2,535 research outputs found

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve

    A Scalable Correlator Architecture Based on Modular FPGA Hardware, Reuseable Gateware, and Data Packetization

    Full text link
    A new generation of radio telescopes is achieving unprecedented levels of sensitivity and resolution, as well as increased agility and field-of-view, by employing high-performance digital signal processing hardware to phase and correlate large numbers of antennas. The computational demands of these imaging systems scale in proportion to BMN^2, where B is the signal bandwidth, M is the number of independent beams, and N is the number of antennas. The specifications of many new arrays lead to demands in excess of tens of PetaOps per second. To meet this challenge, we have developed a general purpose correlator architecture using standard 10-Gbit Ethernet switches to pass data between flexible hardware modules containing Field Programmable Gate Array (FPGA) chips. These chips are programmed using open-source signal processing libraries we have developed to be flexible, scalable, and chip-independent. This work reduces the time and cost of implementing a wide range of signal processing systems, with correlators foremost among them,and facilitates upgrading to new generations of processing technology. We present several correlator deployments, including a 16-antenna, 200-MHz bandwidth, 4-bit, full Stokes parameter application deployed on the Precision Array for Probing the Epoch of Reionization.Comment: Accepted to Publications of the Astronomy Society of the Pacific. 31 pages. v2: corrected typo, v3: corrected Fig. 1

    Multi-standard programmable baseband modulator for next generation wireless communication

    Full text link
    Considerable research has taken place in recent times in the area of parameterization of software defined radio (SDR) architecture. Parameterization decreases the size of the software to be downloaded and also limits the hardware reconfiguration time. The present paper is based on the design and development of a programmable baseband modulator that perform the QPSK modulation schemes and as well as its other three commonly used variants to satisfy the requirement of several established 2G and 3G wireless communication standards. The proposed design has been shown to be capable of operating at a maximum data rate of 77 Mbps on Xilinx Virtex 2-Pro University field programmable gate array (FPGA) board. The pulse shaping root raised cosine (RRC) filter has been implemented using distributed arithmetic (DA) technique in the present work in order to reduce the computational complexity, and to achieve appropriate power reduction and enhanced throughput. The designed multiplier-less programmable 32-tap FIR-based RRC filter has been found to withstand a peak inter-symbol interference (ISI) distortion of -41 dB

    Custom architecture for multicore audio Beamforming systems

    Get PDF
    The audio Beamforming (BF) technique utilizes microphone arrays to extract acoustic sources recorded in a noisy environment. In this article, we propose a new approach for rapid development of multicore BF systems. Research on literature reveals that the majority of such experimental and commercial audio systems are based on desktop PCs, due to their high-level programming support and potential of rapid system development. However, these approaches introduce performance bottlenecks, excessive power consumption, and increased overall cost. Systems based on DSPs require very low power, but their performance is still limited. Custom hardware solutions alleviate the aforementioned drawbacks, however, designers primarily focus on performance optimization without providing a high-level interface for system control and test. In order to address the aforementioned problems, we propose a custom platform-independent architecture for reconfigurable audio BF systems. To evaluate our proposal, we implement our architecture as a heterogeneous multicore reconfigurable processor and map it onto FPGAs. Our approach combines the software flexibility of General-Purpose Processors (GPPs) with the computational power of multicore platforms. In order to evaluate our system we compare it against a BF software application implemented to a low-power Atom 330, amiddle-ranged Core2 Duo, and a high-end Core i3. Experimental results suggest that our proposed solution can extract up to 16 audio sources in real time under a 16-microphone setup. In contrast, under the same setup, the Atom 330 cannot extract any audio sources in real time, while the Core2 Duo and the Core i3 can process in real time only up to 4 and 6 sources respectively. Furthermore, a Virtex4-based BF system consumes more than an order less energy compared to the aforementioned GPP-based approaches. © 2013 ACM

    A fully parameterized virtual coarse grained reconfigurable array for high performance computing applications

    Get PDF
    Field Programmable Gate Arrays (FPGAs) have proven their potential in accelerating High Performance Computing (HPC) Applications. Conventionally such accelerators predominantly use, FPGAs that contain fine-grained elements such as LookUp Tables (LUTs), Switch Blocks (SB) and Connection Blocks (CB) as basic programmable logic blocks. However, the conventional implementation suffers from high reconfiguration and development costs. In order to solve this problem, programmable logic components are defined at a virtual higher abstraction level. These components are called Processing Elements (PEs) and the group of PEs along with the inter-connection network form an architecture called a Virtual Coarse-Grained Reconfigurable Array (VCGRA). The abstraction helps to reconfigure the PEs faster at the intermediate level than at the lower-level of an FPGA. Conventional VCGRA implementations (built on top of the lower levels of the FPGA) use functional resources such as LUTs to establish required connections (intra-connect) within a PE. In this paper, we propose to use the parameterized reconfiguration technique to implement the intra-connections of each PE with the aim to reduce the FPGA resource utilization (LUTs). The technique is used to parameterize the intra-connections with parameters that only change their value infrequently (whenever a new VCGRA function has to be reconfigured) and that are implemented as constants. Since the design is optimized for these constants at every moment in time, this reduces the resource utilization. Further, interconnections (network between the multiple PEs) of the VCGRA grid can also be parameterized so that both the inter- and intraconnect network of the VCGRA grid can be mapped onto the physical switch blocks of the FPGA. For every change in parameter values a specialized bitstream is generated on the fly and the FPGA is reconfigured using the parameterized run-time reconfiguration technique. Our results show a drastic reduction in FPGA LUT resource utilization in the PE by at least 30% and in the intra-network of the PE by 31% when implementing an HPC application

    FPGA-based architectures for acoustic beamforming with microphone arrays : trends, challenges and research opportunities

    Get PDF
    Over the past decades, many systems composed of arrays of microphones have been developed to satisfy the quality demanded by acoustic applications. Such microphone arrays are sound acquisition systems composed of multiple microphones used to sample the sound field with spatial diversity. The relatively recent adoption of Field-Programmable Gate Arrays (FPGAs) to manage the audio data samples and to perform the signal processing operations such as filtering or beamforming has lead to customizable architectures able to satisfy the most demanding computational, power or performance acoustic applications. The presented work provides an overview of the current FPGA-based architectures and how FPGAs are exploited for different acoustic applications. Current trends on the use of this technology, pending challenges and open research opportunities on the use of FPGAs for acoustic applications using microphone arrays are presented and discussed
    • …
    corecore