74 research outputs found

    High-Performance FPGA Implementation of Equivariant Adaptive Separation via Independence Algorithm for Independent Component Analysis

    Full text link
    Independent Component Analysis (ICA) is a dimensionality reduction technique that can boost efficiency of machine learning models that deal with probability density functions, e.g. Bayesian neural networks. Algorithms that implement adaptive ICA converge slower than their nonadaptive counterparts, however, they are capable of tracking changes in underlying distributions of input features. This intrinsically slow convergence of adaptive methods combined with existing hardware implementations that operate at very low clock frequencies necessitate fundamental improvements in both algorithm and hardware design. This paper presents an algorithm that allows efficient hardware implementation of ICA. Compared to previous work, our FPGA implementation of adaptive ICA improves clock frequency by at least one order of magnitude and throughput by at least two orders of magnitude. Our proposed algorithm is not limited to ICA and can be used in various machine learning problems that use stochastic gradient descent optimization

    A Hardware-Friendly Algorithm for Scalable Training and Deployment of Dimensionality Reduction Models on FPGA

    Full text link
    With ever-increasing application of machine learning models in various domains such as image classification, speech recognition and synthesis, and health care, designing efficient hardware for these models has gained a lot of popularity. While the majority of researches in this area focus on efficient deployment of machine learning models (a.k.a inference), this work concentrates on challenges of training these models in hardware. In particular, this paper presents a high-performance, scalable, reconfigurable solution for both training and deployment of different dimensionality reduction models in hardware by introducing a hardware-friendly algorithm. Compared to state-of-the-art implementations, our proposed algorithm and its hardware realization decrease resource consumption by 50\% without any degradation in accuracy

    Research on performance enhancement for electromagnetic analysis and power analysis in cryptographic LSI

    Get PDF
    制度:新 ; 報告番号:甲3785号 ; 学位の種類:博士(工学) ; 授与年月日:2012/11/19 ; 早大学位記番号:新6161Waseda Universit

    Variable learning rate EASI-based adaptive blind source separation in situation of nonstationary source and linear time-varying systems

    Get PDF
    In the case of multiple nonstationary independent source signals and linear instantaneous time-varying mixing systems, it is difficult to adaptively separate the multiple source signals. Therefore, the adaptive blind source separation (BSS) problem is firstly formally expressed and compared with tradition BSS problem. Then, we propose an adaptive blind identification and separation method based on the variable learning rate equivariant adaptive source separation via independence (EASI) algorithm. Furthermore, we analyze the scope and conditions of variable-learning rate EASI algorithm. The adaptive BSS simulation results also show that the variable learning rate EASI algorithm provides better separation effect than the fixed learning rate EASI and recursive least-squares algorithms

    A Low Complexity High Speed Architecture Design Methodology For Reduced 3-Lead to 12-Lead ECG Signal Reconstruction Targeting Remote Health Care

    Get PDF
    Cardiovascular diseases is one of the prime causes of human corporeality and mobidity in society . In order to abate this researchers had paid heed in the field of detection and pre- vention in both hospital-based and remotely accessed environments . Advancements in wireless technology and tale-monitoring can be used to provide the accessibility of state-of -the-art(Sot A) facilities to patients in remote and rural areas. However, bandwidth and storage limitations and data transmission time are major challenges in wireless transmission . Though cardiologists are habituated to standard 12-lead (S12) system because of its decade old usage and widespread acceptability, however generally, for such remote healthcare environments a reduced lead(RL)ECG is suitable for aforementioned reasons , which however , may not be clinically acceptable for diagnosis . Several efficient algorithms for reconstruction of RL to SotA 12 lead have been proposed. The overall Cardio Vascular Disease detection system can be characterized to 6 different sections namely Data Acquisition , Preprocessing , Data Transmission, Coefficient Generation, Signal Reconstruction and Display on Monitor. The thesis work includes a low complexity and high speed architecture design ( for the preprocess- sing section) and its implementation on FPGA and ASIC platform which intern can be used for the accurate reconstruction of 3 lead to 12 lead ECG signal reconstruction

    Individualizing Electrical Circuits of Cryptographic Devices as a Means to Hinder Tampering Attacks

    Get PDF
    Side channel and fault attacks take advantage from the fact that the behavior of crypto implementations can be observed and provides hints that simplify revealing keys. In a real word a lot of devices, that are identical to the target device, can be attacked before attacking the real target to increase the success of the attack. Their package can be opened and their electromagnetic radiation and structure can be analyzed. Another example of how to improve significantly the success rate of attacks is the measurement of the difference of the side channel leakage of two identical devices, one of these devices being the target, using the Wheatstone bridge measurement setup. Here we propose to individualize the electrical circuit of cryptographic devices in order to prevent attacks that use identical devices: attacks, that analyze the structure of devices identical to the target device in a preparation phase; usual side channel attacks, that use always the same target device for collecting many traces, and attacks that use two identical devices at the same time for measuring the difference of side-channel leakages. The proposed individualization can prevent such attacks because the power consumption and the electromagnetic radiation of devices with individualized electrical circuit are individualized while providing the same functionality. We implemented three individualized ECC designs that provide exactly the same cryptographic function on a Spartan-6 FPGA. These designs differ from each other in a single block only, i.e. in the field multiplier. The visualization of the routed design and measurement results show clear differences in the topology, in the resources consumed as well as in the power and electromagnetic traces. We show that the influence of the individualized designs on the power traces is comparable with the influence of inputs. These facts show that individualizing of electrical circuits of cryptographic devices can be exploited as a protection mechanism. We envision that this type of protection mechanism is relevant if an attacker has a physical access to the cryptographic devices, e.g. for wireless sensor networks from which devices can easily be stolen for further analysis in the lab

    Engine Fuel Injection Timing : A Design for an Automatic Verification System

    Get PDF
    This thesis describes the development of an automatic testing system for the timing of the fuel injection of a 4-stroke engine. The fuel injection timing is managed by an electronic engine control unit which has a distributed modular design. New software and hardware updates are released every few months for the engine control unit. Furthermore, fuel injection timing must be tested for each new software release, because incorrect timing could potentially lead to engine failure. Thus, automating this frequent testing procedure, which can take 2–5 days manually, is expected to save both time and money. Therefore, the object of this work is to develop a design of an automatic fuel injection timing testing system. There are already abundant scientific studies available related to fuel injection timing and engine control unit. The majority of these studies in the literature review cover various topics about the effects of alternative injection technologies and fuels. A limited number of them comprise the subject of automatic fuel injection timing. Design science was chosen as the research method because of its suitability for product development projects. The most important research question is what the design architecture must be like for testing injection timing. This work started with a comprehensive analysis of the different factors that could affect the design. Underlying motivation for developing an automatic testing system, stakeholders involved, alternative ways for testing implementation, and various other points of view were covered. After defining the system requirements, the setup was built to measure the timing of fuel injection pulses from the engine control unit, which utilized the National Instruments Compact RIO hardware and software programmed with LabVIEW. This program automatically generates an Excel report of the timing test. The design of a testing system architecture that would allow measurements to be made from any of the 112 fuel injection terminals of the control unit was successfully developed. Measurements performed with Compact RIO hardware proved to be accurate and could determine the crankshaft angle with the required accuracy. The accuracy of the testing system was ±5 μs. Next, the development of communication between the testing hardware and the engine control unit’s configuration software was identified as the most important issue for future development of the testing system. The proposed testing system principle is probably feasible for developing any further automatic testing systems for any electric engine control unit in which fuel injection timing needs to be verified. Moreover, Compact RIO hardware and LabVIEW software can be recommended as a tool for developing similar verification systems because they are relatively easy to use, flexible, reliable, and capable of high-speed measurements.Tämä diplomityö kuvaa automaattisen testausjärjestelmän kehittämistä nelitahtimoottorin polttoaineen ruiskutussignaalien ajoitukselle. Ruiskutuksen ajoitusta hallitaan sähköisellä moottorinohjausyksiköllä, millä on hajautettu modulaarinen rakenne. Uusia moottorinohjausyksikön ohjelmisto- ja laitteistoversioita julkaistaan muutaman kuukauden välein. Polttoaineensyötön oikea ajoitus täytyy testata aina, kun uusia versioita julkaistaan, koska väärä ajoitus saattaa aiheuttaa moottorihäiriön. Usein toistuvan testauksen automatisoinnin odotetaan lyhentävän siihen käytettävää aikaa ja kustannuksia merkittävästi, mikä manuaalisesti tehtynä voi kestää 2–5 päivää. Työn tavoitteena on kehittää suunnitelma automaattisesta testausjärjestelmästä polttoaineen ruiskutuksen ajoitukselle. Polttoaineenruiskutukseen ja moottorinohjausyksiköihin liittyviä tieteellisiä julkaisuja on saatavilla runsaasti. Suurin osa kirjallisuuskatsauksessa käsitellyistä tutkimuksista kattaa eri aiheita vaihtoehtoisten ruiskutustekniikoiden ja polttoaineiden vaikutuksista polttomoottoriin. Vain muutama niistä käsittelee polttoaineensyötön automaattista testausta. Tutkimusmenetelmäksi valittiin suunnittelutiede, koska se soveltuu hyvin tuotekehitysprojekteihin. Tärkein tutkimuskysymys on: ”Minkälainen järjestelmän arkkitehtuurin täytyy olla ruiskutuksen ajoituksen testaamista varten?” Kysymyksen tutkiminen aloitettiin analysoimalla perusteellisesti eri tekijöitä, jotka voisivat vaikuttaa toteutukseen. Mikä on se perimmäinen syy miksi automaattinen testausjärjestelmä halutaan kehittää, mukana olevat sidosryhmät, vaihtoehtoiset toteutustavat sekä useita muita näkökulmia huomioitiin. Järjestelmävaatimusten määrittelyn jälkeen rakennettiin koelaite, jolla mitattiin polttoaineensyötön pulssien ajoitusta moottorinohjausyksiköstä, mikä hyödynsi National Instruments Compact RIO laitteistoa ja ohjelmistoa mikä kehitettiin LabVIEW -kehitysympäristössä. Ohjelma luo automaattisesti Excel raportin ajoitustesteistä. Onnistuneesti luotiin testausjärjestelmän arkkitehtuuri, mikä mahdollistaa mittausten tekemisen mistä tahansa hajautetun moottorinohjausyksikön 112 polttoaineensyötön liittimestä. Compact RIO laitteistolla tehdyt mittaukset osoittautuivat tarkoiksi ja se pystyy määrittämään kampiakselin kulman vaaditulla tarkkuudella. Testausjärjestelmän tarkkuus oli ±5 μs. Kommunikaation kehittäminen testauslaitteiston ja moottorinohjausyksikön konfigurointi ohjelmiston välille tunnistettiin kaikkein tärkeimmäksi asiaksi testausjärjestelmän jatkokehitykselle. Ehdotettu arkkitehtuuri on todennäköisesti sopiva ratkaisu automaattisen testausjärjestelmän kehittämiseksi mille tahansa sähköiselle moottorinohjausyksikölle, jonka polttoaineen ruiskutuksen ajoitus halutaan varmentaa. Lisäksi Compact RIO laitteistoa ja LabVIEW ohjelmistoa voidaan suositella työkaluiksi vastaavien testausjärjestelmien kehittämiseen koska ne ovat kohtuullisen helppokäyttöisiä, joustavia, luotettavia ja pystyvät nopeisiin mittauksiin

    A Comparison of ICA versus genetic algorithm optimized ICA for use in non-invasive muscle tissue EMG

    Get PDF
    Includes bibliographical references.The patent developed by Dr. L. John [1] allows for the the detection of deep muscle activation through the combination of specially positioned monopolar surface Electromyography (sEMG) electrodes and a Blind Source Separation algorithm. This concept was then proved by Morowasi and John [2] in a 12 electrode prototype system around the bicep. This proof of concept showed that it was possible to extract the deep tissue activity of the brachialis muscle in the upper arm, however, the effect of surface electrode positioning and effectual number of electrodes on signal quality is still unclear. The hope of this research is to extend this work. In this research, a genetic algorithm (GA) is implemented on top of the Fast Independent Component Analysis (FastICA) algorithm to reduce the number of electrodes needed to isolate the activity from all muscles in the upper arm, including deep tissue. The GA selects electrodes based on the amount of significant information they contribute to the ICA solution and by doing so, a reduced electrode set is generated and alternative electrode positions are identified. This allows a near optimal electrode configuration to be produced for each user. The benefits of this approach are: 1.The generalized electrode array and this algorithm can select the near optimal electrode arrangement with very minimal understanding of the underlying anatomy. 2. It can correct for small anatomical differences between test subjects and act as a calibration phase for individuals. As with any design there are also disadvantages, such as each user needs to have the electrode placement specifically customised for him or her and this process needs to be conducted using a higher number of electrodes to begin with
    corecore