages of the FPGA implementation in 1080
p resolution are described in Table IV. “Na” in the table means
the time usage can be ignored. It should be noted that the total
time usage of the hardware implementation does not equal to the
sum of all modules because BM, CCL and single view objects
tracking, are executed in parallel.

CHAN et al.: ON THE HARDWARE/SOFTWARE DESIGN AND IMPLEMENTATION OF A HIGH DEFINITION MULTIVIEW VIDEO SURVEILLANCE SYSTEM 261

Fig. 18. Two-view outdoor tracking results corresponding to frame number
208, which includes two adjacent views. The red rectangle(s) in the upper figures
indicate the tracked object(s), while the lower figures depict the corresponding
background subtraction results and mean depth estimation results. Note that the
object which appeared in both views is successfully identified as the same object
because of consistent labeling.

Fig. 18 illustrates the outdoor multiview objects tracking
results. In the upper figures of Fig. 18, depth-assisted con-
sistent global labeling is performed when objects cross the
FOV lines of adjacent cameras. The labels of the tracked
objects are successfully maintained when they pass through
the FOV lines from one camera to another. In the lower
figures, the corresponding background subtraction results
and mean depth estimation results are depicted. More
tracking results can be found in our demonstration video
at: http://www.youtube.com/watch?v=bbX7UMXPvLS.

VI. CONCLUSION

The design and implementation of a HD multiview IVS
system has been presented. It adopts a modular design where
multiple intelligent IP-based surveillance cameras are con-
nected to FPGA front-end and GPU-based back-end video
server. The data intensive VA tasks are performed in FPGA,
while further processing such as mean depth estimation and
multiview object tracking are performed at back-end. New
hardware efficient and GUP-based algorithms for the front-
and back-ends are also presented. A real-time prototype system
was constructed to illustrate the architecture and VA algorithms
involved.

REFERENCES

[1] A. Senior, A. Hampapur, Y. L. Tian, L. Brown, S. Pankanti, and R.
Bolle, “Appearance models for occlusion handling,” J. Image Vis.
Comput., vol. 24, no. 11, pp. 1233-1243, 2006.

[2] S. C. Chan, B. Liao, and K. Tsui, “Bayesian Kalman filtering, regular-
ization and compressed sampling,” in Proc. I[EEE Int. Midwest Symp.
Circuits Syst., Aug. 2011, pp. 1-4.

[3] P. R. Wilson, M. S. Johnstone, M. Neely, and D. Boles, “Dynamic
storage allocation: A survey and critical review,” J. Memory Manage.,
pp. 1-116, 1995.

[4] TP Camera TI-DM&127 [Online].
http://www.ti.com/apps/docs/mrktgenpage.tsp?con-
tentld=41246&appld=79&DCMP=dsp\textunderscore
videosecurity&HQS=ipcamera&247SEM

[5] IP Camera TI-DM8127 [Online]. Available: http://www.Ap-
propho.com/New Web/Product DM8127J3.php

[6] Y. Wang, J. F. Doherty, and R. E. Van Dyck, “Moving object tracking
in video,” in Proc. IEEE Workshop Appl. Imagery Pattern Recognit.,
2000, pp. 95-101.

Available:

[7] K. Appiah, A. Hunter, P. Dickinson, and J. Owens, “A run-length based
connected component algorithm for FPGA implementation,” in Proc.
Int. Conf. Elect. Commu. Eng. Tech., Dec. 2008, pp. 177-184.

[8] C. T. Johnston and D. G. Bailey, “FPGA implementation of a single
pass connected components algorithm,” in Proc. IEEE Int. Symp. Elec-
tron. Design Test Appl., Jan. 2008, pp. 228-231.

[9] D. Crookes and K. Benkrid, “An FPGA implementation of image
component labeling,” in Proc. SPIE Reconfigurable Technol.: FPGAs
Comput. Appl., Sep. 1999, pp. 17-23.

[10] R. V. Rachakonda, P. M. Athanas, and A. L. Abbott, “High-speed re-
gion detection and labeling using an FPGA-based custom computing
platform,” in Proc. Int. Workshop Field Program. Logic Appl., Sep.
1995, pp. 86-93.

[11] S. Zhang, S. C. Chan, R. D. Qiu, K. T. Ng, Y. S. Hung, and W. Lu,
“On the design and implementation of a high definition multi-view in-
telligent video surveillance system,” in Proc. IEEE Int. Conf. Signal
Process. Commu. Comp., Aug. 2012, pp. 353-357.

[12] Z. Zivkovic and F. Heijden, “Efficient adaptive density estimation per
image pixel for the task of background subtraction,” Pattern Recognit.
Lett., vol. 27, pp. 773-780, May 2006.

[13] P. W.PowerandJ. A. Schoonees, “Understanding background mixture
models for foreground segmentation,” in Proc. Int. Conf. Image Vis.
Compt., Nov. 2002, pp. 267-271.

[14] M. Harville, “A framework for high-level feedback to adaptive, per-
pixel, mixture-of-Gaussian background models,” in Proc. Euro. Conf.
Comput. Vis., May 2002, pp. 37-49.

[15] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-based object
tracking,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 5, pp.
564-577, May 2003.

[16] K. Nummiaro, E. Koller-Meier, and L. Van Gool, “An adaptive color-
based particle filter,” J. Image Vis. Comput., vol. 21, pp. 99-110, Jan.
2003.

[17] Q. Wei, X. Zhang, C. Li, Y. X. Ouyang, and H. Sheng, “A roubust
approach for multiple vehicles tracking using layered particle filter,”
Int. J. Electron. Commun., vol. 65, pp. 609-618, 2011.

[18] “TB-6S-LX150T-IMG2 Hardware User Manual,” Yoshioka, Mar.
2011.

[19] F. Dinechin and B. Pasca, “Floating-point exponential functions for
DSP-enabled FPGAs,” Field Program. Technol., pp. 110-117, Dec.
2010.

[20] A. Hampapur et al., “Smart video surveillance: Exploring the concept
of multiscale spatiotemporal tracking,” /EEE Signal Process. Mag.,
vol. 22, no. 2, pp. 38-51, Mar. 2005.

[21] B. Song et al., “Distributed camera networks: Integrated sensing and
analysis for wide-area scene understanding,” IEEE Signal Process.
Mag., vol. 28, no. 3, pp. 20-31, May 2011.

[22] H.Lani, H. Yin, G. Shrestha, and L. J. Zhang, “Design and implementa-
tion of a DSP-based embedded intelligent traffic surveillance system,”
J. Commun. Comput. Inf. Sci., vol. 226, pp. 221-229, 2011.

[23] T. Tao et al., “A fast block matching algorithm for stereo corre-
spondence,” in Proc. IEEE Int. Cyber. Intell. Syst., Sep. 2008, pp.
38-41.

[24] L.Z.Zhu,J. N. Hwang, and H. Y. Cheng, “Tracking of multiple objects
across multiple cameras with overlapping and non-overlapping views,”
in Proc. IEEE Int. Symp. Circuits Syst., May 2009, pp. 1056-1060.

[25] M. Wojcikowski, R. Zaglewski, and B. Pankiewicz, “FPGA-based
real-time implementation of detection algorithm for automatic traffic
surveillance sensor network,” J. Signal Process. Syst., vol. 68, no. 1,
pp. 1-18, 2012.

[26] Z. Zivkovic, “Improved adaptive Gaussian mixture model for back-
ground subtraction,” in Proc. Int. Conf. Pattern Recognit., Aug. 2004,
vol. 2, pp. 28-31.

[27] M. Valera, “Intelligent distributed surveillance systems: Review,” IEE
Vis., Image Signal Process., vol. 152, no. 2, pp. 192-204, Apr. 2005.

[28] H. Kruegle, CCTV Surveillance: Analog and Digital Video Practices
and Technology. Burlington, MA: Butterworth-Heinemann, 2006.

[29] W. T. Chen, P. Y. Chen, W. S. Lee, and C. F. Huang, “Design and
implementation of a real time video surveillance system with wireless
sensor networks,” in Proc. IEEE Veh. Technol. Conf., May 2008, pp.
218-222.

[30] J. D. Zhu, L. Yuan, Y. F. Zheng, and R. L. Ewing, “Stereo visual
tracking within structured environments for measuring vehicle speed,”
IEEE Trans. Circuits Syst. Video Technol., vol. 22, no. 10, pp.
1471-1484, Oct. 2012.

[31] S. C. Chan, H. Y. Shum, and K. T. Ng, “Image-based rendering
and synthesis: Technological advances and challenges,” IEEE Signal
Process. Mag., vol. 24, no. 7, pp. 22-33, Nov. 2007.

[32] PETS2001 [Online]. Available: ftp://ftp.pets.dg.ac.uk/pub/PETS2001

262 IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 3, NO. 2, JUNE 2013

S. C. Chan (S°87-M’92) received the B.Sc.(Eng.)
and Ph.D. degrees from The University of Hong
Kong, Pokfulam, Hong Kong, in 1986 and 1992,
respectively.

Since 1994, he has been with the Department of
Electrical and Electronic Engineering, the University
of Hong Kong, where he is currently a Professor. His
research interests include fast transform algorithms,
filter design and realization, multirate and biomedical
signal processing, communications and array signal
processing, high-speed A/D converter architecture,
bioinformatics, smart grid image-based rendering. He is Associate Editor of the
Journal of Signal Processing Systems (Springer) and Digital Signal Processing
(Elsevier).

Dr. Chan is currently a member of the Digital Signal Processing Technical
Committee of the IEEE Circuits and Systems Society. He is Associate Editor of
the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II. He was the Chair of
the IEEE Hong Kong Chapter of Signal Processing in 2000-2002, an organizing
committee member of the 2003 IEEE International Conference on Acoustics,
Speech, and Signal Processing, the 2010 International Conference on Image
Processing, and an Associate Editor of IEEE TRANSACTIONS ON CIRCUITS AND
SYSTEMS I from 2008 to 2009.

Shuai Zhang received the B.Sc.(CE) degree from
the Yanshan University, Hebei, China, in 2009,
and the M.Sc.(Eng.) degree from The University of
Hong Kong in 2010. He is currently working toward
the Ph.D. degree in the Department of Electrical
and Electronic Engineering, The University of Hong
Kong.

From 2010 to 2011, he worked as a Research As-
sistant with the Department of Electrical and Elec-
tronic Engineering, The University of Hong Kong.
His research interests focus on multi-modality data
fusion, human body tracking, intelligent video surveillance, and statistical video
processing.

Jia-Fei Wu received the B.S. degree in communica-
tions engineering from Jiangxi University of Finance
and Economics, Jiangxi, China, in 2010, and the M.S.
(Eng.) degree in electrical and electronic engineering,
in 2012, from the University of Hong Kong, where
he is currently working toward the M.Phil. degree in
electrical and electronic engineering.

In 2012, he worked as a Research Assistant
with the Department of Electrical and Electronic
Engineering, University of Hong Kong. His re-
search interests include image processing and

FPGA technology.

Hai-Jun Tan received the B.S. degree in electronic
science and technology from South China University
of Technology, Guangzhou, China, in 2006. He is
currently working toward the M.S. degree at the
Department of Communication and Information
System, Sun Yat-sen University, Guangzhou, China.

His research interests include hardware implemen-
tation of video surveillance and hardware accelera-
tion of 2-D to 3-D conversion algorithms.

J. Q. Nireceived the Ph.D. degree in electronic engi-
neering from the University of Hong Kong, in 1998.

He then worked as a postdoc fellow for a joint
program between the Sun Yat-Sen University and
the Guangdong Institute of Telecommunication
Research during 1998 through 2000. Since 2001, he
has been with the school of Information Science and
Technology, Sun Yat-Sen University, Guangzhou,
China, where he is currently a Professor. His re-
search interests include data hiding, digital forensics
and image/video processing. He has published more
than 50 papers in these areas.

Y. S. Hung received the B.Sc.(Eng.) degree in
electrical engineering and the B.Sc. degree in mathe-
matics, both from the University of Hong Kong, and
the M.Phil. and Ph.D. degrees from the University
of Cambridge, Cambridge, U.K.

He has worked at the University of Cambridge and
the University of Surrey before he joined the Univer-
sity of Hong Kong, where he is currently a Professor
at the Department of Electrical and Electronic Engi-
neering. He has authored and co-authored over 200
publications in books, journals and conference pro-
ceedings. His research interests include computer vision, control systems and
biomedical engineering.

Prof. Hung is a Fellow of the Hong Kong Institution of Engineers and the
Institution of Engineering and Technology.

