1,861 research outputs found

    Ideal-quasi-Cauchy sequences

    Get PDF
    An ideal II is a family of subsets of positive integers N\textbf{N} which is closed under taking finite unions and subsets of its elements. A sequence (xn)(x_n) of real numbers is said to be II-convergent to a real number LL, if for each \;ε>0 \varepsilon> 0 the set {n:∣xn−L∣≥ε}\{n:|x_{n}-L|\geq \varepsilon\} belongs to II. We introduce II-ward compactness of a subset of R\textbf{R}, the set of real numbers, and II-ward continuity of a real function in the senses that a subset EE of R\textbf{R} is II-ward compact if any sequence (xn)(x_{n}) of points in EE has an II-quasi-Cauchy subsequence, and a real function is II-ward continuous if it preserves II-quasi-Cauchy sequences where a sequence (xn)(x_{n}) is called to be II-quasi-Cauchy when (Δxn)(\Delta x_{n}) is II-convergent to 0. We obtain results related to II-ward continuity, II-ward compactness, ward continuity, ward compactness, ordinary compactness, ordinary continuity, δ\delta-ward continuity, and slowly oscillating continuity.Comment: 16 pages. arXiv admin note: text overlap with arXiv:1005.494

    Continuous selections of multivalued mappings

    Full text link
    This survey covers in our opinion the most important results in the theory of continuous selections of multivalued mappings (approximately) from 2002 through 2012. It extends and continues our previous such survey which appeared in Recent Progress in General Topology, II, which was published in 2002. In comparison, our present survey considers more restricted and specific areas of mathematics. Note that we do not consider the theory of selectors (i.e. continuous choices of elements from subsets of topological spaces) since this topics is covered by another survey in this volume

    Transfunctions and Other Topics in Measure Theory

    Get PDF
    Measures are versatile objects which can represent how populations or supplies are distributed within a given space by assigning sizes to subregions (or subsets) of that space. To model how populations or supplies are shifted from one configuration to another, it is natural to use functions between measures, called transfunctions. Any measurable function can be identified with its push-forward transfunction. Other transfunctions exist such as convolution operators. In this manner, transfunctions are treated as generalized functions. This dissertation serves to build the theory of transfunctions and their connections to other mathematical fields. Transfunctions that identify with continuous or measurable push-forward operators are characterized, and transfunctions that map between measures concentrated in small balls -- called localized transfunctions -- can be spatially approximated with measurable functions or with continuous functions (depending on the setting). Some localized transfunctions have fat graphs in the product space and fat continuous graphs are necessarily formed by localized transfunctions. Any Markov transfunction -- a transfunction that is linear, variation-continuous, total-measure-preserving and positive -- corresponds to a family of Markov operators and a family of plans (indexed by their marginals) such that all objects have the same instructions of transportation between input and output marginals. An example of a Markov transfunction is a push-forward transfunction. In two settings (continuous and measurable), the definition and existence of adjoints of linear transfunctions are formed and simple transfunctions are implemented to approximate linear weakly-continuous transfunctions in the weak sense. Simple Markov transfunctions can be used both to approximate the optimal cost between two marginals with respect to a cost function and to approximate Markov transfunctions in the weak sense. These results suggest implementing future research to find more applications of transfunctions to optimal transport theory. Transfunction theory may have potential applications in mathematical biology. Several models are proposed for future research with an emphasis on local spatial factors that affect survivorship, reproducibility and other features. One model of tree population dynamics (without local factors) is presented with basic analysis. Some future directions include the use of multiple numerical implementations through software programs
    • …
    corecore