
Tuomas Du-Ikonen

Engine Fuel Injection Timing

A Design for an Automatic Verification System

Vaasa 2022

School of Technology and Innovations
Master’s thesis in Discipline

Automation and Computer Science

2

UNIVERSITY OF VAASA
School of Technology and Innovations
Author: Tuomas Du-Ikonen
Title of the Thesis: Engine Fuel Injection Timing : A Design for an Automatic Verifi-

cation System
Degree: Master of Science
Programme: Automation and Computer Science
Supervisor: Jarmo Alander
Year: 2022 Pages: 81

ABSTRACT:
This thesis describes the development of an automatic testing system for the timing of the fuel
injection of a 4-stroke engine. The fuel injection timing is managed by an electronic engine
control unit which has a distributed modular design. New software and hardware updates are
released every few months for the engine control unit. Furthermore, fuel injection timing must
be tested for each new software release, because incorrect timing could potentially lead to
engine failure. Thus, automating this frequent testing procedure, which can take 2–5 days
manually, is expected to save both time and money. Therefore, the object of this work is to
develop a design of an automatic fuel injection timing testing system.

There are already abundant scientific studies available related to fuel injection timing and en-
gine control unit. The majority of these studies in the literature review cover various topics
about the effects of alternative injection technologies and fuels. A limited number of them
comprise the subject of automatic fuel injection timing.

Design science was chosen as the research method because of its suitability for product devel-
opment projects. The most important research question is what the design architecture must
be like for testing injection timing. This work started with a comprehensive analysis of the dif-
ferent factors that could affect the design. Underlying motivation for developing an automatic
testing system, stakeholders involved, alternative ways for testing implementation, and vari-
ous other points of view were covered. After defining the system requirements, the setup was
built to measure the timing of fuel injection pulses from the engine control unit, which utilized
the National Instruments Compact RIO hardware and software programmed with LabVIEW.
This program automatically generates an Excel report of the timing test.

The design of a testing system architecture that would allow measurements to be made from
any of the 112 fuel injection terminals of the control unit was successfully developed. Meas-
urements performed with Compact RIO hardware proved to be accurate and could determine
the crankshaft angle with the required accuracy. The accuracy of the testing system was ±5 μs.
Next, the development of communication between the testing hardware and the engine con-
trol unit’s configuration software was identified as the most important issue for future devel-
opment of the testing system. The proposed testing system principle is probably feasible for
developing any further automatic testing systems for any electric engine control unit in which
fuel injection timing needs to be verified. Moreover, Compact RIO hardware and LabVIEW
software can be recommended as a tool for developing similar verification systems because
they are relatively easy to use, flexible, reliable, and capable of high-speed measurements.

KEYWORDS: combustion engines, four-stroke cycle engines, fuel injection engines, product
development, testing, automation, injection timing, embedded system

3

VAASAN YLIOPISTO
Tekniikan ja innovaatiojohtamisen yksikkö
Tekijä: Tuomas Du-Ikonen
Tutkielman nimi: Engine Fuel Injection Timing : A Design for an Automatic Verifi-

cation System
Tutkinto: Diplomi-insinööri
Oppiaine: Automaatio ja tietotekniikka
Työn ohjaaja: Jarmo Alander
Valmistumisvuosi: 2022 Sivumäärä: 81

TIIVISTELMÄ:
Tämä diplomityö kuvaa automaattisen testausjärjestelmän kehittämistä nelitahtimoottorin
polttoaineen ruiskutussignaalien ajoitukselle. Ruiskutuksen ajoitusta hallitaan sähköisellä
moottorinohjausyksiköllä, millä on hajautettu modulaarinen rakenne. Uusia moottorinohjaus-
yksikön ohjelmisto- ja laitteistoversioita julkaistaan muutaman kuukauden välein. Polttoai-
neensyötön oikea ajoitus täytyy testata aina, kun uusia versioita julkaistaan, koska väärä ajoi-
tus saattaa aiheuttaa moottorihäiriön. Usein toistuvan testauksen automatisoinnin odotetaan
lyhentävän siihen käytettävää aikaa ja kustannuksia merkittävästi, mikä manuaalisesti tehtynä
voi kestää 2–5 päivää. Työn tavoitteena on kehittää suunnitelma automaattisesta testausjär-
jestelmästä polttoaineen ruiskutuksen ajoitukselle.

Polttoaineenruiskutukseen ja moottorinohjausyksiköihin liittyviä tieteellisiä julkaisuja on saa-
tavilla runsaasti. Suurin osa kirjallisuuskatsauksessa käsitellyistä tutkimuksista kattaa eri aiheita
vaihtoehtoisten ruiskutustekniikoiden ja polttoaineiden vaikutuksista polttomoottoriin. Vain
muutama niistä käsittelee polttoaineensyötön automaattista testausta.

Tutkimusmenetelmäksi valittiin suunnittelutiede, koska se soveltuu hyvin tuotekehitysprojek-
teihin. Tärkein tutkimuskysymys on: ”Minkälainen järjestelmän arkkitehtuurin täytyy olla ruis-
kutuksen ajoituksen testaamista varten?” Kysymyksen tutkiminen aloitettiin analysoimalla
perusteellisesti eri tekijöitä, jotka voisivat vaikuttaa toteutukseen. Mikä on se perimmäinen syy
miksi automaattinen testausjärjestelmä halutaan kehittää, mukana olevat sidosryhmät, vaih-
toehtoiset toteutustavat sekä useita muita näkökulmia huomioitiin. Järjestelmävaatimusten
määrittelyn jälkeen rakennettiin koelaite, jolla mitattiin polttoaineensyötön pulssien ajoitusta
moottorinohjausyksiköstä, mikä hyödynsi National Instruments Compact RIO laitteistoa ja oh-
jelmistoa mikä kehitettiin LabVIEW -kehitysympäristössä. Ohjelma luo automaattisesti Excel-
raportin ajoitustesteistä.

Onnistuneesti luotiin testausjärjestelmän arkkitehtuuri, mikä mahdollistaa mittausten tekemi-
sen mistä tahansa hajautetun moottorinohjausyksikön 112 polttoaineensyötön liittimestä.
Compact RIO laitteistolla tehdyt mittaukset osoittautuivat tarkoiksi ja se pystyy määrittämään
kampiakselin kulman vaaditulla tarkkuudella. Testausjärjestelmän tarkkuus oli ±5 μs. Kommu-
nikaation kehittäminen testauslaitteiston ja moottorinohjausyksikön konfigurointi ohjelmiston
välille tunnistettiin kaikkein tärkeimmäksi asiaksi testausjärjestelmän jatkokehitykselle. Ehdo-
tettu arkkitehtuuri on todennäköisesti sopiva ratkaisu automaattisen testausjärjestelmän ke-
hittämiseksi mille tahansa sähköiselle moottorinohjausyksikölle, jonka polttoaineen ruiskutuk-
sen ajoitus halutaan varmentaa. Lisäksi Compact RIO laitteistoa ja LabVIEW ohjelmistoa voi-
daan suositella työkaluiksi vastaavien testausjärjestelmien kehittämiseen koska ne ovat koh-
tuullisen helppokäyttöisiä, joustavia, luotettavia ja pystyvät nopeisiin mittauksiin.

AVAINSANAT: polttomoottorit, nelitahtimoottorit, suihkutusmoottorit, tuotekehitys, tes-
taus, automaatio, ruiskutuksen ajoitus, sulautetut järjestelmät

4

Contents

1 Introduction 9

1.1 Internal Combustion Engine Fuel Injection 9

1.2 Automatic Testing 10

1.3 Research Problem Formulation Background 11

1.4 Definitions of Key Expressions 12

1.5 Structure of the Thesis Work 14

2 Related Work 15

2.1 Test Methods for Fuel Injection Timing 15

2.2 Fuel Injection Studies 16

2.3 Principles for Developing Automation 17

3 Background 19

3.1 Engine Control Unit 19

3.1.1 Modules of the Engine Control Unit 21

3.1.2 Engine Control Unit Software 22

3.2 Speed Signal Measurement 23

3.3 Fuel Injection Timing 25

3.4 Fuel Injection Pulse Control 26

3.5 Engine Control Unit Testing System 29

3.5.1 Test Rack 30

3.5.2 Configuration Software for Engine Control Unit 31

3.6 Testing Specification Terminology 32

4 Research Methodology 33

4.1 Design Science 33

4.2 Research Framework 34

4.2.1 Design Cycle 36

4.2.2 Empirical Cycle 37

4.3 Research Problem 38

4.3.1 Design Problem 38

5

4.3.2 Knowledge Questions 41

4.4 Problem Investigation 42

4.4.1 Issues Affecting the Design 42

4.4.2 Hardware and Software Selection 47

4.4.3 Automating Measurements from Several Driver Channels 51

4.4.4 Creation of the Validated Design Proposal 55

5 Results 61

5.1 Design Implementation 61

5.2 Computing Time from FPGA Clock Cycles 64

5.3 Pulse Interference Elimination 65

5.4 Preliminary Testing of the Measurement Accuracy 68

5.5 Limitations 71

5.5.1 Future Development Suggestions 71

5.5.2 Research Limitations 73

6 Conclusion 75

References 77

Appendix 81

Steps for Using the Testing System 81

6

Figures

Figure 1. Simplified engine control unit overview including sensors, actuators,

and safety unit 20

Figure 2. Distributed modular ECU design principle 21

Figure 3. Installation of speed sensors 23

Figure 4. Phase sensor installation position principle 24

Figure 5. Two phases of a four-stroke engine cycle principle 25

Figure 6. Fuel ti principle 26

Figure 7. Definitions of ymin, ymax, D, and T in a periodic square wave 27

Figure 8. PWM modulated fuel injection pulse voltage and current principle 28

Figure 9. Design science framework for developing an automatic system for fuel

ti testing (adapted from Wieringa, 2014, p. 216) 35

Figure 10. Pulse verification system principle 47

Figure 11. Visualization of the total number of driver channels 51

Figure 12. Example of driver channel assignment 52

Figure 13. DI options for measuring pulses. K is a symbol of a relay contact, R

represents a load, and DI represents the digital input terminal in the

figure. 54

Figure 14. Driver channel configuration before and after ID swap 54

Figure 15. Integrating pulse verification system to the ECU TS architecture 55

Figure 16. Setup of the laboratory system using an ID-swap for testing the

proposed treatment 56

Figure 17. GUI mockup shows fields for inputting information of the test

specification and buttons for starting the test 58

Figure 18. The block diagram of the technical proposed implementation shows the

most important software and hardware components in the system 60

Figure 19. Using Tick to ms subroutine in the LabVIEW graphical programming

environment 62

Figure 20. Example of test results as an Excel table 63

Figure 21. Obtaining the number of clock cycles needed to read a DI-channel 65

7

Figure 22. Pulse interferences shown by orange arrows 66

Figure 23. Code to obtain the pulse timing of the fuel injection with the threshold

of the start of the measurement 68

Tables

Table 1. Comparison of the timing test results of the laboratory test with the

testing system 69

Table 2. Mean, standard error, and accuracy of the test result 70

Abbreviations

A Ampere
AC Alternating Current
AO Analog Output
API Application Programming Interface
ASIC Application-Specific Integrated Circuit
BTDC Before Top Dead Center
CCM Cylinder Control Module
CCW Counter Clockwise
CI/CD Continuous Integration, Continuous Delivery
COM Communication Module
CPU Central Processing Unit
cRIO CompactRIO
CW Clockwise
DC Alternating Current
DEMS Diesel Engine Management System
DI Digital Input
DO Digital Output
DSP Digital Signal Processing
DSR Design Science Research
ECU Engine Control Unit
EFI Electronic Fuel Injection
FPGA Field Programmable Gate Array
GUI Graphical User Interface
H Henry
HDL Hardware Description Language
HLS High-Level Synthesis
I/O Input/Output
ID Identifier
IRQ Interrupt Request

8

NI National Instruments
PC Personal Computer
PMW Pulse-Width Modulation
R&D Research and Development
RAM Random Access Memory
ROI Return on Investment
rpm Revolutions per Minute
SAP System Applications and Products
SD Standard Deviation
SE Standard Error
SoC System on a Chip
TDC Top Dead Center
ti Injection Timing
TS Testing System
UI User Interface
V Volt
VHDL Very High-Speed Integrated Circuit Hardware Description Language
Ω Ohm

9

1 Introduction

Automatic testing has become a critical part of software development as systems are

getting more complicated and new releases are being introduced at an ever-

accelerating pace. But these frequent additions and updates to the software can possi-

bly cause some of its existing and already tested functions to fail. Automated testing is

therefore crucial for preventing this type of software deterioration, as manual testing

would be too time consuming in large and complicated software projects. The devel-

opment of the electronic control unit for fuel injection in four-stroke engines is crucial

for effective engine operation and improved fuel efficiency being driven by more strin-

gent emission regulation. The benefits of automatic testing for such embedded system

include time savings compared to manual testing and increased testing coverage and

quality.

1.1 Internal Combustion Engine Fuel Injection

The fuel injection system is designed to deliver fuel to the cylinders of an engine, and

this has a significant influence on the engine combustion process. The way fuel is deliv-

ered has beneficial effects on engine performance, emissions, and can also prevent

unwanted additional noise. In order to achieve effective combustion of the engine, fuel

should be injected at the proper time, that is, the injection time should be accurate.

The second most important factor is that the correct amount of fuel is delivered. (Khair,

M. K. & Jääskeläinen, H., 2020)

Moreover, several other factors affect the good fuel injection. These include high injec-

tion pressures of 1600–1800 bar, a small nozzle area in relation to the diameter of the

cylinder, and correct injection durations to ensure proper system performance. The

optimal injection duration should be less than 20 ° of the crankshaft angle to attain a

short burning time, which reduces NOx emissions without losing efficiency. High pres-

sure at the beginning of the injection reduces the delay in ignition. All elements of the

10

fuel injection system, such as the pump, pressure pipe, fuel valve, and nozzle, should

be considered when attempting to obtain optimal performance of the fuel injection

system. (Latarche, 2020, pp. 333–342)

Electronic control of fuel injection is an essential component in trying to achieve the

properties mentioned above. It contributes especially to timing accuracy and duration.

Thus, electronic fuel injection has mostly superseded mechanical ones in modern en-

gines. Developments in fuel injection systems have an important role in improving en-

gine fuel consumption and reducing harmful exhaust emissions to meet ever more

stringent regulation (Mitroglou et al., 2012).

1.2 Automatic Testing

As embedded systems are getting more complex, their automatic testing has become

more important. It has gone from being a high-end technology practice to being neces-

sity as it is not possible to do a great number of tests with comprehensive coverage

manually, or at least not feasibly. Testers have been for decades trying to save time by

applying automated testing instead of the old time consuming manual testing, by cre-

ating test cases, comparing test results to known parameters, and creating automatic

test reporting. However, it is difficult to develop well implemented and working test

automation successfully. (Graham & Fewster, 2012)

The growth of information technology applications in industrial use and in everyday life,

has pushed an increasing number of embedded systems constantly to a faster pace.

The percentage of time used for testing, as part of the whole of software development

process, has increased in the last decades. For these reasons, better solutions are being

looked for, and automated testing has the most potential to solve these issues. Test

automation enables increased testing coverage by increasing the number of permuta-

tions and combinations tested, while reducing the time used for the process. (Dustin, E.

et al., 2009)

11

Regression testing is a method that is used to confirm that existing software works

when new components and updates are added to it. New elements in the software

project could potentially adversely affect prior features in the code even if they were

working earlier, thus regressing the original code. Due to the high number of tests, re-

gression testing should be designed to be done automatically (Dustin, E., 2002). This

significantly accelerates the testing, reducing the time it takes for them to only a few

days instead of several weeks. In this way, it can be ensured that the software system

operates according to its specifications, resulting in increased reliability (Pensar & Stor-

backa, 2007).

1.3 Research Problem Formulation Background

New software and hardware updates are released every few months to the engine con-

trol unit (ECU). Fuel injectors are wired to terminals in the ECU, which are also called

driver channels. The correct timing for fuel injection in the four-stroke cycle is just be-

fore the piston reaches the top part of the cylinder. This timing must be accurate be-

cause the wrong timing can cause a malfunction or seriously damage the engine.

Therefore, it is vital to test the correct timing with which the engine control unit sends

the fuel injection pulses.

Testing pulse timing manually is time consuming and frequently needs to be done eve-

ry few months. Because there are so many tests to be made, manual testing is done

selectively, leaving some parts untested. Slightly different working practices or possible

mistakes done by testers can also affect testing results. Automated testing is expected

to speed up product development and increase engine reliability.

The object of this study is to develop an automatic system to verify that fuel injection

pulses occur at the correct angles in the engine. The engine control unit has a cylinder

control module that sends a fuel injection pulse based on the signal received from the

position sensors of the crankshaft. The fuel injection pulse controlling fuel injection are

12

programmed to start and stop at certain engine angles. Before this work started, the

sensor signal for the crankshaft position had already been simulated in a software and

hardware setup. This could be utilized in the development of the automatic testing

system.

The engine control system input/output (I/O) interface has been implemented in a test-

ing system consisting of a hardware rack with all I/O and control modules in the motor

with a set of software tools. The testing system can be utilized for fuel injection timing

(ti) verification. More accurate information on fuel injection timing can be used to ex-

periment with different timings to test its effect on engine performance. The potential

for saving costs and improved quality are the motivation for this automated testing.

1.4 Definitions of Key Expressions

This chapter defines frequently used terminology in this thesis. Some of them come

from the research method used, which is design science, while others are expressions

used in electronics and computer control systems. Additionally, some testing related

expressions are defined. Expression is in bold, followed by its explanation.

Accuracy is an indicator of how close the observations are to the true value, which is

an ideal case of a measurement without any error of any type. The mean value of an

accurate measurement samples is closer to the true value than in a set of measure-

ments that is inaccurate.

Artefact is the object of study in design science. It can have a wide variety of forms and

could be, for example, a device, algorithm, process, construction method, or design

logic. The effects and behavior of the artefact are studied in its environment to solve a

practical problem in design science.

13

Precision means how close the observations are to each other. A set of observations

that have high precision or measurements made with precise measurement device

have low variance. It is possible for a set of measurements to be precise but not accu-

rate, and vice versa.

Pulse in electronics and computer control systems is a short burst of electricity or elec-

tromagnetic-field energy. In this work, the word pulse is used in connection with elec-

tric fuel injector operation, which requires a certain kind of current waveform to open

and inject fuel. The required current waveform changes according to the desired injec-

tion duration and fuel amount, as well as the injector type, which affects engine per-

formance. Different current levels are obtained by varying the voltage supply using

pulse width modulation (PWM). The nature of this electric waveform can still be seen

as a short surge that occurs once per one four-stroke engine cycle.

Signal in electronics and computer control systems is an electric current or electro-

magnetic-field energy that carries data. In this work, the signal is used in connection

with the detection of engine speed. The engine speed is detected using sensors which

produce an output of a voltage waveform which changes according to the engine

speed.

Testing is a more general and broader idea of the procedure, which aims to confirm

that some created function meets its purpose in a reliable way. An example of testing

would be to measure ti from driver channel manually by using an oscilloscope or a

smoke test of graphical user interface (GUI) to check that clicking the buttons in it de-

livers the intended result. The whole process of confirming that the fuel ti is correct is

also called testing.

Treatment is term used by Roel Wieringa in his design science framework, which refers

to a proposed method, technology, or similar concept that is applied in research for the

purpose of solving the problem. Using the expression solution is avoided because it

14

implies that the problem will be solved. The term treatment is adopted from medical

science and is more objective in the sense that it comprises the idea that the proposed

method may not necessarily work. (Wieringa, 2014, p. 28)

Validation is an evaluation that aims to ensure that the properties and means of some

product or service will likely resolve the problem for which it is applied. The purpose of

the validation process is to assess, whether the proposed solution can meet the re-

quirements of the problem it intends to resolve, but it is insignificant by what means it

is done.

Verification is a process in which it is checked whether the product under development

meets its specification that is set for it. This could be, for example, checking that user

interface (UI) matches its description, memory usage is within defined limit, and archi-

tectural design is done according to the specification.

1.5 Structure of the Thesis Work

This thesis is organized into six chapters. Chapter 2, following the introduction, con-

tains a literature review of scientific studies and books related to automatic ti testing.

Chapter 3 describes the principles of the engine control unit with its related signals and

pulses, which are necessary technologies to understand this topic. Chapter 4 introduc-

es the research methodology. Chapter 5 contains results of the research work. Chapter

6 presents the conclusion and includes proposals for future development.

15

2 Related Work

This chapter covers an overview of related literature and studies on the automation of

fuel ti testing. Existing methods from a hardware technology perspective are described

in the first part. The second part discusses studies that focus on various effects of dif-

ferent injection methods and fuels on the operation of the engine. Finally, the third

part focuses on the literature that describes the guidelines and principles of developing

testing automation as a process, rather than to any specific technologies that are used

to implement it.

2.1 Test Methods for Fuel Injection Timing

Several studies have demonstrated that automatic fuel injection can improve the preci-

sion of measurement. Firstly, this is shown in the work by Fu and Ma who present an

intelligent fuel injection control system (F. Juan & M. Xian-Min, 2009). The study uses a

PC and an AT89C52 microcontroller to automatically obtain the fuel injector parame-

ters: such as pressure, temperature, rotation speed, total oil quantity and injection oil

time. Their system is implemented on an SYT240 test platform.

Similarly, measurement precision was also improved as shown in research by Du and

Sterpone (Boyang Du & L. Sterpone, 2016). In this approach, a new field-programmable

gate array (FPGA) based validation platform is used to measure fuel injection timings.

The hardware chosen is Digilent Genesys Board with Xilinx Virtex-5 XC5VLX50T FPGA

and a 32-bit Xilinx MicroBlaze central processing unit (CPU). This combination of two

different technologies was used to obtain the angle of the crankshaft of the engine,

and to generate a fuel injection pulse: They used the Enhanced Time Processor Unit

developed by Freescale, and the Generic Timer Module developed by Bosch. As a re-

sult, measurement accuracy was improved by more than 20 % compared to conven-

tional methods with a sample measurement update rate of 10 ns.

16

2.2 Fuel Injection Studies

Wu et al. presented a basis for the development of high-pressure common-rail injector

systems (S. Wu et al., 2020). In general, the speed of the high-pressure oil pump de-

termines internal combustion engine power, and in order to enhance its effectiveness,

continual pressure in the oil pipe needs to be maintained when the pump operates at

high speed. Consequently, the pressure in the oil pipe must be controlled when the

cam rotates at high speed which is done by controlling the speed of the cam, adjusting

fuel injectors and their ti in the cycle. The multiple search method is applied to config-

ure double injectors to maintain steady pressure in the high-pressure oil pipe.

The results reported by Kang et al. show that their novel high-speed fuel injection con-

trol system on a chip (SoC) for the Diesel Engine Management System (DEMS) can con-

trol fuel ti in real time, flexibly, and with precise control (Q. Kang et al., 2017). The tests

conducted in their research show that the proposed technology can operate a fuel in-

jector well. The switching frequency can be more than 200 kHz, with the booster volt-

age reaching even 75 V, and the injection current can reach 16.7 A in less than 200 μs

during the booster phase. As a result, engine efficiency is increased as this solution

reduces both fuel consumption and emissions while delivering the same engine power.

Many studies have been done about the use of renewable fuels in internal combustion

engines. Venkatraman and Devaradjane (2010) compare the performance of the diesel

and pungam methyl ester blend (PME20) to normal diesel fuel. The objective of the

study was to find the optimum control parameters for the compression ratio, the injec-

tion pressure, and the ti. With the ideal combination of parameter values, the perfor-

mance of PME20 improved significantly compared to diesel.

Most of the studies have focused on the effects of alternative injection technologies,

and fuels, to internal combustion engines, but they contain only limited information

related to the fuel ti testing. At the same time, manual verification as a common ap-

proach, but which is often time consuming and has potential limitations in its accuracy.

17

Studies related to automatic fuel ti testing are highly application specific, and therefore

the possibility of applying the designs described in them to create testing systems for

other applications is limited. This suggests that a study for the testing of fuel ti would

be a beneficial contribution to this field of research.

2.3 Principles for Developing Automation

Graham and Fewster reached the conclusion that management issues and test soft-

ware architecture are two of the most important elements in developing successful

test automation (Graham & Fewster, 2012, p. 1). The book, Experiences of Test Auto-

mation: Case Studies of Software Test Automation, describes experiences in a variety of

projects. In these case studies, test automation is developed, for example, for integrat-

ed embedded systems, databases, email servers, pension and insurance client software,

and web applications. Both successful and unsuccessful projects are presented, which

can be used to identify common factors. Both upper-level good methodologies and,

practices, as well as more detailed level scripting techniques, automated comparison,

test software architecture, software tools and useful metrics are described.

A series of eight research topics from different authors about automated software test-

ing are collected in a book by Jena et al. (Jena et al., 2020). To highlight one of them,

Test-Case Generation for Model-Based Testing of Object-Oriented Programs used genet-

ic algorithms, particle swarm optimization, cuckoo search, and several other algorithms

to generate test cases automatically. Results were statistically compared to object ori-

entated-based triangle classification problems. The hybrid particle swarm algorithm,

with gravitational search algorithm (PSO-GSA), proved to produce the most stable and

uniform test cases with a shorter computation time compared to the other metaheu-

ristic algorithms. Although, some of the topics in the book have a limited contribution

to automated testing and focus more on software development. For example, in Ob-

ject-Oriented Modelling of Multifaceted Service Delivery System Using Connected Gov-

ernance, object-orientated modelling is used to create a cloud service delivery model,

18

which can be utilized later in developing a complete system of secure electronic com-

munication between citizens and different government organizations.

19

3 Background

This chapter covers key technologies and concepts that are necessary to understand

the starting point for the development of automatic testing for the fuel ti. The first part

describes the engine control unit. In the second part, the principle of sensor signals

and fuel injection pulses is explained. In the third part, an existing automatic testing

framework is described.

3.1 Engine Control Unit

An engine control unit (ECU) is an embedded electronic control unit that handles con-

trol commands for engine actuators, as well as engine monitoring and safety. The

common architecture of most ECUs includes sensors, actuators, and a microcontroller

where input signals and actuator commands are processed. Figure 1 shows a simplified

overview of ECU systems in general. Commonly, they have these components, but the

sensor and actuator types vary by engine and fuel type. Safety functions can be isolat-

ed, and components could be redundant for increased reliability and safety.

Electronic fuel injection (EFI) reduces fuel consumption and emissions compared to

mechanical injection, because it enables controlling the amount of fuel that is injected

to the cylinder more accurately thus saving the fuel delivered. Specifically, the intro-

duction of emission standards was an important cause for EFI to become more com-

mon. When early electronic fuel injection systems were first introduced by Lucas Bryce

in the late 1970’s, there was no environmental legislation for emissions. Although, EFI

did enable heavy trucks to meet emission limits, which thus provided motivation for

further investments and product development in EFI technology. Lucas Bryce, which

was now called Delphi Bryce, stated that in addition to lowering emissions, EFI contrib-

utes to increased reliability. Moreover, it creates more accurate delivery and timing of

fuel injection, which can be controlled and monitored to improve efficiency, and allows

health monitoring for preventive maintenance. (Latarche, 2020, pp. 341–342)

20

Figure 1. Simplified engine control unit overview including sensors, actuators, and
safety unit

The ECU for a 4-stroke internal combustion engine, studied in this thesis is distributed

to several modules that include the cylinder control module (CCM), the communication

module (COM), and the safety module. Figure 2 illustrates the principle of distributed

modular design of the ECU. Different modules are designated for different parts of the

engine. Modules communicate with each other via a communication bus. This modu-

lar structure allows scaling and customization to fit various engine types. Sensors and

actuators are wired to different modules rather than to a single centralized ECU. Events

are time-stamped for faster troubleshooting and enable engines for enhanced efficien-

cy. (Pensar & Storbacka, 2007)

21

Figure 2. Distributed modular ECU design principle

3.1.1 Modules of the Engine Control Unit

Relevant engine control modules are described in this chapter from the perspective of

helping to understanding this work. The modular ECU design studied in this work also

includes other module types, so the following description is not exhaustive. Different

modules are located in the main cabinet or distributed around the engine, wherever

they are needed locally. The external engine systems and power supply are connected

to the ECU through the main cabinet.

COM is located in the main cabinet and handles ECU communication between other

modules, and it also provides communication to external systems. It supports multiple

communication interfaces, including hardwired I/O. Engine speed and position signals

are wired to COM. Engine software updates and different configurations are uploaded

to the ECU via the Ethernet port.

The main functionalities of the CCM are the receiving of sensor signals and the sending

of control commands. CCMs are on-engine modules that are positioned close to sen-

sors and actuators in the engine. The temperature, knock, and cylinder pressure meas-

urements are connected to the cylinder control module. CCM has 14 driver channels

that can be configured to send electrical pulses to fuel injectors, gas valves, and other

actuators.

22

3.1.2 Engine Control Unit Software

The ECU software is implemented on a modular application platform, which is itself not

a software running on the modules, but a platform that is used as a base for making

software that can be uploaded to the modules. The platform software architecture

consists of several different layers, each of which have their own purpose. Layered ar-

chitecture enables more clear software management. The goal of it is to enable the

configuration of a distributed automation system.

One of the layers is an encapsulation layer that is used to hide any implementation

details of accessing I/O and other hardware functions. The platform software includes

implementation for communication protocols, data processing, configuration storage,

I/O mappings, and other features that different systems require to control ECU mod-

ules without modifying software layer which purpose is to serve as a configurable plat-

form for automation applications. This configurable platform for automation applica-

tions layer is accessed through an application programming interface (API) developed

for it. Third important layer is a modular selection of control applications, each of

which takes care of a specific control task, such as fuel ti control, air fuel ratio control,

speed and phase measurement, and ignition timing control. For example, a 20-cylinder

gas engine may have more than 40 applications.

The ECU software has a complex architecture. It is important to understand that it

manages engine operations through input received from sensors, such as a speed sen-

sor, and then translates them into operations on outputs, which are actuators, such as

the fuel injector. These operations include control of the fuel ti by a table that deter-

mines the timing according to the speed and load of the engine. Depending on the

type of engine, a suitable configuration of applications is selected to match the needs

of that engine. This collection of applications, together with a defined collection of ECU

modules and parameters, is called an engine package, which is software capable of

running the actual real engine and can be uploaded to the ECU modules.

23

3.2 Speed Signal Measurement

Speed reference is a square wave signal generated by two twin-element Hall sensors

that detect drilled holes in a flywheel attached to the crankshaft (Figure 3). The twin-

element Hall sensor has two sensor elements inside one sensor housing. System re-

dundancy is implemented by wiring sensors in a distributed way so that the first ele-

ment of both sensors is used for speed detection information received by the ECU and

the second element of both sensors is used for overspeed protection information re-

ceived by the safety module. If one twin-element Hall sensor breaks, speed measure-

ment and over speed protection will still work. The four-stroke engine cycle consists of

two full 360 ° rotations (Donev & Afework, 2019). The full phase is referred to as a 720 °

cycle. To differentiate the first and second phase, one tooth of the detection plate is

left empty.

Figure 3. Installation of speed sensors

The first and second of the 360 ° phases are differentiated by two inductive phase sen-

sors, which detect an elevated semicircle shaped disc which is installed on the end

piece of the camshaft. The disc is positioned perpendicular to the top dead center (TDC)

of the crankshaft so that the angular difference would be as high as possible to avoid

measurement error, as shown in Figure 4. Two sensors are used for redundancy in the

24

event that one sensor fails. Phase sensor information is used only to determine the

crankshaft phase when starting the engine from the missing hole position, mentioned

above.

Figure 4. Phase sensor installation position principle

A precise crankshaft position in degrees is calculated from the speed and phase signals.

A 0-degree angle is specified to start from the first rising edge after the missing hole

pulse. Figure 5 shows this principle; however, the graph illustration has fewer holes

than a real flywheel. The standard flywheel has 120 holes.

25

Figure 5. Two phases of a four-stroke engine cycle principle

3.3 Fuel Injection Timing

The speed signal is an input signal received by the ECU. Fuel ti is a set time delay start-

ing from the 0 ° crankshaft angle. In other words, when the engine is running, the ti is

the elapsed time from the zero angle of the crankshaft to the first rising edge of the

fuel injection pulse voltage, as shown in Figure 6. The number of cylinders varies, and a

typical engine has 6–20 cylinders. Each cylinder has individually configured timing for

fuel injection, which are evenly distributed across the 720 ° cycle. Engine speed and

load affect timing. The focus of this work is to verify that the actual fuel ti matches that

defined by the timing control software. As the crankshaft rotates continuously when

the engine is running, the timing of the fuel injection can also be expressed by the an-

gle of the crankshaft when the engine speed is known. Thus, the terms fuel injection

timing and crankshaft angle are used interchangeably in this thesis.

26

Figure 6. Fuel ti principle

3.4 Fuel Injection Pulse Control

Timing delay is measured from crankshaft the flywheel zero angle. The fuel injection

control pulse consists of two phases:

1. Pull-in current. The fuel injection pulse first has a higher current because the

fuel injection valve requires a higher current to open.

2. Hold-in current. When the injection valve is opened, a lower current is sufficient

to keep the injection valve open for the required time.

Different current levels are obtained using a PWM voltage pulse. PWM is a burst of

square wave shaped voltage pulses which can be used for adjusting current level. Volt-

age varies between the minimum and maximum level at a fast frequency. The relation-

ship between the minimum and maximum voltage level’s duration determines the cur-

rent magnitude. For example, if the voltage is in its high-level for 90 % of the time, it

would result in a higher current than if it would be in high-level for only 10 % of the

time. One wave cycle of the periodic waveform consists of high- and low-level phases.

27

The duration of the high-level phase compared to one wave cycle is called the duty

cycle. The duty cycle is expressed by:

 D =
τ

T
 , (1)

where τ is the pulse duration in the high state and T is the duration of the cycle period

(see Figure 7).

Figure 7. Definitions of ymin, ymax, D, and T in a periodic square wave

The average voltage of the PWM can be used to calculate the current. The average val-

ue of the PWM waveform is obtained by using the formula:

 y̅ =
1

T
∫ f(t)dt

T

0

 (2)

While f(t) is a square wave pulse, its value is ymax for 0 < t < D · T and ymin for D · T < t < T.

Therefore, Equation 2 can be expressed as follows:

28

 y̅ =
1

T
(∫ ymaxdt

DT

0

+ ∫ ymindt

T

DT

)

 =
1

T
(D · T · ymax + T(1 − D)ymin)

= D · ymax + (1 − D)ymin

(3)

As ymin = 0, y̅ = D · ymax. Using average voltage, current can be obtained by:

I =
V

R
 , (4)

where V is the voltage (y̅), and R is the ohmic resistance in the circuit. Figure 8 shows

the principle of typical fuel injection pulse current profile in relation to PWM, but the

pulse frequency is lower for the sake of a clearer representation. The real pulse con-

tains hundreds of PWM pulses. The current rise-up rate is faster than its decrease rate.

The ti is defined to start from the first rising edge even though the injector will open

with a slight delay.

Figure 8. PWM modulated fuel injection pulse voltage and current principle

29

3.5 Engine Control Unit Testing System

When this work was started there was an existing system, ECU testing system (TS), for

making various tests for the ECU. ECU TS is a set of software and hardware components

that allow ECU testing without using a real engine. This enables faster and more relia-

ble ECU testing than a manual test would. Automated test cases can be run after every

release of the new program version, at night, or even after every software commit. This

allows a great number of tests to be carried out, which would not be possible manually,

as it would take too much time. Understanding the ECU TS architecture is important

because, ideally, timing testing would be integrated into the ECU TS to achieve more

unified testing practices, resulting in time savings. Moreover, ECU TS includes several

useful components that can be utilized.

API provides the ability to login to the ECU configuration software tool system, read

and write values, Modbus RTU communication, controlling signal simulator, access to

hardware I/O measurements, data logging, and test rack relay control. Using this inter-

face, developers can create test cases to start the ECU configuration tool without its

GUI that connects to the ECU modules. By interacting with the ECU modules and the

configuration tool, test cases can determine whether the tests fail or pass according to

how test cases are designed. The ECU modules are also virtualized so that they can be

tested without hardware. ECU TS can be used with virtual modules, full hardware test

racks, or with a selection of individual modules.

ECU TS follows the principle of continuous integration and continuous delivery (CI/CD).

CI/CD is software development practice that includes automated testing as an integral

part of the development process. It is an essential part of modern software develop-

ment (J. Mahboob & J. Coffman, 2021). Automatic testing is especially useful in large

and complicated software projects, which are under constant development. Testing

takes place on a server that has test cases for that particular software project, and eve-

ry software commit is tested together with the entire software. In this way, it can be

ascertained that individual code commits do not break larger software projects. Re-

30

gression testing re-verifies that existing and working parts of software are not negative-

ly affected by the update and thus being regressed. Large software projects can have

dozens or even hundreds of developers. The advantage of the method is that new

software versions can be released more often, and even the smallest improvements

could create extra value for the software. Automatic testing reduces the risk that the

update causes problems later.

3.5.1 Test Rack

A test rack is a setup of physical hardware of engine control modules arranged to a

hardware rack. The crankshaft position, charge of air pressure, coolant temperature,

and all other sensors could be wired to the module inputs in the test rack, and actuator

commands can then be read from the module outputs to simulate engine behavior. All

I/O-points that would be in a real engine are also in the test system. The advantage of

the test rack is that both software and hardware modifications can be tested without

running them using a real motor, which speeds up engine development and manufac-

turing. However, typically ECU inputs are actually simulated using the signal simulator

developed for this purpose rather than real sensors used in the engine. The signal sim-

ulator has several analog input (AO) and digital output (DO) channels that can simulate

engine sensors. The output wires have been bundled to a cable harness to connect the

simulator to the ECU faster. The testing system has enough COMs and CCMs for any

engine type configuration.

The speed signal can be simulated in a couple of different ways. First, the signal simula-

tor has a speed testing card that can generate a speed signal. The speed testing card

can be controlled using software developed for it. Another way is to use a pocket sized

speed simulator that has output terminals for speed and phase signals and a knob to

adjust speed. The pocket sized speed simulator is easy to use and does not require a

computer to operate it. It is used by service technicians in the field, but also by product

development personnel, for quick testing activities.

31

Additionally, the simulated crankshaft position signal has been implemented in an ex-

ternal system, using National Instruments CompactRIO (NI cRIO) hardware, which has a

DO module to send the speed signal, which has been generated with LabVIEW soft-

ware. The UI can be used to change the engine speed given in crank degrees per tick

(clock cycle). This was developed for possibly future product development purposes.

The benefit of NI cRIO is that the hardware and software are highly customizable. Addi-

tional I/O cards can be easily added and software can be modified and developed.

3.5.2 Configuration Software for Engine Control Unit

The configuration software tool is used to manage the ECU software platform, which

was described in Chapter 3.1.2. The ECU software platform includes the handling of

fuel ti that can be managed by the ECU configuration software tool, which can be used

to adjust engine parameters, testing, monitoring, and troubleshooting. It has been im-

plemented using a plugin architecture which provides extensibility and flexibility, as the

plugins can be added or removed anytime. The configuration tool is typically used in

commissioning, maintenance, and product development.

The configuration software tool runs on a PC and communication between them is im-

plemented using a standard Ethernet connection. Different engine types have different

numbers of engine control unit modules, and customized driver channel configuration.

The engine configuration, which is also called the engine package, can be uploaded to

the ECU with this software. Together with a separate signal generation device and con-

figuration software tool, the engine can be operated. Engine parameters and sensors

values such as pressures and temperatures, can be read and changed in real-time even

when the engine is running. Although, the engine configuration cannot be changed

while the engine is running. It would require stopping the engine, uploading a new con-

figuration to the ECU modules, and then re-starting the engine.

32

3.6 Testing Specification Terminology

Each test has a specification by which it is carried out and that defines its scope. The

engine package to be tested is first selected. The engine type, the number of CCMs, the

expected ti of each cylinder, and the driver channel terminals are defined in the engine

package. Engine type categorizes the type of fuel used, typically diesel, gas, or dual-fuel,

but other types of fuel are also possible, and the number of cylinders and the configu-

ration of the cylinders, whether it is an in-line engine or a V-engine.

Before the top dead center (BTDC) is the four-stroke timing in the engine cycle that oc-

curs before the piston reaches its highest part in the cylinder. Fuel is injected to the

cylinder before the piston reaches the top dead center (TDC). Optimum ti depends on

many variables, but according to Latarche, in the case of diesel engines it is approxi-

mately 10 - 20 ° BTDC (Latarche, 2020, p. 21). To make ti more reliable under different

conditions, CCMs are tested with different BTDC values.

The revolutions per minute (rpm) express how many times the crankshaft rotates a

complete turn in a minute, and can be understood simply as an engine’s speed. When

the engine is in operation, the engine speed is set as rpm. The ti is affected by the rpm;

the faster the engine runs, the shorter the ti is. Engines are divided into three classes

by their operating rpm range. Low speed engines operate under the range of 300 rpm

and are often used in ships and electricity generation. Medium speed engines operate

in the range of 300–1200 rpm and they are used for a wide range of purposes, includ-

ing marine propulsion, generation of electricity, gas compression and pumping of liq-

uids. High speed engines operate with over 1200 rpm and are used for transport and

small generators.

33

4 Research Methodology

This chapter describes the research methodology that was used to develop an auto-

matic testing system for fuel ti testing. First, the design science research (DSR) method-

ology is presented, and then the application of a specific framework is described in the

problem context. DSR is an iterative method that works in cycles, continuously improv-

ing the solution. The nature of this method is that knowledge and understanding about

the system and environment gradually build up as research progresses. However, this

chapter presents all accumulated information made during this work before presenting

the final version of the proposed design.

4.1 Design Science

Design science was applied as a research method in this work because it is well suited

for pragmatic product development tasks. The defining character of design science is

its practicality; it is an iterative process that tries to solve and understand structures

and phenomena or to prove that they have created value. The design science method

works in repeating cycles where a researcher tests the developed technology, method,

or similar concept with the intension to solve some problem in practise. Based on the

results of the test evaluation, the researcher continues to cycle the design process by

improving the design and testing it again, until a good result is achieved. Originally,

design science applications were used, especially in technical fields. An important part

of design science is the concept of artefacts, which are the objects of the research.

They can have a wide variety of forms, such as a product, a software, a working prac-

tice, or a theory, to mention a few. In the scientific community, this methodology is

relatively novel (Papalambros, 2015, p. 1).

Design science is a good research method for this study because it is commonly used in

pragmatic technical development tasks. It is often applied especially in computer sci-

ence and engineering. Typically, natural sciences research aims to create theories

34

about phenomena in the universe, whilst design science endeavours to contribute to

developing the world (Johannesson & Perjons, 2021, p. 1). This assignment started

from the need to improve driver channel testing by automating it. Design science aims

to evaluate the usefulness of a developed solution. Its results can be used in decision

making as to whether further development is beneficial.

4.2 Research Framework

Different design science practices vary slightly. This study uses the research framework

based on the book Design Science Methodology for Information Systems and Software

Engineering (Wieringa, 2014). The design science method proposed by Wieringa has

two main parts: the design cycle and the empirical cycle. The design cycle is practical

engineering work that often aims to create a product or software, but the result could

also be a diagram, method, practice, or similar concept. In this thesis, the design cycle

creates a design for an automatic testing system for fuel ti verification. As part of the

study, a device and software were created to identify possible practical problems in the

design and to test the accuracy of verification using signal processing methods. The

empirical cycle produces information about the research. It starts with creating ques-

tions about the important issues that we want to know about the object of the study.

The nature of the questions can be qualitative or quantitative.

The design cycle and the empirical cycles are run in parallel and iterated several times

during the study. Both cycles interact with theories that consist of conceptual frame-

works, and theoretical generalizations. In this thesis, the most important conceptual

framework is the ECU TS, because the verification of the fuel ti is most likely to be inte-

grated with it, and it utilizes the useful features and API already existing in it. Theoreti-

cal generalizations applied in this thesis include signal processing techniques, PWM

method principle, and basic electrical engineering routines like Ohms law, and mathe-

matical unit conversions. The best practices in automation and software engineering

development are also applied, even if they are not necessarily recognized as scientific

35

theories. The design science method by Wieringa is summarized in a diagram in his

book, which is adapted to this work in Figure 9.

Figure 9. Design science framework for developing an automatic system for fuel ti test-
ing (adapted from Wieringa, 2014, p. 216)

36

4.2.1 Design Cycle

The design cycle aims to solve issues that arise from the design problem. The design

cycle has a structure on how the problem-solving trials progresses, but it does not de-

scribe how to manage the process of engineering. The engineering process varies be-

tween different disciplines such as software engineering or mechanical engineering,

and the most suitable method also depends on the problem at hand. Few examples of

software engineering methodologies are the agile and waterfall model. The design sci-

ence framework proposed by Wieringa introduces a design cycle that is divided into

three parts (Wieringa, 2014, p. 27):

- Problem investigation,

- Treatment design, and

- Treatment validation.

These steps are repeated several times in design science research, with the purpose of

each time improving the proposed treatment in a consistent and systematic way.

Hence, the design is gradually improved in an iterative cycle. Iteration rounds are re-

peated until all features of the system requirement specification are met. The result of

the design cycle after iterations is the artefact design that can be implemented. What

implementation means depends on the artefact, design goal, and engineering disci-

pline, but in automation technology, it could typically mean programming software and

building a hardware setup.

To evaluate the viability of the proposed treatment, it must be validated. The chosen

validation method was Expert opinion. This means that the proposed design is shown

to testers, developers, and other qualified people who have expertise in the area of the

problem to be solved, and then feedback will be collected. In the validation meeting,

there are two things that must be done:

- Confirming that effects satisfy requirements, and

- Agree on that the treatment design is most likely to produce the desired effects.

37

The design cycle of this research was carried out in three iteration rounds. Feedback

from experts was collected at the validation meetings. The experts chosen for the vali-

dation were developers working in the research and development (R&D) department,

and some of them had experience with manual testing. The treatment design was pre-

sented to the experts at each meeting, which was then followed by discussion, im-

provement ideas, and additional questions. On the basis of this feedback, the design

process returns back to the problem investigation. In total, three different versions of

the documented design proposals were made on the basis of these meetings. After the

third iteration round, it was predicted that the design would probably lead to a result

that would meet the system requirements, and then the next stage of the building of

the testing system began.

4.2.2 Empirical Cycle

The purpose of the empirical cycle is to produce information on the object of the re-

search, and to answer the questions that arise from the topic. Despite the organized

structure of the design science framework presented in Figure 9, the empirical cycle

does not have a strict sequence of how it should be conducted. However, the frame-

work provides questions and several suggested ways to conduct research that help to

produce knowledge about the object of the study. The empirical cycle is carried out

concurrently with the design cycle throughout the research rather than completing

them one after another sequentially.

Knowledge questions are the central part of the empirical cycle. Since the research

context is utility driven in this work, the knowledge goal is to find useful information

for practical problems. Knowledge questions are presented in the following chapter

after presenting the design problems. The goal is that the answers to the knowledge

questions could be generalized to other similar engineering problems. Generalizations

are fallible, so it is possible that the treatment application does not produce desired

results when applied to other problems. However, the benefit of generalization is that,

38

when they are applied successfully, it leads to time savings when a good practice can

be copied elsewhere. All knowledge questions in this work are qualitative by nature.

The case study was chosen as the research setup for this work.

4.3 Research Problem

The research problem includes two parts in the DSR approach proposed by Wieringa: a

design problem, and a knowledge question. The design problem is a practical engineer-

ing part that aims to create value by usually creating software, device, a design, or simi-

lar, which is called an artefact in DSR. For a design problem, there are possibly several

ways of implementation that could bring the desired outcome. The stakeholders evalu-

ate whether the outcome delivers the intended effect. The knowledge question is part

of the research problem that creates knowledge about matters of interest. The DSR can

even have several knowledge questions. But ideally, for the knowledge question, there

is only one answer, but in practice, it can be subject to fallibilism. There could be uncer-

tainty in some measure in the answer, the answer could be partial, or it could be cor-

rect in most occurrences but not in all, for example. Answers to knowledge questions

are evaluated by truth, not by stakeholder goals. (Wieringa, 2014, pp. 4 - 6)

4.3.1 Design Problem

New software and hardware updates are introduced to the ECU several times a year. In

order to verify that new updates do not cause any problems, they have to be tested.

Untested driver channels could cause serious problems in engine operation and safety.

At the moment, testing is done manually using an oscilloscope. The problem is that this

is very time consuming, taking perhaps 2–5 days and is considered a monotonous and

dull task. Developer engineers in the R&D department have reported that they prefer

to be doing more productive work.

39

The purpose of testing is to confirm that the embedded system of the ECU, which is a

combination of software, electronics, and I/O peripherals, works as intended and ena-

bles reliable and safe engine operation. Finding issues as early as possible is therefore

important, so that fixing and solving problems in the engine production saves costs the

earlier they are identified. Automatic testing is expected to enable regression testing to

confirm that all system operations remain functional, accelerates the development

cycle, and brings an ability to release faster on demand. Many other parts of software

development testing, other than fuel ti, have already been implemented in the ECU TS,

and ideally timing testing could be integrated into the existing testing architecture for

more unified testing practices.

While considering the broad view of the purpose of automatic testing, the final objec-

tive of this work is to be able to build the best four-stroke engines as possible. From

that perspective, firstly, the advantage of automatic testing is the increased reliability

of the motor, as a result of the increased test coverage, more possible problems are

identified and fixed. Secondly, the lead time of manufacturing is decreased, as the ECU

testing is done faster. Thirdly, the benefit for research and development is that more

accurate information on the timing of the fuel injection pulse can be used to experi-

ment with different timings, possibly leading to improved energy efficiency, as well as

other benefits, such as increased power, and reduced exhaust fumes, and emissions.

From the viewpoint of testing activities, automation reduces costs, as it is expected to

save time compared to manual testing. The quality of testing is also improved because

the automatic testing system will trigger to the fuel injection pulse more consistently

compared to a manual tester, which is affected by random measurement errors, e.g.

due to manual oscilloscope adjustments. During initial discussions at the start of the

work, developers noted that doing manual testing is viewed as an uninteresting as-

signment and they would prefer to use the time doing something more useful. Auto-

mating testing can possibly increase the attraction of work. Also, to some degree, vary-

40

ing testing practices and manual testing activities, which may sometimes involve less

experienced developers, which can cause test results to be inconsistent.

Wieringa introduces a template for a design problem or a research question that can

be condensed into a single sentence (Wieringa, 2014, p. 16). The following italicized

phrase below, applies that template to this work. The purpose of the template is to

assist in designing the artefact that would solve the design problem by defining its goal.

Defining the goal and requirements of the stakeholder can also help to identify possi-

ble missing pieces of information that are needed to create the artefact that would

create value in its context. The term ‘injection angle’ in the sentence refers to the

crankshaft angle when fuel injection occurs in a four-stroke engine cylinder.

Improve the engine control unit by designing an automatic testing system for the verifi-

cation of the engine fuel injection timing that satisfies the requirement of measuring

the injection angle of an engine by using one of the latest engine control unit configura-

tions in 720 ° four-stroke cycle with the accuracy of 0.1 ° and produces a report that

shows a comparison of the actual injection angle to the expected angle in order to save

work time for the developers of the research and development department and im-

prove the reliability of the engine.

The proposed solution to this problem is to develop a design for an automatic system

to verify that fuel injection pulses occur at the correct engine angles. The system here

means a combination of hardware and software, which can send a simulated engine

speed signal to the ECU as an output signal and measure the timing of the fuel injec-

tion pulse in relation to the angle of the crankshaft as an input. The accuracy of the

driver channel tester will be checked by comparing the results with the manual oscillo-

scope measurement. This kind of system is capable of fulfilling the requirements de-

fined in the template. The sentence in the template could be formulated as a design

problem: “How to save time from manual testing of engine fuel injection angle verifica-

tion?”.

41

4.3.2 Knowledge Questions

Wieringa explains that motivation for knowledge questions could be curiosity, but the

motivation can also be utility driven. Knowledge questions do not necessarily aim to

solve some practical problem nor are they evaluated by stakeholder interest. Wieringa

classifies knowledge questions into two categories: analytical and empirical. Answers

to analytical questions describe conceptual frameworks of the world which can be cre-

ated by conceptual analysis like mathematics or logic, while answers to empirical ques-

tions require collecting data and analysing it. Empirical questions are further classified

as descriptive and explanatory. The goal of descriptive questions is to describe phe-

nomena and explain them, while explanatory questions aim to answer why something

happened. One way of creating knowledge questions is to first find out design prob-

lems and then to form knowledge questions based on those problems. (Wieringa, 2014,

pp. 6–18)

This guideline was used to formulate knowledge questions. As the design problem is

now defined, two knowledge questions arise from it:

1. What would the architecture be like for an automated testing system for the

verification of engine fuel injection?

2. Are there any hidden or unexpected technical problems involved in the design?

Motivation for the first knowledge is utility driven and the question aligns with stake-

holder goals. The answer to the first knowledge question could be used to design an

automatic testing system. The result of the first knowledge question will be a diagram.

It will be formed as an outcome of iterative cycles in the design phase.

The second knowledge question is also utility driven. This question aims to identify the

detailed practical problems involved with the implementation of the design. If the au-

tomatic testing system proves to be too expensive or time consuming to build, and the

drawbacks are greater than the benefits, the design should be abandoned. Any unex-

42

pected problems should be remarked if they should arise during the development pro-

cess.

4.4 Problem Investigation

4.4.1 Issues Affecting the Design

To create a treatment in an analytical and critical way, several issues were considered.

Different factors need to be looked at, because they can possibly have an effect on how

the artefact is designed. The motivation for developing an automatic testing system is

that it is expected to save time for developers. Furthermore, it increases test coverage

because it enables more frequent and easier testing. The research and development

department benefits as developers have more time to do more productive tasks.

The stakeholders involved with the testing system are ECU developers who are occa-

sionally assigned the task of testing the correct timing of fuel injection pulses. This is a

very time-consuming task, and they wish that this testing could be automatized in or-

der to save time in favor for more interesting and productive tasks. Manual testing

starts by assigning the specification for the testing task in a meeting. The ECU configu-

ration to be tested is defined at that point, as well as the scope of the test parameters,

including the rpm and BTDC values. Depending on the type of engine, the configuration

typically has 6–20 fuel injection channels in it. Driver channels can also be configured

for other types of pulses than fuel injection, for example, spark ignition or intake and

exhaust air control valves. Sometimes, testing of these pulse types might also be re-

quired, which significantly increases the number of measurements to be made. For

instance, a 20-cylinder gas engine has in total 44 driver channels configured.

According to the recommendation of the test guidelines, CCMs are tested with three

different rpm and BTDC values in order to ensure that the timing works correctly in all

43

conditions. This multiplies the number of individual measurements by nine. If every

driver channel from the 20-cylinder gas engine is tested with three different rpm and

BTDC values, it means in total 396 individual measurements. Fuel injection or any other

type of pulse timing is then measured manually using an oscilloscope and positioning

two cursors on display to measure timing the difference of crankshaft zero angle to the

defined pulse measurement point. Changing the BTDC values requires stopping the

engine and reuploading the ECU software to the modules. Each upload takes a couple

of minutes, which naturally slows down the testing process. The great number of

measurement points combined with the manual use of an oscilloscope and the re-

quired reuploads makes manual testing costly in terms of time.

Because of the high number of measurements to be made, manual testing is done by

taking samples only. For example, one test report made manually had all cylinders test-

ed from each of the three rpm and BTDC value ranges once, thus completing 3 out of 9

of the possible combinations. This reduces the coverage and quality of the testing, be-

cause it is possible that some erroneous timings will be left undetected. The benefit of

automatic testing is that all measurement points can be easily tested.

When designing the testing system, it should be considered what its intended purpose

is and how to design it in a way that it would perform as well as possible in that context.

Also, criterion to evaluate the usefulness of the artefact compared to manual testing

must be defined so that comparison can be done objectively. These non-functional

properties are sometimes called quality properties (Wieringa, 2014, p. 54). The testing

system compares the set crankshaft angle with the crankshaft angle measured from

the fuel injection pulse and checks if the timing is within acceptable limits. The perfor-

mance of the automatic testing compared to the manual testing is evaluated in three

ways:

- The duration of completing tests,

- The quantity of tests, and

- The accuracy and consistency.

44

Weaknesses of manual testing includes it being slow and prone to possible mistakes

and human errors. While on the other hand, its strengths include that testers have the

opportunity to develop insight to better understand testing and test results. They could

be able to tell faster which problem is only a glitch or interference and which one is a

real problem. They could understand the purpose of testing and then focus the tests on

the relevant parts. On the other hand, automated testing is faster, more consistent,

offers better coverage, and enables automatic reporting.

The effect of the artefact outside of its intended context is also considered, because its

value could be higher if it could be utilized elsewhere. Also, possible risks that it could

pose have to be taken into account too. Automated testing is probably more or less

useless outside of the R&D department. The distributed modular design and specific

properties of the signals and pulses of its I/O make it a highly specific artifact useful

only for this particular ECU design studied in this work, although some upper-level de-

sign principles could possibly be applied to other ECU types. Engine control modules

are, of course, an important part of the engine, and that without them, could not even

run. Indirectly testing should improve engine reliability overall, and therefore it affects

anyone who is using the engine. It is unlikely that the testing system would have any

negative effects outside of its context, since probably it cannot be misused in any

harmful way.

The change in the size of the context in which the artefact is used needs to be taken

into account, because it could have an effect on the way it is designed. The testing sys-

tem context is the R&D developers, and the more users it is expected to have, the more

efforts are needed in the development of its usability and documentation. R&D de-

partment size could possibly grow or be reduced. Developers of R&D have high tech-

nical skills levels, and they are able to use complex systems with less instructions and

guidance, but ease of use is beneficial since it lowers the learning curve and speeds up

the use of a testing system. If an automated testing system is well developed and easy

to use, the size of the R&D department should not matter much. In other words, de-

45

velopers can be expected to benefit from the testing system, regardless of the size of

the organization.

Artefacts interact with their environment when they are applied for their intended use.

Technical functional requirements have to be defined because they set constrains on

how the details of the artefact are designed so that it would fulfil its purpose in its con-

text. For example, the speed reference, sent by the testing system, has specific proper-

ties so that the engine control unit can read it correctly. It has a square wave signal

with a specific frequency and voltage, and with the missing hole signal showing the

change of the 360-degree period. It also assumes that the information about the ex-

pected timing of the fuel injection pulse is available. The system also expects that the

fuel injection pulse has a certain voltage profile.

The testing system has the following requirements. The nominal speed of the engine is

750 rpm, but the engine control units are rated up to run up to the maximum speed of

1500 rpm. Therefore, 1500 rpm is used to calculate the required update rate. The angle

of the crankshaft must be measured with an accuracy of 0.1 °. The required pulse

measurement update rate is obtained using the formula:

 T = (60 · ωrpm)
−1

 , (5)

where T is the update rate in seconds and ωrpm is the rotational speed in rpm. This

would give an update rate of 11 μs at a speed of 1500 rpm. The update rate at 750 rpm

would be 22 μs. Nonfunctional requirements and properties include:

- Measurement has to be done using one of the latest ECU configurations,

- The accuracy of the crankshaft angle must be 0.1 degrees, which requires taking

samples every 11 µs at 1500 rpm, and

- Automatic test report generation.

46

Ideally, the treatment design should cover all these requirements. Whether the re-

quirements are met or not is evaluated in treatment validation. In the validation, the

proposed artefact is investigated and compared with the nonfunctional requirements

and properties. On the basis of this, a design theory is developed. Design theory means

an event where the artifact interacts with its context. Using design theory, it is predict-

ed whether the artefact would meet the requirements proposed for it if it were imple-

mented. (Wieringa, 2014, pp. 31–44)

Now that the design problem and the requirements of the system have been defined, it

is possible to formulate the treatment. Because of the constraints set by nonfunctional

requirements, neither of the two following ideas seem viable, the first being a non-

technical solution like improving the manual testing working methods, or by accepting

the proposal to not verify the ti. Thus, the proposed treatment is to design a hardware

system. The timing of the fuel injection pulse with respect to the angle of the crank-

shaft can be measured with the system setup presented in Figure 10. The crankshaft

position signal simulation generates a speed reference with the specific properties

mentioned in Chapter 3.2. The speed signal is received by the COM, which further

communicates with the CCM, which generates a timing for the fuel injection pulse. This

pulse is then received by measurement verification, and then timing can be deter-

mined as described in Chapter 3.3 by the pulse verification system.

47

Figure 10. Pulse verification system principle

4.4.2 Hardware and Software Selection

There are several different hardware options that can achieve the functionality de-

scribed above. The initially proposed platform alternatives on which to create the pulse

verification system were a National Instruments CompactRIO controller, a LeCroy au-

tomated oscilloscope measurement, including other available products from the same

supplier, or a PC based I/O card. Several NI cRIO hardware units already existed in the

R&D department, and there were personnel experienced in using them. These differ-

ent options were then compared.

CompactRIO was considered the best option, because, from earlier test systems, there

was already an existing software for simulating the crankshaft position. Also, an associ-

ated LabVIEW software can be programmed to meet the needs of this application.

LabVIEW is an established software for scientific research involving ECU systems. Some

examples of studies using LabVIEW are:

- The design and statistical validation of spark ignition engine electronic control

unit for hardware-in-the-loop testing (V. Vasquez Lopez et al., 2017)

- Time-division multiplexing based system-level FPGA routing for logic verification

(J. Zhou et al., 2010)

48

- Development of engine control technique for flex-fuel motorcycle (A.

Keawtubtimthong et al., 2010).

LabVIEW is a graphical programming environment, unlike most programming languages

that are text-based, such as C, Java, and Python. When comparing graphical user inter-

face to structured text base, it has similar programming elements in it from selection

structures to loops and functions, but it requires some time to get used to it if a devel-

oper only has earlier experience just from text-based programming languages. Lab-

VIEW programming is based on the idea that GUI and graphical source code are devel-

oped at the same time. The front panel or dashboard, which is the GUI part, and the

block diagram, which is the source code part, are open in separate windows at the

same time. In LabVIEW, controls are equivalent to input variables, and indicators are

equivalent to output variables. When controls are placed in the front panel, they also

appear in the block diagram, where the programming logic of how the input variables

are translated to the output variables can be developed by using programming opera-

tors and functions.

The advantage of graphical programming, especially to beginners and experienced us-

ers in simple cases, is that the code can be faster and more intuitive to read and under-

stand than text-based programs. On the other hand, larger and complicated code can

be more difficult to understand and manage, because of the concurrent computing

principle in which several computations are happening simultaneously, both in pro-

gramming logic sense and in the CPU computing level, which can affect the states of

other pieces of code. This overlap can possibly deteriorate code readability and cause

difficulties in debugging. In complex cases, text-based programming code may be easi-

er to understand because a program is implemented one row of a code at a time. The

differences of comprehending graphical or text-based programming code are a matter

of habit and varies from case to case.

49

The products of National Instruments and LabView software are suitable for laboratory

tests that allow the development of an application in a short development cycle. It has

a good interface for developing GUI, and as a globally popular and well documented

product, and solutions to problems could be found easily (J. Zhou et al., 2010). The I/O

modules available for CompactRIO have a sufficiently higher sampling rates for this use

case. The product portfolio has controllers and data acquisition hardware with ex-

changeable I/O card slots, which enables later modifications and expansions to be

done more easily. NI products typically support various communication interfaces,

which in turn support compatibility with other devices.

The cRIO-9104 chassis includes an FPGA which excels in digital signal processing (DSP)

applications with time critical requirements. The chassis can be equipped with a con-

troller that includes the CPU. CPU is more suitable for non-time critical computations,

which require handling floating-point arithmetic, and it has reliable and predictable

behavior. Software architecture should be designed in a way that the most suitable

target, either CPU or FPGA, is used for the task which it is best suited for.

FPGAs are integrated circuits similar to application-specific integrated circuits (ASIC),

but FPGAs allow their circuits and logic connections to be changed, thus making them

more flexible in their usage. FPGAs consist of a matrix of logic blocks which can be con-

nected to a circuit to create the desired output. Whereas in contrast, the circuit and

logic of CPUs are fixed and software is used to create the desired output. In FPGA, the

output is created by wiring logic blocks in a process called synthetization. When the use

of FPGAs started to increase, the first FPGA configurations were created by using

schematic capture software. The next step of configuration tool development was

hardware description languages (HDL), such as the very high-speed integrated circuit

hardware description language (VHDL) and Verilog. In this thesis, a high-level synthesis

(HLS) tool NI LabVIEW FPGA is used to create FPGA configurations. The HLS tools are

the next level up from the HDL tools in FPGA configuration tool development. FGPAs

have many applications, one of which is that they are used to prototype and verify the

50

design of ASICs. There are several benefits with using FPGAs, including programmability,

low latency, parallelism, and high throughput. (T. Stratoudakis, 2021, pp. 16–65)

PC applications based on a general purpose operating system could start running some

background applications, which would allow IRQ to delay pulses coming from the cyl-

inder control modules, and thus not providing accurate enough measurement for the

timestamp. With a cRIO controller combined with an FPGA chassis, CPU system pro-

cesses and pulse input measurements are running separately. The pulse measurement

is made accurately in a time window of microseconds in each loop. The pulse input is

wired directly into the FPGA to eliminate the latency caused by the communication bus.

(National Instruments, 2014)

Based on the above remarks, a suitable hardware setup was selected. It was based on

an existing speed simulator setup available in the R&D department, with some modifi-

cations. For this purpose, a new DI input module was selected that has a sufficient

sampling rate. The DO module that sends speed and phase signals from the original

setup was kept, and the extra modules used in previous tests were removed. The cho-

sen hardware is listed below:

- NI cRIO-9014 controller

- NI cRIO-9104 chassis

o NI 9474 DO module

o NI 9425 DI module

The NI 9425 DI sampling frequency of 7 µs meets the minimum requirement of 11 µs.

Setup can be fitted on a tabletop in the laboratory, and the necessary I/O can be wired

to the testing rack or to selected individual ECU modules. The physical size of the

hardware is suitable to be integrated as part of testing rack later.

The proposed implementation is a realistic way to reach the problem goals. The design

cycle includes a budget requirement set by the stakeholder, who acts as a sponsor of

51

the work. The cost of setup is within the budget of the R&D department, and the build-

ing and programming can be done in a few work months. The treatment is not limited

by the accessibility of technology or the nonfunctional requirements and properties set

to it.

4.4.3 Automating Measurements from Several Driver Channels

Timing measurement must be done using a large number of driver channels. The test

rack has 8 cylinder control modules with 14 driver channels each, which together adds

up to 112 driver channels. Figure 11 visualizes the number of all the possible meas-

urement points. The big boxes represent physical CCMs, while the smaller boxes are

driver channel terminals, which are wired to the fuel injectors in the engine.

Figure 11. Visualization of the total number of driver channels

The number of configured driver channels varies according to engine type. E.g. a 6-

cylinder inline diesel engine has 6 driver channels configured for fuel injection (Wärt-

silä, 2022) and a 16-cylinder dual-fuel V engine has 16 driver channels configured for

fuel injection (Wärtsilä, 2019). The driver channels are distributed to different modules.

Figure 12 shows a simplified example of the driver channel assignment, where the

number of modules and terminals has been reduced for the sake of a clearer represen-

tation. Four big boxes in each configuration represent CCMs, and the small boxes inside

52

them represent driver channels. The black box is an assigned channel, and the white

box is an unassigned channel.

Figure 12. Example of driver channel assignment

While the number of CCMs, assigned channels, and their location changes by configu-

ration and engine type, a full 8 CCM setup in a test rack is enough to cover all the pos-

sible combinations. In order to test driver channels manually, a tester starts the engine

in a simulated state where the ECU receives speed signal, throttle position, and all sen-

sor data, and the schedules fuel injection pulses as if a physical motor would be run-

ning. Then the tester starts to measure the assigned driver channels using an oscillo-

scope and records the injection pulse timing. Different rpm values can be tested by

changing the rpm setting while the ECU is running, but testing different BTDC values

requires stopping the engine, uploading a new ECU configuration, and restarting the

ECU.

Driver channels are optionally used for other purposes than for fuel injection. The pro-

cess of pulse timing measurement should also consider the pulse type. The scope of

this thesis was limited to testing of fuel injection pulses, but ideal testing automation

should also have the option to expand testing for other pulse types later. The pulse

types of the other driver channels are:

- Ignition channel,

- Reset channel,

- Intake control valve,

- Exhaust control valve, and

- Multifunctional injection

53

The mechanism for measuring different types of pulses varies. For example, the igni-

tion channel controls a spark plug that ignites a fuel-air mixture in the cylinder, which

transforms into the kinetic energy of the crankshaft (Eteläpää, 2021, p. 23). The ignition

channel is wired to the primary winding of the ignition coil. A spark is generated after

the falling edge of the ignition channel pulse (Knol et al., 2022 pp. 8–10). When the

ignition channel is tested, the timing of the falling edge is measured, whereas the rising

edge is measured in the case of the fuel injection test.

When all pulse types of the driver channels are included, the number of channels to be

tested increases significantly. For example, a 20-cylinder gas engine uses 44 driver

channels. Therefore, all 112 driver channels could potentially be the subject of testing.

Test automation should have the means to test any driver channel, since the number of

possible measuring points cannot be restricted.

To measure the timing of the driver channels, it would require wiring them to the digi-

tal inputs (DI). Two options for this are shown in Figure 13. The first option on the top is

to use a single DI, with 112 relays to switch measurement points. This multiplexing

principle would save DIs and loads. There needs to be a load that simulates the injector

to create a fuel injection pulse. The downside of this approach is that it slows down the

measurement. The engine must rotate 112 times at minimum, while the relays open

and close after each rotation, to complete the measurement in all channels. In practice,

testing is done by letting the engine run several times and observing that the fuel injec-

tion pulse is behaving consistently. Another option shown on the bottom is to use 112

DIs. The downside of this approach is the large number of DI points. The benefit is that

the testing can be done faster. This setup can also be used to measure missing pulses

and extra pulses.

54

Figure 13. DI options for measuring pulses. K is a symbol of a relay contact, R represents
a load, and DI represents the digital input terminal in the figure.

Another option is to measure all channels from one module and swap identifiers (IDs).

It is possible to change the IDs of cylinder control modules using the ECU software con-

figuration tool. By swapping IDs, the driver channels can be tested from another mod-

ule even if the measurement is made physically by the same module. This is a com-

promise in terms of the number of DI points. However, this requires stopping the motor,

uploading a new configuration to the modules, and starting the motor again. The test-

ing system needs to communicate with the ECU TS which provides API for these kinds

of actions. This swap method is illustrated in Figure 14. Again, the number of modules

and I/O points is reduced for the sake of a clearer presentation.

Figure 14. Driver channel configuration before and after ID swap

55

4.4.4 Creation of the Validated Design Proposal

The ID swap option was chosen as the approach because it has the least relays, DI-card

modules, and wiring required. But still, all the 112 channels could be measured. This is

possible by integrating cRIO into the ECU TS test rack, as shown in Figure 15. The ap-

proach is a good trade-off between testing coverage and the amount of wiring required.

Figure 15. Integrating pulse verification system to the ECU TS architecture

ECU TS has an API that allows external systems to access and use its functions. cRIO

could acquire all software configurations from the ECU TS by using that particular API,

but the program implementation still needs to be done for this purpose. A user inter-

face would need to be developed that would start the test, which could be then run

whenever a new version has been developed or even every nighttime period. The ad-

vantage of this kind of system would be good testing coverage, and it would be easy to

use.

 ID swap can also be done manually using the ECU software configuration tool. This

approach was chosen to reduce the scope of the work. The system setup at this stage is

56

presented in Figure 16. The ECU software configuration tool is used to upload engine

configuration to modules. Simulated speed signal generation and measurement of

driver channels is implemented with LabVIEW. Start, stop, and reset are wired to the

communication module to control the engine. An alternative option to use two com-

puters would be to run the ECU software configuration tool, on a computer with two

network interface cards.

Figure 16. Setup of the laboratory system using an ID-swap for testing the proposed
treatment

The configuration of the driver channels is checked manually from the ECU configura-

tion software tool, so that the channels currently being measured could be allocated

accordingly to the testing report. This is done in GUI (Figure 17), which has the follow-

ing functionalities:

1. Section for filling in the test specification. The Engine name field is used to iden-

tify the engine in the test report. The number of cylinders and their arrange-

ment for different engine types, e.g. in-line or V engine, are defined in the Cyl-

inder order field. The Angular displacement field is used to input the expected

angle of the fuel injection in each cylinder. Engine rotation direction is selected

57

in the corresponding field. Test RPM array field is for inputting different rpm

values that are going to be tested to check that ti is behaving consistently at dif-

ferent speeds. Similarly, Test angle array (BTDC) is for inputting different BTDC

values subjected for testing.

2. Path and file name selection for the test report.

3. Tab selection for organizing different parts in the GUI. Input data is for the main

test specifications. Speed settings can be used to adjust engine speed. Prefer-

ences has radio button selection for three different testing modes: run engine a

given number of cycles, run engine until time has elapsed, and run until stop is

pressed.

4. BTDC selector is for choosing currently configured BTDC value in the ECU.

5. Driver channel selector is for choosing which driver channels are assigned in the

CCM being tested.

6. Button for starting and stopping speed reference signal.

7. Button to start test execution and generate test report.

58

Figure 17. GUI mockup shows fields for inputting information of the test specification
and buttons for starting the test

It is a good practice to first define requirements and functions before starting to design

the system. This is a task similar to defining nonfunctional requirements and properties

in the DSR method proposed by Wieringa, but as a part of the engineering process, this

is done in a more detailed way and some descriptions about implementation are added.

The proposed automatic testing system included the following properties, which were

validated by experts in the third design cycle iteration:

- Engine package chosen for testing automation development: 20-cylinder V gas

engine,

- Measures timing from all 14 channels from one COM,

- Timing measured with the NI 9425 DI module,

- Array of loads to simulate injector,

- Customisable number of measurements,

o Different BTDC timings, and

o Different rpm,

1

2

3
4

5

6 7

59

- Automatically fills timing test Excel workbook,

- Has a LabVIEW user interface from which the test can be selected and run.

The block diagram of an automatic testing system is presented in Figure 18. The soft-

ware solution is implemented as two different targets, PC and FPGA, running in parallel.

Time critical speed signal generation and measurement of timing are handled in FPGA

by counting ticks (clock cycles). It will take several ticks to run the Detect driver pulse

rising edge timing function that reads the DI channel. This function needs to return the

number of ticks it takes to execute one loop, as well as the number of loop iterations it

takes to run from 0 ° crankshaft angle to the first rising edge of the injection pulse. The

PC target has functions for Excel report generation, GUI, and not time-critical calcula-

tions, such as unit conversions. The Ticks to ms conversion function obtains timing in

seconds by multiplying the loop time in ticks and the number of loops returned from

the Detect driver pulse rising edge timing function on the FPGA target with the period

of time duration in one configurable FPGA frequency cycle.

60

Figure 18. The block diagram of the technical proposed implementation shows the
most important software and hardware components in the system

61

5 Results

This chapter highlights some of the significant key elements that occurred during the

implementation of the testing system. The first part presents the achieved design goals

and discusses the design practices used in them. The second part focuses on the FPGA

implementation part. The third part explains how the interference problem from the

driver channel was solved. The results of the laboratory measurement of the testing

system accuracy and analysis are presented in the fourth part. Finally, in the fifth part,

some future development suggestions, as well as limitations of the research are dis-

cussed.

5.1 Design Implementation

All features defined in the third treatment validation of the testing system were suc-

cessfully developed. Many parts of the code were divided into SubVIs to increase code

readability and to speed up programming by reusing the code. Moreover, SubVIs makes

the code easier to debug, troubleshoot, document, and track changes (National Ins-

truments, 2014, p. 84). SubVIs are LabVIEW equivalent of subroutines in text-based

programming languages that enable modular programming structure.

62

Figure 19. Using Tick to ms subroutine in the LabVIEW graphical programming envi-
ronment

A ready-made speed simulation code was utilized by integrating it into the testing sys-

tem. This program used crank degrees per tick (clock cycle) for the engine speed. The

code was modified by adding a function that enables the engine speed to be entered in

units of rpm, as in the testing templates. This function converts rpm to crank degrees

per tick (clock cycle) and vice versa and keeps them updated. Rpm to crank degrees per

tick (clock cycle) is obtained by:

 ωclk = 6 · ωrpm · 10−7 , (6)

where ωrpm is crankshaft angle rpm. From equation (6) rpm is obtained:

 ωrpm =
ωclk·107

6
 , (7)

where ωclk is the rpm crank degrees per tick (clock cycle).

Several improvements to the GUI were made to enhance and speed up its operability.

In Figure 17, the BTDC selector and Driver channel selector drop-down menus update

dynamically as the user fills the Test angle array (BTDC) and the Cylinder order fields.

Tics to ms conversion SubVI

Part of main program

63

When these fields are filled with numbers, the program parses them into an array and

uses that array as a data source for dropdown menus. In this way, the user can select

BTDC values and cylinders more easily and faster. The first time a new engine package

is put to the test, the program will generate a test report for a new Excel workbook.

When testing continues after changing BTDC values or CCM IDs, the program will con-

tinue to fill the same Excel workbook that was created for the same engine package.

Steps for using the testing system are described in the Appendix.

The system automatically generates an Excel report (see Figure 20). The column differ-

ence deg shows the difference of the Measured timing (ms) and the Theoretical timing

(ms) columns. The screen shot shown in Figure 20 was taken during the development

stage in a situation where the theoretical timing values of the timing were incorrect

w.r.t. the real ECU configuration. The excel sheet highlights a result in red when the

difference is greater than 0.1 ° so that timings exceeding the required accuracy would

be easier to notice.

Figure 20. Example of test results as an Excel table

Driver channels require an electrical load that simulates fuel injectors to be wired to

them before any pulse can be measured. For this purpose, an enclosure containing

electrical reactors was utilized to simulate fuel injectors used in laboratory tests that

could be easily connected to CCMs. The DIs measuring pulse timing were connected

64

parallel to loads of the same circuit. In total, 14 electrical reactors were used as a load

array. The reactor model was Hammon Manufacturing Heavy Current Chassis Mount

195e20, having the following electrical properties suitable for the simulation of the fuel

injectors:

- Inductance is 2,5 mH, and

- Resistance 0,022 Ω.

5.2 Computing Time from FPGA Clock Cycles

In the initial design the Ticks to ms conversion was implemented in FPGA target. In an

attempt to synthesize the FPGA model that had 14 DI channels, operation would have

used 107 % of FPGA resources, which led to a synthetization failure. The Ticks to ms

conversion were moved to the PC target since they are not time critical. In the final

design, 69,6 % of the FPGA resources were used.

LabVIEW software functions allow access to low-level hardware timing parameters,

which enables good resolution for timing measurements. The principle of timing

measurement is based on counting how many ticks (clock cycles) it takes to run the

software loop that measures timing of an input pulse. Because of this, it is important to

know how long it takes to run a software loop when implementing timing measure-

ment in digital logic. It takes several ticks to read a DI channel and to run a function

that gets the pulse timing. For this purpose, counters can be used to count how many

ticks it takes to run one loop. This is utilized when measuring timing in seconds. While

the FPGA operating frequency is known, the number of ticks can be converted into

seconds. The number of clock cycles was obtained with the code shown in Figure 21.

The feedback node stores the counter in the previous while loop iteration. The differ-

ence between the tick counter in the current and the previous iterations returns the

number of ticks that a loop takes to complete.

65

Figure 21. Obtaining the number of clock cycles needed to read a DI-channel

It is possible to adjust how often each iteration of loop structure will run, but in case of

injection pulse timing measurement, the loop was set to run as fast as possible. How-

ever, the FPGA clock frequency sets a limit for this. The FPGA clock rate is configured to

run in the default setting of the 40 MHz frequency. This means that one clock cycle

takes 25 ns. When the number of clock cycles that each loop takes to run is known and

the number of loops it takes from 0 degree angle to the first rising edge, it is possible to

get the fuel injection pulse timing tdp in seconds:

 tdp = nclk · 25 · 10−9 · nloop , (8)

where nclk is the number of clock cycles that a loop takes to run, and nloop is the number

of loop iterations from 0 ° angle to the first rising edge of the fuel injection pulse.

5.3 Pulse Interference Elimination

Next, the number of times a while loop runs from starting from zero angle to the first

rising edge must be acquired. Before starting programming this function, a written de-

scription of its intended operation is created. The description of the fuel ti measure-

ment function is as follows:

1. Start loop counter from 0 when a new 720 ° revolution starts.

2. When a rising edge is detected, assign the loop counter to a variable.

Clock cycle
count function Output

Feedback node

66

During the development of the software, it was noticed that the driver channel has

interference peaks, as shown in Figure 22. While reading DI rising edges, the program

would trigger to a wrong pulse. The problem was noticed when the measured timing

did not match the expected timing, which was then confirmed by measuring pulses

with an oscilloscope. Possible sources of interference were proposed to be caused by

several alternative reasons including a flyback voltage spike caused by sudden interrup-

tion of the current supply to the coils in the electrical reactors, or an electromagnetic

interference from the cables close to each other in the test setup, or current leakage

from electronics, or a combination of several of these mentioned reasons.

Figure 22. Pulse interferences shown by orange arrows

Triggering of the start of the injection pulse was updated to the code. The expected

fuel injection angle is known, and the user should input the starting value for pulse

triggering, for example, 30 ° before the expected pulse. This delays the start of meas-

urement triggering and bypasses any interferences. Measurement triggering starts

when a new crankshaft angle revolution starts, and the measurement start threshold

67

angle is passed. The updated description of the fuel ti measurement function is as fol-

lows:

1. Start loop counter from 0 when a new 720 ° revolution starts.

2. When the threshold of the start of the measurement is passed and a rising edge

is detected, assign a loop counter to a variable.

The LabVIEW code to obtain the timing of the fuel injection pulse is shown in Figure 23.

Fuel injection DI is a burst of pulse-width modulated voltage pulses, and this function

delays the starting of measurement to bypass interference and returns the timing of

the first rising edge in that voltage burst. The function has three inputs that are the

crankshaft angle (1), the measurement start threshold (2), and the driver channel DI (3).

There is one output that is a loop counter (4), which is used to calculate the ti in sec-

onds. The feedback node (5) compares the crankshaft angle with the previous crank-

shaft angle value in the program iteration loop, and if the new value is less than the

previous value, the comparison returns true. The Select structure (6), which is the Lab-

VIEW equivalent of the if-else statement, counts loop iterations by incrementing the

counter value by one on each iteration and resets the counter to zero when the new

720 ° cycle of the crankshaft angle starts. DI of the injection pulse state is registered

only when the crankshaft angle is equal to or greater than (7) the measurement start

threshold to filter interference. The combination of the feedback node and greater

than expression (8) detects the rising edge of the DI. The reset-set flip-flop (9) keeps

track of whether a new 720 ° cycle of the crankshaft angle has started and resets when

DI of the injection pulse occurs. The loop count is assigned to the output of the func-

tion (10) when the first rising edge of the injection DI occurs for the first time in the

720 ° crankshaft angle cycle (11). Finally, the loop count can be used to calculate the

injection time in seconds.

68

Figure 23. Code to obtain the pulse timing of the fuel injection with the threshold of
the start of the measurement

5.4 Preliminary Testing of the Measurement Accuracy

Measurement functionality was tested by measuring fuel injection pulses with the test-

ing system and with an oscilloscope and then comparing results from each (see Table 1).

The first column Test shows the index of the measurement and the driver channel from

which it was measured. Two different channels were tested to see if there would be

any difference in the behaviour of the channels. The second column Automatic testing

system shows the result of the timing measurement done with the automatic testing

system as read from the GUI of the testing system. The third column Oscilloscope

shows the timing obtained with the oscilloscope read from the screen of the oscillo-

1

2

3

4

5

6

7

8

9
10

11

69

scope. The fourth column Δ shows the difference between the automatic testing sys-

tem and the oscilloscope measurements. The speed signal and the engine were

stopped and restarted between each test.

Table 1. Comparison of the timing test results of the laboratory test with the testing
system

Test Automatic testing system (ms) Oscilloscope (ms) Δ

1 (CH3) 137,2289 137,2261 0,0028

2 (CH3) 137,2289 137,2259 0,0030

3 (CH3) 137,2289 137,2256 0,0033

Test Automatic testing system (ms) Oscilloscope (ms) Δ

4 (CH1) 197,2276 197,2265 0,0011

5 (CH1) 197,2315 197,2270 0,0045

6 (CH1) 197,2276 197,2265 0,0011

The results were further analysed by calculating the mean, standard deviation (SD),

and standard error from the timing test results. The population SD is obtained by:

σ = √
∑ (xi − x̅)2n

i=1

n
 , (9)

where x ̅ is the arithmetic mean, xi is the value of the sample and n is the total number

of samples. The standard error (SE) is obtained by:

σx̅ =
σ

√n
 , (10)

where σ is the population SD and n is the total number of samples. The results of the

mean, SD, and standard error are shown in Table 2 for both driver channels.

70

Table 2. Mean, standard error, and accuracy of the test result

Driver channel 3 Automatic testing system (ms) Oscilloscope (ms) Δ

Mean 137,2289 137,2259 0,0030

Standard deviation 0 0,0002

Standard error 0 0,0001

Accuracy 137,2289 ± 0,0000 137,2259 ± 0,0001

Driver channel 1 Automatic testing system (ms) Oscilloscope (ms) Δ

Mean 197,2289 197,2267 0,0022

Standard deviation 0,0018 0,0002

Standard error 0,0011 0,0001

Accuracy 197,2289 ± 0,0011 197,2267 ± 0,0001

The difference in the mean values (Δ) in Table 2 suggests that the oscilloscope detects

the signal about 2–3 μs earlier than the automatic testing system. From this laboratory

setup, it cannot be determined which instrument is closer to true value since the true

value is unknown. Therefore, it cannot be resolved which instrument is more accurate.

The test results of the automatic testing system from driver channel 3 are exactly the

same with eight significant figures, so SE is zero while in driver channel 1 SE is 1,11 μs

while the oscilloscope SE is 0,1 μs. The sample size of the observations is too small to

determine the precision of the instruments.

Since accuracy or precision cannot be reliably clarified, the highest value of differences

between test measurements is used as a point of reference. The highest difference

value is 4.5 μs from Table 1 which can be rounded to 5 μs. Therefore, the accuracy of

the testing system is ±5 μs. This is less than half of the required update rate for the

measurement, which is 11 μs. As a result, the measurement was found to be sufficient-

ly accurate in the preliminary testing.

71

5.5 Limitations

5.5.1 Future Development Suggestions

The most important improvement for the automatic testing system would be to devel-

op communication between the testing system and ECU TS, which would increase the

level of automation. A communication API would enable reading the driver channel

configuration so that the user would not need to do this manually. Moreover, the BTDC

values could be changed and uploaded to the modules. As a result, the whole test re-

port could be generated with a single press of a button. The details of cRIO and ECU TS

communication require further investigation. LabVIEW supports ActiveX technology,

which could be possibly used for this purpose.

The tester needs further development to complete some missing features and minor

bug fixes. In the test Preferences tab, different testing modes are disabled. These would

enable a more useful testing state. However, ECU TS also includes a reporting compo-

nent, which would be another way to implement reporting than the current Excel re-

porting.

Changing the rpm speed stops the speed signal for one second. This will trigger an

emergency stop on a running engine. The one second stop was made as a workaround

to a problem that made measurement go out of sync when a new rpm was inputted.

The development package with which the software was developed did not have this

issue. A different kind of solution needs to be developed to prevent the measurement

from going out of sync. Also, the engine package will automatically emergency stop the

engine if the speed instantly goes from 0 to 750 rpm. A ramping speed pulse would

need to be created.

The driver channel tester detects the first rising edge after a zero angle. For future de-

velopment, different types of pulses should be investigated to check if the rising edge

72

detection is a valid way to test their timing. For example, in the ignition channel, the

timing of the last falling edge is important. Different pulses to consider are listed in

page 52.

Since fuel injection pulses have interference, measurement can trigger an incorrect

rising edge. The source of interferences should be investigated, but suspected reasons

were flyback voltage spike, electromagnetic interference, or current leakage from elec-

tronics. Flyback voltage can be eliminated by connecting a flyback diode to the circuit.

To eliminate electromagnetic interference, cables in the laboratory setup would need

to be replaced with shielded cables and re-arranged in a manner that 230 V AC power

cables used in the setup would have minimum distance of 30 cm to the DC cables. Sus-

pected current leakage from electronics cannot be fixed easily since it would probably

require replacing the electronics, which would not be reasonable since the ECU used in

the test is found to work from electronics respect, even sensitive measurements could

be interfered with by some minor current leakages. In addition to fixing hardware re-

lated problems, software-based solutions are recommended. Pulse filtering would be a

useful addition for later use since other sources of interference could emerge later, and

thus it would make the testing system more reliable. A suitable filtering technique

could be filtering the signal by its duration. The duration of the signal must exceed the

length of some adjustable variable to be registered for a valid measurement.

Of the FPGA resources, 69.6 % was used. For future development, if all channels were

tested at once, it could be useful to explore whether the FPGA code can be optimised.

One possibility for that would be to move the rpm and crank degree conversions from

the FPGA target to the PC target. These two functions were used to convert the rpm to

the crank degrees and vice versa so that the user could input the engine speed in the

GUI in both formats. These are not time critical functions and could be moved to a PC

target without any compromises to the system operation. Conversion functions use

division operations which have high FPGA resource consumption.

73

A useful research question for the future would be the calculation of the return on in-

vestment (ROI) of the automatic testing. When the automated testing system would be

completed, it would be natural to study how much it saves time. In this study, the time

used to perform the tests using an automatic testing system could be compared to the

execution of the same tests done manually. The time used to develop the automation

system would need to be taken into account to evaluate the feasibility of developing

the automation. Additional variables could be the quantity, accuracy, and consistency

of tests which affect the quality of testing which possibly creates more value than only

looking at the cost savings of automation.

5.5.2 Research Limitations

In the laboratory setup to test the accuracy of the measurement, too few samples were

taken so that the accuracy and precision of the testing system could not reliably be

determined. Based on the preliminary tests, there was an offset of 2–3 μs between the

mean values of the sample observations made with the oscilloscope and the testing

system. It is unclear whether this is systematic or not, and a larger sample size could

possibly be used to determine that. If the problem would seem to be systematic, the

accuracy issue could be resolved by using a testing instrument with a known accurate

control pulse duration, and then comparing both the testing system and oscilloscope to

that. A higher sample size would most likely have been useful for determining the pre-

cision with higher confidence.

Generalizing the result of the answer to the knowledge question “What would the ar-

chitecture be like for an automated testing system for the verification of engine fuel

injection?” has both strengths and limitations. While the upper-level principles and

hardware choices are valid for other ECUs and systems, on a detailed software level,

they cannot be utilized in other applications. Software is highly application specific, and

therefore e.g. the proposed setup could not be utilized for the testing of other ECUs.

When developing an automated testing system for other ECUs than the one presented

74

in this thesis, first, it would require good understanding of the details of the system for

which it is developed, and second, software would need to be developed from the be-

ginning. Also, it is most likely that the configuration of the cRIO hardware modules

would need to be changed.

Results of the second knowledge question, “Are there hidden and unexpected technical

problems involved in the design?”, also most likely cannot be generalized to other ap-

plications. Pulse interference, lack of ECU TS communication, and minor bug fixes are

probably problems that are limited to the specific ECU studied in this work. These kinds

of issue are highly application specific and therefore results cannot be used for forming

a general rule. In this work, ECU TS was an integral part of the testing technology archi-

tecture and working practices. Similar structures may or may not be relevant to other

testing applications.

75

6 Conclusion

The design of an automatic testing system for fuel ti was successfully created. All non-

functional requirements and properties set for the design were met. Testing was car-

ried out using one of the latest ECU configurations and the measurement accuracy of

the automatic testing system was ±5 μs, which was sufficient. The measurement preci-

sion could be improved even further by choosing a DI module with a higher update

rate. This would not increase the cost of the system. Moreover, the developed testing

system automatically generates an Excel report.

When considering the design science knowledge question about the design of the ar-

chitecture for the automatic testing system, (Figure 10 and Figure 18) can be general-

ized to develop a timing testing system for any ECU or electronic system with input and

output. NI cRIO proved to be a good hardware and software platform since it is rela-

tively easy to use, highly customizable, reliable, and has high-speed performance for

precise measurements. The modularity and programmability of the cRIO and LabVIEW

solution enables flexibility for further development and modifications. Therefore, cRIO

can be recommended as a platform for developing automatic timing testing systems.

The literature review suggests that there is a finite amount of studies made about fuel

ti testing. According to them, high precision can be achieved with automatic testing,

which is similar to the results in this study. Another similarity is that a good software

architecture is crucial for developing functional testing automation, as stated by Gra-

ham and Fewster. It is important that the developer should become familiar with the

details of the testing procedure. A good way to achieve this is to first personally spend

some time doing the manual testing to understand the specific details in it.

Developing extensive automatic testing is complicated and time consuming. Under-

standing both the broad view of the system and small details together, makes the de-

velopment of testing challenging. While systems are evolving with ever increasing

speed, testing should be designed to be flexible enough so that it would not become

76

obsolete too quickly. Because developing testing is time and resource consuming, ef-

forts put into it should be put in proportion to the benefits that the automation brings.

Critical applications related to, for example, safety should be thoroughly tested. In ad-

dition, large projects that have hundreds of developers and are under constant devel-

opment benefit from automatic testing. As an example, this work shows a feasible test-

ing automation architecture and discusses the issues to be taken into account while

designing it.

77

References

A. Keawtubtimthong, D. Koolpiruck, S. Wongsa, Y. Laoonual, & A. Kaewpunya. (2010).

Development of engine control technique for flex-fuel motorcycle. ECTI-

CON2010: The 2010 ECTI International Confernce on Electrical Engineer-

ing/Electronics, Computer, Telecommunications and Information Technology,

159–162.

Boyang Du & L. Sterpone. (2016). An FPGA-based testing platform for the validation of

automotive powertrain ECU. 2016 IFIP/IEEE International Conference on Very

Large Scale Integration (VLSI-SoC), 1–7. https://doi.org/10.1109/VLSI-

SoC.2016.7753553

Donev, J., & Afework, B. (2019). Energy Education—Four stroke engine [Online].

https://energyeducation.ca/encyclopedia/Four_stroke_engine.

Dustin, E. (2002). Effective Software Testing: 50 Specific Ways to Improve Your Testing

1st Edition (1st ed.). Addison-Wesley Professional.

Dustin, E., Garret, T., & Gauf, B. (2009). Implementing Automated Software Testing:

How to Save Time and Lower Costs While Raising Quality. Addison-Wesley Pro-

fessional.

Eteläpää, A. (2021). WCD-20 spark diagnostics [University of Vaasa].

https://urn.fi/URN:NBN:fi-fe202102104377

F. Juan & M. Xian-Min. (2009). Research on fuel injection intelligent control system.

2009 4th IEEE Conference on Industrial Electronics and Applications, 2782–2785.

https://doi.org/10.1109/ICIEA.2009.5138716

78

Graham, D., & Fewster, M. (2012). Experiences of test automation: Case studies of

software test automation (2nd ed.). Addison-Wesley.

J. Mahboob & J. Coffman. (2021). A Kubernetes CI/CD Pipeline with Asylo as a Trusted

Execution Environment Abstraction Framework. 2021 IEEE 11th Annual Compu-

ting and Communication Workshop and Conference (CCWC), 0529–0535.

https://doi.org/10.1109/CCWC51732.2021.9376148

J. Zhou, G. Ouyang, & M. Wang. (2010). Common Rail Direct Injection Diesel Engine

Control Strategy Validation Research. 2010 International Conference on Digital

Manufacturing & Automation, 1, 387–390.

https://doi.org/10.1109/ICDMA.2010.399

Jena, A. K., Das, H., & Mohapatra, D. P. (2020). Automated Software Testing: Founda-

tions, Applications and Challenges. Springer Singapore Pte. Limited.

https://link.springer.com/book/10.1007/978-981-15-2455-4

Johannesson, P., & Perjons, E. (2021). An Introduction to Design Science (P. Johannes-

son & E. Perjons, Eds.; Second Edition). Springer International Publishing.

https://doi.org/10.1007/978-3-030-78132-3

Khair, M. K. & Jääskeläinen, H. (2020). Diesel Fuel Injection. DieselNet.

https://dieselnet.com/tech/diesel_fi.php

Knol, W., Coombes, P., & Couvert, G. (2022). Spark plugs: Discovering Denso Technology.

Denso. https://www.denso-technic.com/images/document/ignition/en/spark-

plugs-manual-en.pdf

Latarche, M. (Ed.). (2020). Pounder’s Marine Diesel Engines and Gas Turbines (Tenth

Edition). Butterworth-Heinemann.

79

https://www.sciencedirect.com/book/9780081027486/pounders-marine-

diesel-engines-and-gas-turbines

M. Venkatraman & G. Devaradjane. (2010). Experimental investigation of effect of

compression ratio, injection timing and injection pressure on the performance

of a CI engine operated with diesel-pungam methyl ester blend. Frontiers in Au-

tomobile and Mechanical Engineering -2010, 117–121.

https://doi.org/10.1109/FAME.2010.5714814

Mitroglou, N., Gavaises, M., & Arcoumanis, D. (2012). Spray stability from VCO and a

new Diesel nozzle design concept. In IMechE (Ed.), Fuel Systems for IC Engines

(pp. 279–290). Woodhead Publishing.

https://doi.org/10.1533/9780857096043.7.279

National Instruments. (2014). NI LabVIEW for CompactRIO Developer’s Guide. Generic.

https://www.ni.com/pdf/products/us/fullcriodevguide.pdf

Papalambros, P. Y. (2015). Design Science: Why, What and How. Design Science, 1, e1-

undefined. https://doi.org/10.1017/dsj.2015.1

Pensar, J., & Storbacka, M. (2007). UNIC – The reliable solution for robust industrial

controls. Wärtsilä Technical Journal, 40–44.

Q. Kang, Z. Xie, Y. Liu, & M. Zhou. (2017). A fuel injection control SoC for Diesel Engine

Management System. 2017 IEEE 12th International Conference on ASIC

(ASICON), 969–972. https://doi.org/10.1109/ASICON.2017.8252639

S. Wu, Y. Dong, K. Yu, & X. -Q. Tang. (2020). Fuel engine injector control based on mul-

tiple search approach. 2020 19th International Symposium on Distributed Com-

80

puting and Applications for Business Engineering and Science (DCABES), 100–

103. https://doi.org/10.1109/DCABES50732.2020.00034

T. Stratoudakis. (2021). Introduction to LabVIEW FPGA for RF, Radar, and Electronic

Warfare Applications. Artek House.

https://www.proquest.com/docview/2515890798/4B25567FC4D344F0PQ/3

V. Vasquez Lopez, J. M. Echeverry Mejia, & D. E. Contreras Dominguez. (2017). Design

and Statistical Validation of Spark Ignition Engine Electronic Control Unit for

Hardware-in-the-Loop Testing. IEEE Latin America Transactions, 15(8), 1376–

1383. https://doi.org/10.1109/TLA.2017.7994782

Wärtsilä. (2019). Wärtsilä 46DF product guide. Wärtsilä Finland Oy.

https://www.wartsila.com/docs/default-source/product-files/engines/df-

engine/product-guide-o-e-w46df.pdf

Wärtsilä. (2022). Wärtsilä 26 product guide. Wärtsilä Finland Oy.

https://www.wartsila.com/docs/default-source/product-files/engines/ms-

engine/product-guide-o-e-w26.pdf

Wieringa, R. J. (2014). Design Science Methodology for Information Systems and Soft-

ware Engineering. Springer Berlin / Heidelberg.

https://link.springer.com/book/10.1007/978-3-662-43839-8

81

Appendix

Steps for Using the Testing System

1. Start ECU configuration software tool

2. Upload engine packet to the testing rack and ensure that the upload was suc-

cessful for every module

3. Set the correct simulated temperature, pressure, and other safety limit parame-

ters in the ECU configuration software tool

4. Fill in the test information in the automatic testing system

a. Engine name

b. Cylinder order array

c. Angular displacement array

d. CW/CCW rotation select

e. Fill test rpm array

f. Fill test BTDC array

g. Timing in ms or deg selection

h. Stepless intake and exhaust valve selection

5. Check driver channel configuration from the ECU configuration software tool

and set right module and driver channels in the automatic testing system

6. Start engine in ECU configuration software tool

7. Start speed in automatic testing system

8. Click the button “Test driver channels” in the automatic testing system

9. Change to the next CCM ID in the ECU configuration software tool and upload it

again and repeat steps 5-8 until all CCM driver channels have been tested

10. Save test report

	1 Introduction
	1.1 Internal Combustion Engine Fuel Injection
	1.2 Automatic Testing
	1.3 Research Problem Formulation Background
	1.4 Definitions of Key Expressions
	1.5 Structure of the Thesis Work

	2 Related Work
	2.1 Test Methods for Fuel Injection Timing
	2.2 Fuel Injection Studies
	2.3 Principles for Developing Automation

	3 Background
	3.1 Engine Control Unit
	3.1.1 Modules of the Engine Control Unit
	3.1.2 Engine Control Unit Software

	3.2 Speed Signal Measurement
	3.3 Fuel Injection Timing
	3.4 Fuel Injection Pulse Control
	3.5 Engine Control Unit Testing System
	3.5.1 Test Rack
	3.5.2 Configuration Software for Engine Control Unit

	3.6 Testing Specification Terminology

	4 Research Methodology
	4.1 Design Science
	4.2 Research Framework
	4.2.1 Design Cycle
	4.2.2 Empirical Cycle

	4.3 Research Problem
	4.3.1 Design Problem
	4.3.2 Knowledge Questions

	4.4 Problem Investigation
	4.4.1 Issues Affecting the Design
	4.4.2 Hardware and Software Selection
	4.4.3 Automating Measurements from Several Driver Channels
	4.4.4 Creation of the Validated Design Proposal

	5 Results
	5.1 Design Implementation
	5.2 Computing Time from FPGA Clock Cycles
	5.3 Pulse Interference Elimination
	5.4 Preliminary Testing of the Measurement Accuracy
	5.5 Limitations
	5.5.1 Future Development Suggestions
	5.5.2 Research Limitations

	6 Conclusion
	References
	Appendix
	Steps for Using the Testing System

