18 research outputs found

    Experimental Investigations of Millimeter Wave Beamforming

    Get PDF
    The millimeter wave (mmW) band, commonly referred to as the frequency band between 30 GHz and 300 GHz, is seen as a possible candidate to increase achievable rates for mobile applications due to the existence of free spectrum. However, the high path loss necessitates the use of highly directional antennas. Furthermore, impairments and power constraints make it difficult to provide full digital beamforming systems. In this thesis, we approach this problem by proposing effective beam alignment and beam tracking algorithms for low-complex analog beamforming (ABF) systems, showing their applicability by experimental demonstration. After taking a closer look at particular features of the mmW channel properties and introducing the beamforming as a spatial filter, we begin our investigations with the application of detection theory for the non-convex beam alignment problem. Based on an M-ary hypothesis test, we derive algorithms for defining the length of the training signal efficiently. Using the concept of black-box optimization algorithms, which allow optimization of non-convex algorithms, we propose a beam alignment algorithm for codebook-based ABF based systems, which is shown to reduce the training overhead significantly. As a low-complex alternative, we propose a two-staged gradient-based beam alignment algorithm that uses convex optimization strategies after finding a subregion of the beam alignment function in which the function can be regarded convex. This algorithm is implemented in a real-time prototype system and shows its superiority over the exhaustive search approach in simulations and experiments. Finally, we propose a beam tracking algorithm for supporting mobility. Experiments and comparisons with a ray-tracing channel model show that it can be used efficiently in line of sight (LoS) and non line of sight (NLoS) scenarios for walking-speed movements

    Precoding Schemes for Millimeter Wave Massive MIMO Systems

    Get PDF
    In an effort to cut high cost and power consumption of radio frequency (RF) chains, millimeter wave (mmWave) multiple input multiple output (MIMO) deploys hybrid architecture in which precoding is implemented as a combination of digital precoding and analog precoding, accomplished by using a smaller number of RF chains and a network of phase shifters respectively. The mmWave MIMO, which usually suffers from blockages, needs to be supported by Reconfigurable Intelligent Surface (RIS) to make communication possible. Along with the hybrid precoding in mmWave MIMO, the passive precoding of Reconfigurable Intelligent Surface (RIS) is investigated in a downlink RIS-assisted mmWave MIMO. The hybrid precoding and passive precoding are challenged by the unit modulus constraints on the elements of analog precoding matrix and passive precoding vector. The coupling of analog and digital precoders further complicates the hybrid precoding. One of the approaches taken in proposed hybrid precoding algorithms is the use of alternating optimization in which analog precoder and digital precoder are optimized alternately keeping the other fixed. Analog precoder is determined by solving a semidefinite programming problem, and from the unconstrained least squares solution during each iteration. In another approach taken in the proposed methods, the hybrid precoding is split into separate analog and digital precoding subproblems. The analog precoding subproblems are simplified using some approximations, and solved by using iterative power method and employing a truncated singular value decomposition method in two different hybrid precoding algorithms. In the prooposed codebook-based precoder, analog precoder is constructed by choosing precoding vectors from a codebook to maximize signal-to-leakage-and-noise ratio (SLNR). The passive precoding at the RIS in a single user MIMO is designed to minimize mean square error between the transmit signal and the estimate of received signal by using an iterative algorithm that solves the joint optimization problem of precoding, passive precoding and combiner. The problem of designing energy efficient RIS is solved by maximizing energy efficiency which is a joint optimization problem involving precoder, passive precoding matrix and power allocation matrix. The proposed hybrid precoding and passive precoding algorithms deliver very good performances and prove to be computationally efficient

    Massive MIMO 시스템을 위한 채널 추정 및 피드백 기법

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2017. 2. 이정우.To meet the demand of high throughput in next generation wireless systems, various directions for physical layer evolution are being explored. Massive multiple-input multiple-output (MIMO) systems, characterized by a large number of antennas at the transmitter, are expected to become a key enabler for spectral efficiency improvement. In massive MIMO systems, thanks to the orthogonality between different users' channels, high spectral and energy efficiency can be achieved through simple signal processing techniques. However, to get such advantages, accurate channel state information (CSI) needs to be available, and acquiring CSI in massive MIMO systems is challenging due to the increased channel dimension. In frequency division duplexing (FDD) systems, where CSI at the transmitter is achieved through downlink training and uplink feedback, the overhead for the training and feedback increases proportionally to the number of antennas, and the resource for data transmission becomes scarce in massive MIMO systems. In time division duplexing (TDD) systems, where the channel reciprocity holds and the downlink CSI can be obtained through uplink training, pilot contamination due to correlated pilots becomes a performance bottleneck when the number of antennas increases. In this dissertation, I propose efficient CSI acquisition techniques for various massive MIMO systems. First, I develop a downlink training technique for FDD massive MIMO systems, which estimates the downlink channel with small overhead. To this end, compressed sensing tools are utilized, and the training overhead can be highly reduced by exploiting the previous channel information. Next, a limited feedback scheme is developed for FDD massive MIMO systems. The proposed scheme reduces the feedback overhead using a dimension reduction technique that exploits spatial and temporal correlation of the channel. Lastly, I analyze the effect of pilot contamination, which has been regarded as a performance bottleneck in multi-cell massive MIMO systems, and propose two uplink training strategies. An iterative pilot design scheme is developed for small networks, and a scalable training framework is also proposed for networks with many cells.1 Introduction 1 1.1 Massive MIMO 1 1.2 CSI Acquisition in Massive MIMO Systems 3 1.3 Contributions and Organization 6 1.4 Notations 7 2 Compressed Sensing-Aided Downlink Training 9 2.1 Introduction 10 2.2 System Model 13 2.2.1 Channel Model 13 2.2.2 Downlink Channel Estimation 16 2.3 CS-Aided Channel Training 19 2.3.1 Training Sequence Design 20 2.3.2 Channel Estimation 21 2.3.3 Estimation Error 23 2.4 Discussions 26 2.4.1 Design of Measurement Matrix 26 2.4.2 Extension to MIMO Systems 27 2.4.3 Comparison to CS with Partial Support Information 28 2.5 Simulation Results 29 2.6 Conclusion 37 3 Projection-Based Differential Feedback 39 3.1 Introduction 40 3.2 System Model 44 3.2.1 Multi-User Beamforming with Limited Feedback 45 3.2.2 Massive MIMO Channel 47 3.3 Projection-Based Differential Feedback 48 3.3.1 Projection-Based Differential Feedback Framework 48 3.3.2 Projection for PBDF Framework 51 3.3.3 Efficient Algorithm 57 3.4 Discussions 58 3.4.1 Projection with Imperfect CSIR 58 3.4.2 Acquisition of Channel Statistics 61 3.5 Simulation Results 62 3.6 Conclusion 69 4 Mitigating Pilot Contamination via Pilot Design 71 4.1 Introduction 72 4.2 System Model 73 4.2.1 Multi-cell Massive MIMO Systems 74 4.2.2 Uplink Channel Training 75 4.2.3 Data Transmission 77 4.3 Iterative Pilot Design Algorithm 78 4.3.1 Algorithm 79 4.3.2 Proof of Convergence 81 4.4 Generalized Pilot Reuse 81 4.4.1 Concept of Pilot Reuse Schemes 81 4.4.2 Pilot Design based on Grassmannian Subspace Packing 82 4.5 Simulation Results 85 4.5.1 Iterative Pilot Design 85 4.5.2 Generalized Pilot Reuse 87 4.6 Conclusion 89 5 Conclusion 91 5.1 Summary 91 5.2 Future Directions 93 Bibliography 96 Abstract (In Korean) 109Docto

    Efficient Pre-Processing of Site-Specific Radio Channels for Virtual Drive Testing in Hardware Emulators

    Get PDF

    Interference Exploitation via Symbol-Level Precoding: Overview, State-of-the-Art and Future Directions

    Get PDF
    Interference is traditionally viewed as a performance limiting factor in wireless communication systems, which is to be minimized or mitigated. Nevertheless, a recent line of work has shown that by manipulating the interfering signals such that they add up constructively at the receiver side, known interference can be made beneficial and further improve the system performance in a variety of wireless scenarios, achieved by symbol-level precoding (SLP). This paper aims to provide a tutorial on interference exploitation techniques from the perspective of precoding design in a multi-antenna wireless communication system, by beginning with the classification of constructive interference (CI) and destructive interference (DI). The definition for CI is presented and the corresponding mathematical characterization is formulated for popular modulation types, based on which optimization-based precoding techniques are discussed. In addition, the extension of CI precoding to other application scenarios as well as for hardware efficiency is also described. Proof-of-concept testbeds are demonstrated for the potential practical implementation of CI precoding, and finally a list of open problems and practical challenges are presented to inspire and motivate further research directions in this area

    Channel Estimation for Massive MIMO Systems

    Get PDF
    Massive multiple input multiple output (MIMO) systems can significantly improve the channel capacity by deploying multiple antennas at the transmitter and receiver. Massive MIMO is considered as one of key technologies of the next generation of wireless communication systems. However, with the increase of the number of antennas at the base station, a large number of unknown channel parameters need to be dealt with, which makes the channel estimation a challenging problem. Hence, the research on the channel estimation for massive MIMO is of great importance to the development of the next generation of communication systems. The wireless multipath channel exhibits sparse characteristics, but the traditional channel estimation techniques do not make use of the sparsity. The channel estimation based on compressive sensing (CS) can make full use of the channel sparsity, while use fewer pilot symbols. In this work, CS channel estimation methods are proposed for massive MIMO systems in complex environments operating in multipath channels with static and time-varying parameters. Firstly, a CS channel estimation algorithm for massive MIMO systems with Orthogonal Frequency Division Multiplexing (OFDM) is proposed. By exploiting the spatially common sparsity in the virtual angular domain of the massive MIMO channels, a dichotomous-coordinate-decent-joint-sparse-recovery (DCD-JSR) algorithm is proposed. More specifically, by considering the channel is static over several OFDM symbols and exhibits common sparsity in the virtual angular domain, the DCD-JSR algorithm can jointly estimate multiple sparse channels with low computational complexity. The simulation results have shown that, compared to existing channel estimation algorithms such as the distributed-sparsity-adaptive-matching-pursuit (DSAMP) algorithm, the proposed DCD-JSR algorithm has significantly lower computational complexity and better performance. Secondly, these results have been extended to the case of multipath channels with time-varying parameters. This has been achieved by employing the basis expansion model to approximate the time variation of the channel, thus the modified DCD-JSR algorithm can estimate the channel in a massive MIMO OFDM system operating over frequency selective and highly mobile wireless channels. Simulation results have shown that, compared to the DCD-JSR algorithm designed for time-invariant channels, the modified DCD-JSR algorithm provides significantly better estimation performance in fast time-varying channels

    Low-Complexity Near-Optimal Detection Algorithms for MIMO Systems

    Get PDF
    As the number of subscribers in wireless networks and their demanding data rate are exponentially increasing, multiple-input multiple-output (MIMO) systems have been scaled up in the 5G where tens to hundreds of antennas are deployed at base stations (BSs). However, by scaling up the MIMO systems, designing detectors with low computational complexity and close to the optimal error performance becomes challenging. In this dissertation, we study the problem of efficient detector designs for MIMO systems. In Chapter 2, we propose efficient detection algorithms for small and moderate MIMO systems by using lattice reduction and subspace (or conditional) detection techniques. The proposed algorithms exhibit full receive diversity and approach the bit error rate (BER) of the optimal maximum likelihood (ML) solution. For quasi-static channels, the complexity of the proposed schemes is cubic in the system dimension and is only linear in the size of the QAM modulation used. However, the computational complexity of lattice reduction algorithms imposes a large burden on the proposed detectors for large MIMO systems or fast fading channels. In Chapter 3, we propose detectors for large MIMO systems based on the combination of minimum mean square error decision feedback equalization (MMSE-DFE) and subspace detection tailored to an appropriate channel ordering. Although the achieved diversity order of the proposed detectors does not necessarily equal the full receive diversity for some MIMO systems, the coding gain allows for close to ML error performance at practical values of signal-to-noise ratio (SNR) at the cost of a small computational complexity increase over the classical MMSE- DFE detection. The receive diversity deficiency is addressed by proposing another algorithm in which a partial lattice reduction (PLR) technique is deployed to improve the diversity order. Massive multiuser MIMO (MU-MIMO) is another technology where the BS is equipped with hundreds of antennas and serves tens of single-antenna user terminals (UTs). For the uplink of massive MIMO systems, linear detectors, such as zero-forcing (ZF) and minimum mean square error (MMSE), approach the error performances of sophisticated nonlinear detectors. However, the exact solutions of ZF and MMSE involve matrix-matrix multiplication and matrix inversion operations which are expensive for massive MIMO systems. In Chapter 4, we propose efficient truncated polynomial expansion (TPE)-based detectors that achieve the error performance of the exact solutions with a computational complexity proportional to the system dimensions. The millimeter wave (mmWave) massive MIMO is another key technology for 5G cellular networks. By using hybrid beamforming techniques in which a few numbers of radio frequency (RF) chains are deployed at the BSs and the UTs, the fully-digital precoder (combiner) is approximated as a product of analog and digital precoders (combiners). In Chapter 5, we consider a signal detection scheme using the equivalent channel consisting of the precoder, mmWave channel, and combiner. The available structure in the equivalent channel enables us to achieve the BER of the optimal ML solution with a significant reduction in the computational complexity

    Multi-User Gesture Recognition with Radar Technology

    Get PDF
    The aim of this work is the development of a Radar system for consumer applications. It is capable of tracking multiple people in a room and offers a touchless human-machine interface for purposes that range from entertainment to hygiene

    Multi-User Gesture Recognition with Radar Technology

    Get PDF
    The aim of this work is the development of a Radar system for consumer applications. It is capable of tracking multiple people in a room and offers a touchless human-machine interface for purposes that range from entertainment to hygiene
    corecore