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ABSTRACT

The compactness defined by Warner and McLean is 
extended to arbitrary L-fuzzy sets where L is a fuzzy 
lattice, i.e., a completely distributive lattice with an 
order reversing involution. It is shown that with our 
compactness we can build up a satisfactory theory. The 
different definitions of compactness in L-fuzzy 
topological spaces are stated and other characterizations 
of some of these notions are obtained. We also study 
their goodness and establish the inter-relations between 
the compactnesses which are good extensions.

Good definitions of L-fuzzy regularity and normality 
are proposed.

Following the lines of our compactness we suggest 
two definitions of L-fuzzy local compactness that are 
good extensions of the respective ordinary versions. A 
comparison between them is presented and some of their 
properties studied. A one point compactification is also 
obtained.

By introducing a new definition of a locally finite 
family of L-fuzzy sets and combining it with our 
definition of compactness, we propose an L-fuzzy 
paracompactness and study some of its properties.

Good definitions of L-fuzzy countable and sequential 
compactness and the Lindelof property are introduced and 
studied.

We also present, in L-fuzzy topological spaces, good 
extensions of S-closedness and RS-compactness. Some of 
their properties are examined.

Good L-fuzzy versions of almost compactness, near 
compactness and a strong compactness are put forward and 
studied. A comparison between these compactness related 
concepts is also presented.
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NOMENCLATURE

The following list contains the most frequently used 

classical symbols. Some of them will be also used to 

represent fuzzy concepts. A list of the most frequently 

used fuzzy notations will be given later on.

IN the set of the natural numbers

0 the set of the rational numbers

0 the empty set

M partial order relation and its negation

strict partial order relation and its 
negation

max maximum

V j oin

A meet

/ order reversing involution (def. 1.1.9)

(X, 5 )i a topological space

(A,Sa) a subspace of a topological space (X,<5) 

cl(X) the closure of the set X 

int(X) the interior of the set X

P(X) the power set of X

*A the characteristic function of A

xeX x is an element of X

x£X x is not an element of X 

{xeX;P} the set of all elements x in X satisfying the
condition (s) P

{*} the singleton set having the element x

A-B the set {x; xeA, xiB}
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c,<{ the relation "is properly contained in" on a 

power set and its negation

s,i the relation "is contained in" on a power set 
and its negation

(A } t or (A„) 1 aJaeJ a aej indexed family of sets

u_ A . .Up A the union of the family (A ) T aej a' Ae?? J a aej
(respectively ??) .

A .„rv, A the intersection of the family (A ) aej a ' Ae?? “a ae J
(respectively ??) . 

f : X-»Y a function from X to Y

TT
ae J A the a cartesian product of the family (Aa)aej

f (A) , f_1 (A) the image of A and the inverse image of A
under f

f (x) , f_1(y) the image of X and the inverse image of y
under f

f|A the restriction of the function f to the set A

m
(xm) melN o r  (x  ™ a secï uence o f  te rm s  x ,meIN m

m.
(xm ) or (x 1)ie|N a subsequence of (*JmclM orm. ...l  ielN m me(N

, m. (x ),

m

melN resPectively 

x“‘ ^ x the sequence (xra)m€(N converges to x

xm x the negation of the statement xm x

Ci first countable

C second countable
2

V the quantifier "for each"

pr(L) the set of all prime elements (def. 1.1.12) of 
a lattice L

M(L) the set of all union irreducible elements 
(def. 1.1.13.) of a lattice L

na the a-th projection map
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2 W the family of all finite subsets of the 

collection 4.

0,1 the smallest and the largest element of a 
lattice L

e«b e is way below b (def. 1.1.4)

(3 (a) the union of all minimal sets relative to a 
(def. 1.1.16)

/3* (a) the intersection of |3(a) and M(L) where aeL

A list of the most frequently used fuzzy notations 

will now be given with a reference to where they first 

appear in the text.

LX the set of all L-fuzzy sets on X (def. 2.1.1)

suppf the support of an L-fuzzy set f (def. 2.1.4)

0 the empty fuzzy set in X (def 2.1.1)

X the full fuzzy set in X (def. 2.1.1)

pr(LX)
x

the set of all prime elements of L (remark 
2.1.5)

M(LX)
x

the set of all coprime elements of L (remark 
2.1.7)

X
P

an L-fuzzy point of X (def. 2.1.6)

Xa
y

a coprime element of L (def. 2.1.7)

x ef 
P

the L-fuzzy point, x^ is a member of the 

L-fuzzy set f (def. 2.1.6)

■VT f- ,le J l ' f the join of the family 

(respectively £) of L-fuzzy sets (remark 2.1.3)

.A f. le J l ' feW f the meet of the family (fj_)i€j 
(respectively E?) of L-fuzzy sets (remark 2.1.3)

f (g) the image of an L-fuzzy set g under a function 
f (def. 2.2.1)

f 1 (g) the inverse image of an L-fuzzy set g under a
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function f (def. 2.2.2)

X,
(S ) „ a net in X of term SeM(L )' m meD m

(def. 2.3.1)

supp Sm the support of the term Sm of a net (Sm)meD 

(remark 2.3.2)

h(S ) the height of the term Sm of a net (sm)m€D 

(remark 2.3.2)

m
(xm ) an a-net of term xa where x is its a „ mm meD

support and am its height (def. 2.3.8)

(X(3") an L-fuzzy topological space (def. 3.1.1)

(A,3"a) a subspace of an L-fuzzy topological space 

(X,7) (def. 3.2.3)

cl(f) the closure of an L-fuzzy set f (def. 3.1.5)

int(f) the interior of an L-fuzzy set f (def. 3.1.5)
x

S -» x the net (S ) _ converges to x eM(L ), i.e.,m a m meD 3 a '
x is a limit point of (S )„ _ (def. 3.1.9(i)) a c m meD

m(5) the set of all continuous functions from a 
topological space (X,<5) to a lattice L with 
its Scott topology (remark 3.2.5)

i (f) the set {xeX; f(x)^p} where f belongs to an
ir

L-fuzzy topology 3" and pepr(L) (remark 4.6.9)

iL (y) the ordinary topology with subbase <p(V) =

{i (f); pepr(L) and fe?} u {x} where (X,7) is 

an L-fuzzy topological space.

C first countable (def. 3.4.1)

C2 second countable (def. 3.4.2)
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INTRODUCTION

The theory of fuzzy sets was introduced by Zadeh 

[108] in 1965 with the purpose of developing a 

mathematically precise framework to deal with 

indefiniteness, with the vagueness that exists in the 

real world. This has caused great interest among pure 

and applied mathematicians and experts in other areas. 

Since then, work has been done by many authors, in 

several directions, which has resulted in the formation 

of a new mathematical field called "Fuzzy Mathematics".

Fuzzy set theory can be thought of as a mathematical 

model for imprecise concepts. A fuzzy set is a sort of 

generalized "characteristic function", whose "degrees of 

membership" can be more general than "yes" or "no", that 

is, a membership function which describes the gradual 

transition from membership to nonmembership. This notion 

replaced the rigid membership relation of ordinary set 

theory by the flexible grade of membership.

In [108], Zadeh defined fuzzy sets in terms of 

functions from a set to the closed unit interval and 

introduced basic notions such as fuzzy union, 

intersection and complement.

In 1967, Goguen [38] extended the concept of fuzzy 

set by replacing the unit interval by an arbitrary 

lattice with both a minimal and a maximal element, thus, 

introducing the notion of an L-fuzzy set. He showed how 

the language of categories and functors could be used to
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describe a fuzzification of whole theories in a unified 

manner.

Interest has been aroused in the application of 

fuzzy sets to such fields as artificial intelligence, 

optimization, pattern recognition and decision theory.

General topology was one of the first branches of 

pure mathematics to which fuzzy sets have been applied 

systematically. It was in 1968, that Chang [18] made the 

first attempt to formulate a theory of fuzzy topological 

spaces. He showed for the first time that basic 

topological notions can be extended to fuzzy topological 

spaces. He introduced the notion of fuzzy topological 

space and also defined fuzzy image and fuzzy inverse 

image under a function and extended a number of 

properties of functions, such as continuity, to fuzzy 

topology. He adopted Zadeh's fuzzy sets.

Since the early eighties, the intensity of research 

on fuzzy topology, that is a branch of fuzzy mathematics, 

has sharply increased. As remarked by Lowen [57], while 

topology classifies objects (spaces, functions, filters 

etc...) into classes, those which fulfill and those which 

do not fulfill a certain property (compactness, 

continuity, convergence, etc...) and the theory is 

developed mainly on classes of objects which have "good" 

properties; fuzzy topology, also classifies and studies 

those objects not having a given property, into 

subclasses, each of which is characterized by the fact

that its objects have an approximate - to a certain 

degree - form of that property. Concerned about
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developing a technique with which we can measure a degree 

to which a space has a given property or not, we have, 

for instance, the works by Lowen [57], Wuyts and Lowen 

[104], Lowen and Lowen [52] and Rodabaugh [83].

The notion of point plays an important role in 

general topology. In spite of the fact that many 

important results had been obtained in fuzzy topology 

without this notion, it is impossible not to deal at all 

with the notion of point. So, the fuzzification of 

points was necessary. A point is a minimal object in the 

sense of the relation of belonging, that is, nothing can 

belong to a point. A peculiarity of fuzzy set 

mathematics is the absence of such minimal objects.

In Chang's work [18], he did not define fuzzy 

points, but introduced neighbourhoods and sequences of 

fuzzy sets.

The fuzzy point problem was avoided by Hutton [44] 

and others, adopting the so called "pointless approach", 

where either a fuzzy topological theory or a fuzzy 

neighbourhood theory is built up without reference to 

points.

Many mathematicians tried to define fuzzy point and 

its membership relation. In 1974, Wong [103] based on 

the notion of fuzzy singleton introduced by Zadeh [109], 

defined fuzzy points as fuzzy singletons and fuzzy 

membership with strict inequality. But in 1979, Gottwald 

[40] showed that Wong's definition of fuzzy membership 

was not good and some of the results were not correct.

Gottwald [40], Ghanin et al [36] and Kerre [47] used
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the concept of fuzzy singleton, not mentioning points.

Sarkar [86, 87], Srivastava et al [91, 92], Deng 

[26, 27], de Mitri and Pascali [69], Bulbul [10, 11] and 

others worked with a modified version of Wong's fuzzy 

membership and with his definition of fuzzy point. But 

Wong's definition as well as this version exclude the 

crisp points that are the classical points.

Pu and Liu [80] including crisp points in fuzzy 

points, considered the fuzzy membership relation  ̂and 

introduced quasi-coincidence. These two relations are 

connected as follows: a fuzzy point belongs to a fuzzy 

set if and only if it is not quasi-coincident to its 

complement.

Wang, in [96], introduced the notion of a molecule, 

which is a kind of fuzzy point.

In [99], Warner, considering a frame L defined 

L-fuzzy points locale-wise by frame homomorphisms to the 

two-point set, and so corresponding bijectively to prime 

elements. Membership emerges in terms of

Kerre and Ottoy in [48] gave a detailed survey of 

the various definitions of fuzzy points and corresponding 

neighbourhood theories.

In [54], Lowen introduced another definition of 

fuzzy topology that is a restriction of the point-fuzzy 

set approach in which L=[0,1] and the fuzzy topology on a 

set X contains all the constant maps from X to [0,1]. In 

[54], Lowen gave some reasons to adopt this constant maps 

approach and in [58] he and Wuyts insist on the 

advantages of this definition. In [85], Rodabaugh

14



pointed out some reasons to justify non-stratified 

spaces, that is, spaces without the requirement that all 

the constant maps are in the topology.

The third definition of fuzzy topological space is

due to Hutton [44]. Realising that if L is a fuzzy

lattice, a completely distributive lattice with an

Xorder-reversing involution, then L is also a fuzzy 

lattice, he defined pointless fuzzy topological spaces. 

His studies are related to lattice theory.

Different definitions of fuzzy topology and several 

approaches to fuzzy topology have been pointed out. We 

have the Chang-Goguen fuzzy topological category which 

uses the point-fuzzy set approach. We also have Lowen's 

category called the constant maps approach and Hutton's 

category which represents the pointless approach to fuzzy 

topology.

In [84], Rodabaugh introduced a new fuzzy 

topological category called Fuzz. It is a generalization 

of ordinary topology, of the pointless approach, the 

point-fuzzy set approach and the constant maps approach 

to fuzzy topology. In this work he also summarizes the

previous approaches.

In [68], Mingsheng pointed out a new approach for 

fuzzy topology with fuzzy logic and studied the 

neighbourhood structure of a point and the convergence of 

nets and filters. He remarked that a fuzzy topological 

space was defined as a classical subset of the fuzzy 

power set of a non-empty classical set which is closed 

for finite intersection and any union operations, i.e.,
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fuzzy objects were being investigated by crisp methods. 

Then he used the semantics of fuzzy logic, a fuzzy 

method, to investigate topology and to propose a 

topology whose logical foundation is fuzzy, observing 

that we can consider other topologies based on 

many-valued logics. In this work he defined bifuzzy 

topology, fuzzy topology and fuzzifying topology.

In [41] Hazra, Samanta and Chattopadhyay gave a new 

definition of fuzzy topology by introducing a concept of 

gradation of openness of fuzzy subsets and then studied 

fuzzy continuity. In [19] they modified the definition 

of gradation function and then studied subspaces of fuzzy 

topological spaces, gradation preserving maps and the 

category of fuzzy topological spaces. With this 

modification, their definition of fuzzy topological 

spaces coincides with the already introduced concept of 

smooth topological spaces [82], where the lattices L and 

L' in Ramadan's smooth topological spaces [82] are taken 

both equal to [0,1].

In [16], Chakraborty and Ahsanullah introduced 

another category for fuzzy topological spaces and also a 

new category for fuzzy sets. Within the categories 

considered another peculiarity of L-fuzzy spaces, up to 

the time that [16] was published, was the nonavailability 

of the subspace topology for any fuzzy subset of any 

fuzzy space, that is, subspaces made sense only for crisp 

subsets of L-fuzzy spaces. In the approach of 

Chakraborty and Ahsanullah [16] to fuzzy topology, 

subspaces may be defined on any fuzzy set.
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In the same year Chakraborty and Banerjee presented 

in [17] a different category for fuzzy topological 

spaces, that includes as subcategories, both the 

categories of Chakraborty and Ahsanullah [16] and 

Rodabaugh [84] and hence Chang-Goguen [18, 38], Lowen 

[54] and Hutton's categories [44].

Macho Stadler and Prada Vicente [60], working with 

Chang's definition of fuzzy topological spaces, defined 

fuzzy topological subspaces for arbitrary fuzzy sets, 

which coincides with the usual definition given in [80] 

for crisp sets of fuzzy spaces.

In the unpublished work "A new approach to fuzzy 

topological spaces and fuzzy perfect mappings", R.D.

Sarma and N. Ajmal [88] proposed yet another approach to 

defining a fuzzy topological space. This approach is 

net-theoretic and the fuzzy topological spaces obtained 

form a category. In their work, they claim that their 

category, which is a subcategory of the Chang-Goguen 

category, is free from the drawbacks of Chang-Goguen's 

category. For instance, in their category, a rich 

convergence theory can be developed, projections are open 

and there are many properties of general topology for 

which it is more suitable.

In [25] Dang et al. worked on fuzzy supratopological 

spaces.

In [56] Lowen introduced the so called "goodness 

criterion" and in [98], Warner generalised this criterion 

to a continuous frame L.

Compactness is one of the most important notions in
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pure mathematics. Therefore it is natural to pay 

particular interest to it in fuzzy topology.

The first definition of compactness in a fuzzy 

topological space was suggested in 1968 by Chang [18].

But very soon the disadvantages of this definition became 

clear and compactness in fuzzy topology was shown to be 

far more complex than in general topology.

The next compactness results are due to Goguen [39], 

who proved a Tychonoff theorem for finite products.

Goguen was the first to point out a deficiency in Chang's 

compactness theory by showing that the Tychonoff theorem 

is false for infinite products.

After that, Wong [102] treated compactness, defined 

sequential and countable compactness and in [103] he 

introduced local compactness.

Weiss [101] dealt with a subfamily of the family of 

all fuzzy topologies on a fixed set, induced fuzzy 

topological spaces. Since no member of a Weiss subfamily 

is compact in the sense of Chang, he introduced a new 

notion of compactness. Lowen [53] gave a new definition 

of a compact fuzzy space which, when restricted to Weiss' 

subfamily, is generalised by Weiss' definition. However, 

Lowen was able to obtain only a finite Tychonoff theorem.

Lowen, in [54], the work in which he altered the 

definition of a fuzzy topological space, gave a different 

definition of compact fuzzy space and obtained a 

Tychonoff theorem for an arbitrary product. In this 

paper he also proved that Chang's compactness is not a 

good extension.

18



In [35] Gantner, Steinlage and Warren proposed a 

definition of L-fuzzy compactness, where L is a 

completely distributive lattice (the so-called 

a-compactness (aeL)). With restrictions on a, they 

obtained a Tychonoff theorem for an arbitrary product and 

a one-point compactification.

In [56], Lowen studied different kinds of 

compactness notions that had already been introduced and 

added two more notions, ultra fuzzy compactness and 

strong compactness. He worked in fuzzy topological 

spaces as defined in [54]. He showed which of these 

compactnesses are good extensions, studied the 

implications between them and analysed for which notions 

there is a product theorem.

Hutton, in [44], introduced a strong definition of 

compactness and proved the Tychonoff theorem in L-fuzzy 

topology where L is a fuzzy lattice.

Wang [95] defined the notion of a-net and introduced 

a new kind of compactness in fuzzy topological spaces, 

the so-called N-compactness, by using a-nets from the 

point of view of convergence. N-compactness has almost 

all the properties that ordinary compactness has in 

general topology.

Li, in [49], proposed two more kinds of fuzzy 

compactness, Q^-compactness and strong Q-compactness, 

based on Q-neighbourhoods and convergence of nets.

Peng [78] and Zhao [110] generalized N-compactness 

to L-fuzzy topological spaces, where L is a complete 

completely distributive lattice.

19



Hohle [42] introduced a different concept of L-fuzzy 

compactness, called probabilistic compactness, where L is 

a complete Boolean Algebra. A convergence theory is 

developed, and the new concept of compactness is 

introduced by means of 1-ultrafilters. This compactness 

is useful in probability theory.

Eklund and Gahler [31] defined fuzzy compactness by 

means of nets and compared this with two modified versions, 

one of which uses a covering property and the other uses 

filters. In [32] they defined compactness by means of 

almost bounded nets.

Ganguly and Saha, in [34], presented a definition of 

fuzzy compactness by filters.

In [15], Chadwick proposed another fuzzy compactness 

that is a modification of Wang's N-compactness.

Prada Vicente and Macho Stadler, in [79], introduced 

the notion of t-prefilter and obtained a characterization 

of t-compactness [35] by means of maximal t-prefilters.

In [100], Warner and McLean suggested a definition 

of L-fuzzy compactness, where L is a frame. By 

considering L a continuous spatial frame they proved the 

goodness of this definition.

In [66], Meng mentioned that Wang, in a work in 

Chinese, generalised Lowen's compactness [54] to a 

general L-fuzzy topological space. In this work Meng 

obtained new characterizations for Lowen's compactness in 

L-fuzzy topological spaces, where L is a fuzzy lattice.

Xu, in [105], referred to another L-fuzzy 

compactness which it would seem exists only in a work in
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Chinese, that is weaker than N-compactness [95].

In [67], Meng mentioned that Wang, in a work in 

Chinese has generalized ultra fuzzy compactness [56] to 

L-fuzzy topological spaces.

Thus, many papers dealing with compactness have been 

written and various kinds of fuzzy compactnesses have 

been introduced and studied. However, each of them has 

its own limitation, some more and others less. As Eklund 

[30] remarked, in fuzzy topology the notion of 

compactness is almost a nuisance.

In this work we propose an extension to arbitrary 

L-fuzzy sets, of the compactness defined in [100].

Working with a fuzzy lattice L, we study some properties 

of this new definition. We also propose some good new 

definitions of countable, sequential, local, almost, 

nearly, strong and RS-compactness, as well as, new good 

ones of paracompactness, Lindeloffness and S-closedness 

and study some of their properties. Good definitions of 

regularity and normality are also introduced. We compare 

our definition of an L-fuzzy compact set with the other 

good definitions already introduced in L-fuzzy 

topological spaces, as well as present a comparison 

between our concepts of compactness; S-closedness; 

almost, nearly, strong and RS-compactness.
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The thesis is divided into twelve chapters as follows

I Lattice theory

II L-fuzzy set theory

III Fuzzy topological spaces

IV Compactness in L-fuzzy topological spaces

V Countable compactness, Sequential compactness

and Lindelofness

VI Local compactness in L-fuzzy topological spaces

VII Paracompactness in L-fuzzy topological spaces

VIII Some weaker forms of compactness

IX S-closedness in L-fuzzy topological spaces

X RS-compactness in L-fuzzy topological spaces

XI S-compactness in L-fuzzy topological spaces

XII A comparison between the concepts introduced in 

chapters VIII, IX, X and XI and some related 

properties

From chapter V on, L will be always a fuzzy lattice.
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CHAPTER I

Lattice Theory

This chapter consists essentially of some 

definitions and results on lattice theory upon which this 

work is based. Our purposed is to make this work 

reasonably self-contained. For more details we refer to 

Johnstone [45], Gierz et al. [37] and Birkhoff [8].

We divide this chapter in two sections.

We devote the first section to some basic 

definitions.

The second section is reserved for some related 

properties.
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1. Basic definitions

Definition 1.1.1. Birkhoff [8]

A directed set D is a set with a partial order  ̂

such that for each pair m,j of elements of D, there 

exists an element k of D having the property that k^m and 

k*j.

Definition 1,1.2. Birkhoff [8]

A lattice L=L (i/,v) is a set L equipped with a 

partial order in which every finite subset has a join 

and a meet, where meet and join are denoted by A and v 

respectively.

Definition 1.1.3. Birkhoff [8]

A complete lattice is a lattice in which every set 

has a join and a meet. We denote L the largest element 

of L, VL, by 1 and its smallest element, AL, by 0. We 

consider 0 as the join of the empty set and 1 as the meet 

of the empty set.

Definition 1.1.4. Gierz et al. [37]

Let L be a complete lattice. We say that e is way 

below b, in symbols e«b, if and only if for any directed 

subset D of L the relation b^vD always implies the 

existence of deD with ê d.

Definition 1.1.5. Gierz et al. [37]

A continuous lattice L is a complete lattice in
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which for all eeL, e=v {x€L; x«e} .

Definition 1.1.6. Johnstone [45]

A locale or a frame L is a complete lattice 

satisfying the infinite distributive law

eA(vS) = v {eAX; xeS}

for all eeL and all S£L.

Definition 1.1.7. Gierz et al. [37]

A lattice L is called completely distributive if 

and only if it is complete and the following condition 

holds:

.A i .v e . .]
xel |jeJi

V
feK ■ ATe ’xel x, f (i)

where for each iel and for each jej., e. .e L, and K is 

the set of all maps f: I-xaJL such that for every iel, 

f(i)eJi.

Definition 1,1.8. Birkhoff [8]

Let A be a set that is equipped with a partial 

order. Then BcA is called a chain in A if and only if 

each two elements in B are related.

Definition 1.1.9. Birkhoff [8]

An order reversing involution on a lattice L is a
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map x->x' from L to L satisfying:

(i) if e i b then b'  ̂e'

(ii) (e')' = e

Definition 1.1.10. Hutton [44]

A fuzzy lattice is a completely distributive lattice 

with an order reversing involution.

Definition 1.1.11. Johnstone [45]

A frame morphism is a map between frames which 

preserves finite meets and arbitrary joins.

Definition 1.1.12. Gierz et al. [37]

An element p of a lattice L is prime if and only if 

p*l and whenever e,beL with eAb^p then e^p or b^p. The 

set of all prime elements of a lattice L will be denoted 

by pr(L).

Definition 1.1.13. Gierz et al. [37]

An element a of a lattice L is coprime or union 

irreducible if and only if a*0 and whenever e,beL with 

a^evb then a^e or a^b. The set of all coprime elements 

of a lattice L will be denoted by M(L).

Definition 1.1.14. Johnstone [45]

A frame L is called spatial if and only if for all 

e,beL with e^b there is a prime p with e^p^b.
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Definition 1.1.19. Johnstone [45]

A point of a frame L is a frame morphism from L to the 

frame {0,l}.

Remark 1.1.20. Johnstone [45]

When L is a frame, there is a one-to-one correspondence
0

between the points of L and the prime elements of the 

lattice L. Therefore we can regard points of L as prime 

elements of L.
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2. Some properties

Proposition 1.2.1. Blyth and Janowitz [9]

Let (L,') be a complete lattice with an order 

reversing involution. Then for any family (e^)^gj °f 

members of L we have:

(i) v
ie J e .l . a t e . ' îe J l

(ii) A
ie J e.'l

Proof

See theorem 17.1 of [9].

Proposition 1.2.2. Johnstone [45]

A locale L is spatial if and only if every element 

is a meet of primes, that is, every element is a join of 

coprimes.

Proof

See in Johnstone [45] pp43 and proposition 2.17 in 

Wang [97].

Proposition 1.2.3. Gierz et al. [37]

Every completely distributive lattice is a 

continuous frame and is therefore spatial.

Proof
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See in Gierz et al. [37] pp72 and section 1.3.7 and

1 . 3 . 12 .

Proposition 1.2.4. Johnstone [45]

Let L be a frame. Then the power set P(pr(L)) is a 

frame and the map <p ■ L-»P (pr (L) ) defined by <£(x) =

{pepr(L); p^x} is a frame morphism. Its image is 

therefore a topology on pr(L) . The map (p is injective if 

and only if L is spatial.

Proof

See Johnstone [45] pp41 and 42.

Lemma 1.2.5. (Zorn's lemma) Dugundji [29]

If each chain in a nonempty partially ordered set 

has an upper bound, then the set has a maximal element.

Proposition 1.2.6. Wang [97]

Let L be a complete lattice. Then L is a completely 

distributive lattice if and only if for every aeL, a has 

a minimal set, and hence 13(a) exists.

Proof

See theorem 2.11 in [97] .

Proposition 1.2.7, Zhao [110]

Let L be a completely distributive lattice. If 

aeL\{0}, then /3 (a) is a minimal set relative to a. 

Furthermore if aeM(L) then /3 (a) is a directed set.
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Proof

See lemma 4.1 in [110].

Example 1.2.8. Wang [97]

Let L = [0,1].

Thus pr(L) = [0,1), M(L) = (0,1], for every ae(0,l] 

/3(a) = [ 0 , a) and /3 (0) = { 0 } .

Proposition 1.2.9. Gierz et al. [37]

Let L be a continuous lattice. Then the sets of the 

form {qeL; eQ«q} form a basis for the Scott topology on 

L.

Proof

See remark 3.2 pp68 and proposition 1.10 (ii) ppl04 

in [37] .

Proposition 1.2.10. Gierz et al. [37]

Let L be a completely distributive lattice. Then

the sets of the form {xeL; x^e} generate the Scott 

topology.

Proof

See [37] ppl66 and pp205.

Proposition 1.2.11. Warner and McLean [100]

The Scott topology of a completely distributive 

lattice L is generated by the sets of the form {xeL; x^p} 

where pepr(L).

Proof

See proposition 2.1 in [100].
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CHAPTER II

L-fuzzy set theory

This chapter is concerned with the definitions and 

some properties of L-fuzzy sets, L-fuzzy points, image 

and inverse image of L-fuzzy sets that we shall use 

later on. We also present the definitions of nets, 

a-nets, sequences and a-sequences in the L-fuzzy context.

We divide this chapter in three sections.

The first section contains the definitions and some 

properties related to L-fuzzy sets and L-fuzzy points.

Section two is devoted to image and inverse image 

of L-fuzzy sets.

The third section is reserved for the definitions of 

nets, a-nets, sequences and a-sequences.

Although, some of the definitions, results and 

proofs we refer to are given only for L-fuzzy sets where 

L=[0,1], they are totally similar for a fuzzy lattice L.
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1. L-fuzzy sets and L-fuzzy points

In the following, let X be a nonempty set and let 

L=L (i,v ,A ,') be a fuzzy lattice with a smallest element 0 

and a largest element 1 (0*1). We consider 0 as the join 

of the empty set and 1 as the meet of the empty set.

Definition 2.1.1. Goguen [38]

An L-fuzzv set f on X is a function f:X->L. The set
x

of all L-fuzzy sets on X will be denoted by L .

The L-fuzzy sets on X defined by f(x) = 0 for every 

xeX and g(x) = 1 for every xeX will be denoted by <p and X 

respectively. We call them the empty L-fuzzy set and 

the full L-fuzzy set on X respectively.

Definition 2.1.2. Weiss [101]

A crisp set on X is an ordinary subset of X. In 

particular, its characteristic function from X to L is an 

L-fuzzy set. We shall denote the characteristic function 

of a set A£X by

Remark 2.1.3. Goguen [38]
x

To the set L , of all L-fuzzy sets, can be given

Xwhatever operations L has and these operations in L will

obey any law valid in L which extends point by point.

Thus, since L is a fuzzy lattice, L is also a fuzzy

lattice, with the partial ordering f^g if and only if
x

f(x)^g(x) for all xeX, for f,geL , and the operations of 

meet and join as:
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X
(i) (fAg)(x) = f(x)Ag(x) for each xeX and for f,geL

y
(ii) (fvg) (x) = f(x)vg(x) for each xeX and for f,geL

(iii) .V 
1€ J ei)

(x) ii

H
- m 

<
 

Ch f .l (X) =  V{fi(x); iej } for each

xeX and for f.eL
l

for each iej.

(iv)
r

A
[iej L ]

(x) - A 
ie J f .

l
(x) =  A{fi (x); iej} for each

XxeX and for f^eL for each iej.

We shall call fvg the union of f and g, fAg the 

intersection of f and g and read f^g as "f is contained 

in g" .

Definition 2.1.4. Weiss [101]

Let f be an L-fuzzy set on X. The support of f is 

defined by suppf = {xeX; f(x)>0}.

Remark 2,1.5.

Warner [99] determined the prime elements of the

X Xframe L of all L-fuzzy sets on X. We have pr(L ) =

{x ; xeX and pepr(L)} where for each xeX and each pepr(L)
.b'

x :X-»L is the L-fuzzy set defined by x (y) = -if* ‘’"f, y=x. p 1 1 p * \ 1  otherwise

y
By remark 1.1.20., the points of the frame L are 

in one-to-one correspondence with the prime elements of
y
L . Therefore we have the following:

Definition 2.1.6. Warner [99]

These x , in remark 2.1.5., are called the L-fuzzy
ir
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points of X and we say that x is a member of an L-fuzzy
Jr

set f on X and write x ef if and only if £ (x)  f p .
_£___

Remark 2.1.7,
XSince the prime elements of L are the functions

XptX-^L defined by x^(y) = |i o ^ x . where xeX and otherwise

Xpepr(L), the coprime elements of L are the functions 

xa :X^L defined by xtf (y) = j“ '̂f, ̂  x . where xeX and otherwise

aeM(L). As these may be identified with the L-fuzzy

points Xp of X, we shall refer to them as the L-fuzzy 

X Xpoints xg sM(L ) where M(L ) is the set of all coprime

X Xelements of L . In this case, that is, when x^eMiL ), we

shall call x and a the support of x (x-suopx )̂ and the

height of x^ (a = h(x ), respectively.

Remark 2.1.8. Warner [99]

Since L is spatial, by proposition 1.2.2. we have 

that every L-fuzzy set on X is a meet of L-fuzzy points in
Y

pr(L ) and so, every L-fuzzy set on X is a join of L-fuzzy
x

points in M(L ).
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2. Image and inverse image of L-fuzzy sets

In the following, let X and Y be nonempty ordinary 

sets, let f:X->Y be a function and let L be a fuzzy 

lattice.

Definition 2.2.1. Chang [18]

For an L-fuzzy set g on X, the image of g under f is 

the L-fuzzy set on Y defined by 

f(g) (y) = (iv) v{g(x); xef 1 (y)} for each yeY.

Definition 2.2.2. Chang [18]

For an L-fuzzy set g on Y, the inverse image of g 

under f is the L-fuzzy set on X defined by f 1 (g) (x) = 

g(f(x)) for each xeX.

The following is well-known.

Proposition 2.2.3. [18, 62, 81]

For a family (g^)^gJ of L-fuzzy sets on X and a 

family (h^)^ of L-fuzzy sets on Y we have:

(i) f_1 (ĥ ) = (f"1 (hi))'

(ii) if h. h. then f 1 (h. ) f_1 (h. )
i i l l1 2  1 2

(iii) if gi  ̂g. then f (g. ) < f (g )
1 2 1 2

(iv) f(f 1 (h.)) - h . . If f is onto then f(f 1 (h.))
i i  i
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(V)

(Vi)

(vii)

(viii)

(ix)

( X )

(xi)

- - 1

q. < f-1 (f(q.)). If f is injective then_) i  -11

f _1 (f (<3±) ) = Si 

f' 

f' 

f

S .A f (g. )
1 € J 3X

(f(gi))'  ̂f (g(_) if f is onto

.V h. 
leK x

.A h . 
xeK l

- ieK e"I(hi» 

= isK E"'(hi'

. V q, 
lej ax

. A q . 
lej yx

= -VT f (g. )l€j 3X

f(g^)£(f(g^))' if f is injective

Proposition 2.2.4. Malghan and Benchalli [62]

For a family (g.). T of L-fuzzy sets on X and an 

L-fuzzy set h on Y we have:

(i) if g. ~ *3± then suPP9-l £ supp g^
1 2 1

supp .V 
xe J SiJ

ii
H- me supp g ±

supp f m
j=l % ,) -321

supp gi
j

(iv) f (supp gi) = supp f(gi)

(v) f_1(supp h) = supp f_1 (h)
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3. Nets and Sequences

In the following, let X be a nonempty ordinary set 

and let L be a fuzzy lattice.

Definition 2.3.1. Zhao [110]

Let D be a directed set, X a nonempty ordinary set

X Xand let M(L ) be the set of all coprimes of L . A net in
y

X is a function S:D-»M(L ) . For meD, we shall denote S (m) 

by Sm and the net S by (Sm)m€D .

Remark 2.3.2.

If (S ) n is a net in X, then S is an L-fuzzy m meD ' m 1
y

point in M(L ). Thus we shall denote by supp Sm and 

h(Sm) the support and height of S , respectively.

Definition 2.3.3.
y

Let feL and let (S ) n be a net in X. The netm meD

(S ) „ is called a net contained in f if and onlv if m meD --- --------- —  —

S ^f for each meD, i.e., f(supp S )£ h(S ) where h(S ) m ' ^  m m m
y

is the height of the L-fuzzy point Sm in M(L ).

Definition 2.3.4.
y

A sequence in X is a function S:IN-»M(L ) where IN is

the set of all natural numbers. We shall denote S(m) by

S and S by (S ) .. .m 1 m melN

Remark 2.3.5.

We say that the sequence (sm)melN in x is contained
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CHAPTER III

Fuzzy topological spaces

Different definitions of fuzzy topology have been 

stated in the literature [e.g. 18, 54, 44, 8 8 , 41, 39]. 

The first basic notion of fuzzy topology is due to Chang 

[18]. In [54], Lowen required that a fuzzy topology had 

one more axiom, which included the constant fuzzy sets. 

Here we adopt Chang's definition of fuzzy topology and 

consider that of Lowen as a special case (definition 

3.2.1.) .

This chapter is divided in four sections.

Our main goal in section 1 is to establish the basic 

notions and results of L-fuzzy topology that here we 

shall deal with. We also present some results, obtained 

by us, that will be necessary later on, as well as, some 

definitions that we propose.

Section 2 is reserved for some special L-fuzzy 

topological spaces and some related properties.

The third section is devoted to some special 

functions with some of their properties.

In the fourth section we concentrate on countability 

and separation axioms. Here we propose new good 

definitions of regularity and normality.
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Although, some of the definitions, results and 

proofs we refer to are given only for [0 ,1 ]-fuzzy 

topological spaces, they are totally similar for an 

L-fuzzy topological space where L is a fuzzy lattice.
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1. Some basic definitions and assertions

In the following, let X be a nonempty set and let 

L=L(^,v ,a ,') be a fuzzy lattice with a smallest element 0 

and a largest element 1 (0*1 ) .

Definition 3.1.1. Chang [18]
x

An L-fuzzv topology on X is a subset J of L , the 

set of all L-fuzzy sets, having the following properties:

(i) the L-fuzzy sets 0 and X belong to 9".

(ii) i f  f ,  g are in 9" then f A g  is in J.

(iii)if (f.) . T is a family in 9" then .VT f . is in 9". ]  ] e J  1 J €J  3

The pair (X^), where 9" is an L-fuzzy topology on X, 

is called an L-fuzzy topological space (for short L-fts).

If (X,9") is an L-fuzzy topological space, we say

that an L-fuzzy set f is open or 9'-open in the L-fuzzy

topological space (X,9") if and only if fe9\ We say that
x

feL is closed or 9'-closed in the L-fts (X,9") if and only 

if f'€9\

Definition 3.1.2. Wong [103]

Let (X,9-) be an L-fts. A collection Sc9" is said to 

be a base for 9" if and only if for each fe9’, there is a 

collection E’cS such that f = Vg.

Definition 3.1.3. Wong [103]

Let (X,9") be an L-fts. A collection ¡fcJ is said to
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be a subbase for 7 if and only if the family of all

finite intersection of members of !f forms a base for 3 . 

Proposition 3.1.4.

Let (X,¡7) be an L-fts. Then feS- if and only if for 

all pepr(L) and for every xeX such that f(x)^p, there is 

gefT with gsf and g(x)^p.

Proof

Necessity:

Take g=f.

Sufficiency:

Suppose that fiJ. Let 9"* = {geJ; g<f} .

Since^^g € y( f* Vy.g. But for all geST* we have 

g-ggj.g<f • Thus, there is xeX with g(x) £ |gVy#gj (x) cf (x)

for all geST*. So, f (x) $ (ĝ g-.gj (x) .

By the spatiality of L (proposition 1.2.3.), there 

exists qepr(L) such that f ( x ) a n d  |ggg-.gj (x)-<3• Then

f(x)$q and g(x)^q for all geST , yielding a contradiction.

Definition 3.1.5. Pu and Liu [80]

Let ( X, J) be an L-fts and let feLX . The interior of 

f, int(f), and the closure of f, cl(f), are defined as 

follows:

int(f) = v{g€ST; g^f}

cl(f) = A{geLX ; gaf and g'e^}
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Remark 3.1.6.

(i) Evidently int(f) is the largest open L-fuzzy 

set contained in f and int(int(f)) = int(f). Similarly 

cl(f) is the smallest closed L-fuzzy set containing f and 

cl(cl (f)) = cl(f). Pu and Liu [80]

(ii) (cl (f) )' = int(f') and (int(f))' = cl(f') Pu 

and Liu [80]

(iii) for a family (f.). , of L-fuzzy sets we have:
1 jej

V
j€j 

J is

Cl(fj) * 

finite,

V — f-eJ 3

Cl(fj)

j ve j  i n t < V s l n c ( : i j  £ j ’

cl(jfa fj) Azad 171■

and if

Definition 3.1.7.

Let (X,J) be an L-fts and let feLX . The L-fuzzy set 

f is called:

(i) Regularly open [7] if and only if f=int(cl(f)).

(ii) Regularly closed [7] if and only if 

f=cl(int(f)).

(iii) Semiopen [7] if and only if there exists geJ 

such that g^fscl(g).

(iv) Semiclosed [7] if and only if there exists a 

closed L-fuzzy set g such that int(g)^f^g.

(v) Regularly semiopen [23] if and only if there 

exists a regularly open L-fuzzy set g such that 

g^f^cl(g) .

(vi) Regularly semiclosed [23] if and only if there 

exists a regularly closed L-fuzzy set g such that

int(g)^f^g.

(vii) pre-open [75] if and only if fsint(cl (f)) .
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(viii) ore-closed [75] if and only if cl(int(f))sf.

Remark 3.1.8. Azad [7]
x

Let (X,y) be an L-fts and let feL .

(i) f is semiclosed if and only if int(cl(f))^f.

(ii) f is semiopen if and only if cl(int(f) ) .

(iii) the closure of an open L-fuzzy set is a

regularly closed L-fuzzy set.

(iv) the interior of a closed L-fuzzy set is a 

regularly open L-fuzzy set.

Definition 3.1.9.

Let (X,?) be an L-fts, let be an L-fuzzy point in

M(LX) and let (S ) _ be a net. The L-fuzzy pointm meD

x eM(LX) is called a: a

(i) limit point [110] of <Sm)meD (or (Sm)meD

converges to x ) if and only if for each closed L-fuzzy

set f with f(x)ia there exists meD such that m^mT o o

implies that S if, i.e., f(supp S )th(S ) where supp S * m 1 m ■ m m

and h(Sm) are the support and the height of (sm)meD

respectively.

Notation S„->x m a

(ii) cluster point illO] of (S ) _ if and onlv ifm meD

for each closed L-fuzzy set f with f ( x ) w e  have that 

for all jeD there is meD such that m^j and S^f/ i.e., 

f(supp Sm)^h(Sm).

(iii) Q - cluster point of (S ) „ if and only if for

each closed L-fuzzy set f with f(x)^a we have that for 

all jeD there is meD such that m^j and Sm^int(f), i.e.,
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(int(f))(supp Sm)^h(Sm).

(iv) S - cluster point of (Sm)meD if and only if for 

each closed L-fuzzy set f with f(x)^a we have that for 

all jeD there is meD such that maj and S ^cl(int(f)) , 

i.e., (cl(int(f)))(supp Sm)^h(Sm).

(v) Semi - S - cluster point of (sm)meD if and only 

if for each semiclosed L-fuzzy set f with f(x)^a we have 

that for all jeD there is meD such that m^j and

S^cl (int (f) ) , i.e., (cl(int(f)))(supp Sm)^h(Sm).

(vi) Semi - 9 - cluster point of (Sm)mgD if and only 

if for each semiclosed L-fuzzy set f with f(x)^a we have 

that for all jeD there is meD such that m^j and 

Sm^int(f), i.e., (int(f))(supp Sm)^h(Sm).

(vii) pre-cluster point of (Sm)mgD if and only if for 

each pre-closed L-fuzzy set f with f(x)^a we have that 

for all jeD there is meD such that m^j and S^f, i.e., 

f(supp Sm)^h(Sm).

Proposition 3.1.10.
V

Let (X,T) be an L-fts. An L-fuzzy point xfteM(L ) is 

a cluster point of a net in ( X, J ) if and only if this net 

has a subnet converging to x^.

Proof

The same as that given by Pu and Liu [80] in theorem

13.2.
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2. Some special L-fuzzy topological spaces

Definition 3.2.1. Pu and Liu [81]

An L-fuzzy topological space (X,̂ ) is fully 

stratified if and only if each L-fuzzy set on X taking a 

constant value on X is open.

Definition 3.2.2, Mashhour et al. [64]

An L-fts (X, 3”) is said to be extremallv disconnected 

if and only if cl(f) e U for every fe3".

Definition 3.2.3. Gantner et al. [35]

Let (X,i7) be an L-fts and AcX. Let U be the set of 

restrictions {f|A ; Then 3" is an L-fuzzy topology

on A and we say that (A, 3" ) is an L-fuzzy subspace of

(X, J) .

Definition 3.2.4. Wong [103]

Let [(X , 3" )I be a family of L-fts's, let X be
l A a 'AeJ

the cartesian product X., and let tta :X-»X̂  be the
A € u  A A A

Ath-projection map. Let ¡f = in-” 1 (jx̂) ; AeJ and i
' A J

and let B be the family of all finite intersections of 

members of ¡ f . The L-fuzzy topology 3" on X, having f  as a 

subbase and B as a base, is called the product topology. 

The pair (X,3") is called the L-fuzzy product space of the 

L-fts's (X̂ , 3X ), AeJ.
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Remark 3.2.5. Warner [98]

Let (X, <5) be a topological space. The set F of all 

continuous functions from (X,S) to L with its Scott 

topology forms an L-fuzzy topology, which will be denoted 

by (j (S ) .

When L= [0,1] , then F is the set u(«5) of lower 

semi continuous functions from (X,<5) to [0,1] (Lowen 

[54]) .

Remark 3.2.6.

Let (X,<5) be a topological space. Lowen [54] has 

called a [0,1]-fuzzy topological property Pf a good 

extension of a topological property P if and only if:

(X,5) has P if and only if (X,cj(5)) has Pf, where w(5) is 

the [0 ,1 ]-fuzzy topology of lower semicontinuous 

functions. Warner [98] has extended the definition of 

goodness to an L-fuzzy property where L is a continuous 

frame. Then we have the following:

Definition 3.2,7.

Let (X,5) be a topological space. An L-fuzzy 

topological property Pf is a good extension of a 

topological property P if and only if:

the topological space (X,5) has P if and only if the 

L-fuzzy topological space (X,cj ( 8 ) ) has Pf, where cj(5) is 

the L-fuzzy topology of continuous functions from (X,5) 

to L with its Scott topology.
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Definition 3.2.8. Lowen [54]

Let (X, 3") be an L-fts. The L-fuzzy topology 7 on X 

is called topological if and only if there is a topology 

5 on X with 9" = u(5).

Proposition 3.2.9.

Let (X,5) be a topological space. Then we have the 

following:
V

(i) An L-fuzzy set feL is open in (X,w(5)) if and 

only if f 1 ({teL; t̂ e})e<5 for every eeL.
V

(ii) An L-fuzzy set feL is open in (X,w(<5)) if and

only if f 1 ({teL; t$p})e«5 for every pepr(L).
x

(iii) An L-fuzzy set feL is closed in (X,w(5)) if 

and only if f 1 ({teL; t^b}) is closed in (X,5) for every 

beL.

Proof

(i) Necessity:

If few(5) then f is a continuous function from (X,5) 

to L with its Scott topology. Thus, since for any eeL 

the set {teL; t^e} is Scott open (proposition 1.2.10.), 

we have that f 1 ({teL; t^e})e 5.

Sufficiency:

Since L is completely distributive, the sets of the 

form {teL; t^e} where eeL generate the Scott topology 

(proposition 1.2.10.). Therefore if f_1 ({teL; t^e})e 8 

for every eeL then f e w(<5) .

(ii) This follows as in (i) from the fact that the 

Scott topology of a completely distributive lattice L is
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generated by the sets of the form {teL; t^p} where 

pepr(L) (proposition 1.2.11.).

(iii) feLX is closed in (X,u(S)) if and only if 

f ' eu) ( 8 ) if and only if f,-1 ({teL; t^e})e 8 for every eeL 

if and only if f-1 ({teL; t^e'=b})e 8 for every beL if and 

only if ( f 1 ( {teL ; t^b}))' is closed in (X,<5) for every 

beL if and only if f 1 ({teL; t^b}) is closed in (X,«5) for 

every beL.

Proposition 3.2.10.

Let (X,«5) be a topological space. Then Ae«5 if and 

only if *A is open in (X,u(5)).

Proof

This immediately follows from proposition 3.2.9..

Proposition 3.2.11. Warner [99]

Let (X,ô) be a topological space. The family

(f|iUi) ,where f|iUi (x) =|ei xeUi, is a base for w(«5). 
ieJ 1 ^0 if x«êU.

Proof

See lemma 6 in Warner [99].

Lemma 3.2,12.

Let (X,5) be a topological space, let f be an 

L-fuzzy set in the L-fts (X,w(S)) and pepr(L). Then 

(cl(f))_1 ({teL; t$?}) £ cl(f_1 ({teL; t$p})) .
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Proof

Firstly we are going to prove that any closed set C 

in (X,<5) with C2f_1 ({teL; t̂ p}) satisfies C 2 

(cl(f))_1 ({teL; t*p}) .

Let C be a closed set in (X,6 ) with C 2 

f-1 ({teL; t^p}) and let g:X-»L be defined by g(x) = 1  if 

xeC and g(x) = p otherwise.

Since for every eeL g *({teL; t^e}) = ^  , we

have g 1 ({teL; t^e}) closed in (X,<5) for all eeL. Thus, 

by proposition 3.2.9., g is closed in (X,w(S)).

We also have gaf. Thus, g^cl(f). Then, C = 

g_1 ({teL; t^p})2(cl (f) )_1 ({teL; t^p}).

Therefore, since f_1 ({teL; t^p})£cl(f_1 ({teL; t^p})) 

and cl(f 1 ( {teL ; t^p})) is closed in (X,<5), we have 

Cl(f_ 1({teL; t^p})2(cl(f))_1 ({teL; t$p}).

Proposition 3.2.13.

Let (X,5) be a topological space and A£X.

Considering the L-fts

we have cl(f) (x) =

Je if xeint(A)
{ 0 otherwise

(X,w(ô)), eeL and f(x)

if xecl(A) 
otherwise and int (f ) (x) =

if xeA 
if x«A '

Proof

t _ .  fe if xecl (A , , . Let g (x) = ■{ „ . and h(3 \ 0 otherwise *> - { 0
if xeint(A) 
otherwise

We shall prove that cl(f) = g and int(f) = h.

Since for every beL g_1 ({teL; t^b}) = 

r X if b=0
cl (A) if e^b and b*0 is closed in (X,<5), by proposition 

0 if e^b and b*0
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3.2.9., g is closed in (X,w(5)). We also have gsf.

Thus, fscl(f)scl(g) = g. Therefore, we have 

cl(f)(x) = 0 for all xicl(A) and cl(f) = e for all xeA.

From cl(f)ig we obtain (cl(f)) ^{teL; t*e})£ 

g - 1 ( {teL; t*e}) = (cl(A))'. Hence cl(f)(x) = e for all 

x€cl(A) and cl(f) (x) = 0 for all x^cl (A) and cl(f) = g. 

Similarly, for every beL, h ^{teL; t^b}) =

{int(A) if e^b is in 5' so' proposition 3.2.9., 

h e cj(<5). We also have hif. Then, hiint(f)if. Thus, we

have int(f)(x) = 

x e int(A).

Since int(f) 

(int (f))_1({teL; 

(int(f))_1({teL;

Hence int(f)

0 for all x£A and int(f) (x) =

e u>(5) and int (f) if we obtain 

t*0})£ f 1 ({teL; t*0}) = A and 

t*0})Sint (A) .

, . _ ie if xeint(A), that is, 
x “ { 0 otherwise

e for all

int(f)=h

Corollary 3.2.14.

Let [ X , 8) be a topological space and ASX. 

Considering the L-fts (X,<j (5)), eeL and f (x) =

{o otherwise' we have int (cl <f> > <x> = {® £
f xeint(cl(A) 

otherwise

Proof

This immediately follows from proposition 3.2.13.

Proposition 3.2.15.

Let (X,5) be a topological space. Then we have the 

following:

(i) If A is a pre-open set in (X,5) then xA is a
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pre-open L-fuzzy set in (X,u(<5)).

(ii) If A is a semiopen set in (X,S) then *A is a 

semiopen L-fuzzy set in (X,u(5)).

Proof

(i) Since A is a pre-open set in (X,S) we have AS

int(cl(A)). Thus *A s *int(cl(A)) and' by corollary 

3.2.i4., *int(cl(A)) - int(cl(*A>>. Therefore *A 

sint(cl(*A)).

Hence *A is pre-open in (X,cj(S)).

(ii) Since A is a semiopen set in (X,S), there

exists Ue6 such that U£A£cl (U) . Thus, ^g^A^cl (U) and 

by proposition 3.2.13 (u) =cl * since UeS, by

proposition 3:2.10., * ew(S).

Hence *A is semiopen in (X,cj(5)) .

Lemma 3.2.16.

Let (X,J) be an L-fts and let S be a nonempty family 

of L-fuzzy sets. Then an L-fuzzy set f is a union of 

elements of £ if and only if for all pepr(L) and for all 

xeX with f(x)^p there is ge£ such that gsf and g(x)^p.

Proof

Necessity:

Let f be an L-fuzzy set, pepr(L), let xeX with 

f(x)$p and let f = g _

Thus gj (x )4p , which implies that there is ge£

such that g(x)^p.
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Sufficiency :

Let f be an L-fuzzy set such that for all pepr(L) 

and for all xeX with f(x)=fp there is ge$ with gsf 

and g(x)=fp. Let e = {he$; hsf} and suppose that h < f.

Therefore there exists xeX with

f (x)
* (

( h ï g  h ) (X
)<f(x), so

v h heS (x). By the spatiality of L (proposition 

1.2.3.), there is qepr(L) such that f(x)^q and 

(x)̂ q, yielding a contradiction.v h he£

Lemma 3.2.17.

Let (X,<5) be a topological space. If f is a 

semiopen L-fuzzy set in (X,u>(5)) then f is semicontinuous 

as a function from (X,S) to L with its Scott topology.

Proof

Let f be a semiopen L-fuzzy set in (X,w(5)). We

want to prove that f is semicontinuous, i.e., f 1 (V) is a

semiopen set in (X,S) for each Scott open set V in L.

Since ({teL; t^p}) is a 13338 for the Scott

topology (proposition 1.2.11.), f-1 (uV.) = uf-1 (V.) and
i i

any union of semiopen sets is a semiopen set, it will 

suffice to prove that f_1 ({teL; t̂ p}) is semiopen in 

(X,S) for every pepr(L).

Because f is a semiopen L-fuzzy set in (X,w(5)), 

there is g e u(S) with gsfscl (g) . Thus g-1 ({teL; t̂ p}) £ 

f 1 ({teL; t^p})£(cl(g))_1 ({teL; t^p})£ cl(g-1 ({teL; t̂ p}) 

for all pepr(L) where the last inclusion is due to lemma 

3.2.12.

Since g e td(5), by proposition 3.2.9., g-1 ({teL; t^p})
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{(x,p); p£f(x)} for every feU is a frame morphism and 

0(9") is a topology on Xxpr(L) . If L is spatial then the 

L-fuzzy topology V is isomorphic as a frame to the 

topology <p (J)  ■

Proof

Firstly we would like to remark that since L is a 

frame, J is itself a frame [99]. For the proof of our 

proposition we refer to theorem 6 in [65].

Proposition 3.2.20. McLean and Warner [65]

Let L be a continuous frame and let (X,S) be a 

topological space. Then the topology 0 (<j (5)) on Xxpr(L) 

is the product topology 5x0(L).

Proof

See theorem 6 in McLean and Warner [65].
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3. Some special functions

Definition 3.3.1.

Let (XfJx) and (Y,^) be L-fts's. A function 

f : (X, 9"X)->(Y( Jy) is called:

(i) continuous [18] if and only if f S' for

every ge?.̂ ..

(ii) semicontinuous [7] if and only if f 1 (g) is 

semiopen in (X,SX) for every geS^, i.e., f 1 (g) is 

semiclosed in (X,SX) for every closed L-fuzzy set g in 

(Y,Sy).

(iii) almost continuous [7] if and only if f 1 (g)e J
A

for all regularly open L-fuzzy set g in .

(iv) weakly continuous [7] if and only if f_1 (g)i 

int(f 1 (cl(g))) for all ge?Y .

(v) open [103] if and only if f(g)e SY for every

g ^ x -

(vi) almost open [74] if and only if f(g)e 3"Y for 

every regularly open L-fuzzy set g in (X,? ).
A

(vii) strongly continuous [33] if and only if 

f(cl(g))if(g) for every geLX .

(viii) irresolute [23] if and only if f-1 (g) is 

semiopen in (X,SX) for every semiopen L-fuzzy set g in 

(Y,yy) , i.e., f ^g) is semiclosed in (X,^) for every 

semiclosed L-fuzzy set g in (Y,^) .

(ix) pre-continuous [75] if and only if f_1 (g) is 

pre-open in (X,^ ) for every g€91,.
A Y
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(x) M-pre-continuous [75] if and only if f 1 (g) is 

pre-open in (X,U ) for every pre-open L-fuzzy set g in

(Y,yy).

Definition 3.3.2. Nanda [75]

Let (X,y) and (Y,y*) be L-fts's and let 3^ be the 

L-fuzzy topology on X which has the set of all pre-open 

L-fuzzy sets of (X,3) as a subbase. A mapping 

f : (X, y) -»(Y, y*) is called ^-continuous if and only if 

f : (X, ŷ )-> (Y, y*) is continuous and f : (X, y) -> (Y, y*) is said 

to be <p' -continuous if and only if f: (X, y^)->(Y, ŷ ) is 

continuous.

Proposition 3.3.3. Pu and Liu [81]

Let f(X^; y ) be a family of L-fts's and let
 ̂ a > Ae J

(X,y) be the L-fuzzy product space of the L-fts's

(X^, ), AeJ. Thus:
A

(i) For every AeJ the Ath-projection map n :X-»X. is
A A

continuous.

(ii) If (X̂ , 3^ ) is fully stratified, then the
A

projection tt̂ :X-»X̂  is an open map.

Proof

See theorem 2.2. in Pu and Liu [81] .

Proposition 3.3.4. Mukherjee and Sinha [71]

Let (X,yx) and (Y,?̂ ) be L-fts's and let 

f: (X, 3̂ ) -»(Y, yy) be an almost continuous and almost open
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map. Then the inverse image of any regularly open L-fuzzy 

set in (Y,3" ) is a regularly open L-fuzzy set in (X,?x), 

i.e., the inverse image of any regularly closed L-fuzzy 

set in (Y,?y) is a regularly closed L-fuzzy set in

(x,yx) .

Proof

See theorem 3.5. in [71].

Proposition 3.3.5. Mukherjee and Sinha [71]

Let (X,7X) and ( Y , J^ ) be L-fts's and let 

f : (X, 3"x) ̂  (Y, ?Y) be an almost continuous map with 

f 1 (cl(h))scl(f 1 (h)) for all heST̂ . Then the inverse 

image of any regularly open L-fuzzy set in ( Y , Jy ) is a 

regularly open L-fuzzy set in (X,J ).A

Proof

See theorem 3.6. in [71] .

Proposition 3.3.6. Allam and Zahran [3]

Let (X , 3"x) and ( Y , J^ ) be L-fts's and let 

f : (X, 3rx) -> (Y, JY) be a weakly continuous map with 

f 1 (cl (h) i d  (f 1 (h) ) for every regularly open L-fuzzy 

set h in (Y,^) . Then the inverse image of any regularly 

open L-fuzzy set in (Y,yy) is regularly open in (X,?x).

Proof

See theorem 3.10. in [3].
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Proposition 3.3.7. Nanda [75]

Let (X,̂ ) and (Y,7*) be L-fts's. If f : (X, J) -»(Y, 7*) 

is M-pre-continuous, then f is 0'-continuous.

Proof

See theorem 3.3. in [75].

Proposition 3.3.8. Allam and Zahran [3,26]

Let (X,3"x) and (Y,^) be L-fts's and let 

f : (X, 3̂ ) -»(Y, JY) be a weakly continuous map with 

int(f_1 (h))if ^intih)) for every regularly semiopen 

L-fuzzy set h in (Y,3"Y) . Then the inverse image of any 

regularly closed L-fuzzy set in ( Y , Jy ) is regularly 

closed in , i.e.( the inverse image of any

regularly opeh L-fuzzy set in ( Y , J^ ) is regularly open in 

(X, Jx) .

Proof

See theorem 3.10. in [3] and corollary 4.12. in

[26] .

Proposition 3.3.9. Singal and Rajvanshi [90]

Let (X,3"x) and (Y,?Y) be L-fts's and let 

f : (X, STX) (Y, 3"y) be a weakly continuous open map. Then f 

is almost continuous.

Proof

See theorem 3.4. in [90] .
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Proposition 3.3.10. Mukherjee and Sinha [70].

Let ) and (Y,^) be L-fts's and let

f : (X, 9" ) (Y, 3'v) be an irresolute map. Then the inverse
X  Y

image of any semiclosed L-fuzzy set in (Y,^) is 

semiclosed in (X,^) .

Proof

See theorem 2.5 in [70].

Proposition 3.3.11. Mukherjee and Sinha [71]

Let (X,7X) and (Y,7Y) be L-fts's. Then a map 

f: (X,3'x )->(Y,3'y) is almost continuous if and only if 

cl(f ^gJMf 1 (cl(g)) for all semiopen L-fuzzy sets g in 

(Y,yy).

Proof

See theorem 3.4. in [71].
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4. Countability and Separation axioms

Definition 3.4.1. McLean and Warner [65]

An L-fts (X,J) is first countable. C , if and only

if for each xeX and each aeM(L) there exists a countable 

family of closed L-fuzzy sets (f^)^6j with f^(x)£a such 

that for every closed L-fuzzy set g with g(x)^a there is 

ieJ with g^f^.

Definition 3.4.2. McLean and Warner [65]

An L-fts is said to be C or satisfies the second2 ------

axiom of countability if and only if it has a countable 

base.

Remark 3.4.3.

If (X, <5 ) is a topological space then the L-fts 

(X, u> ( <5 ) ) is first countable (second countable) if and 

only if the topological spaces (pr(L), 0(L)) and (X,ô) 

are both first countable (second countable) [65].

Proposition 3.4.4,

Let (X(7) be a Ci L-fts. If an L-fuzzy point
x

x eM(L ) is a cluster point of a sequence (S ) .. ina  ̂ m meiN

(X, ï ï )  , then (sm)me(N has a subsequence converging to xff.

Proof

This is totally similar to the proof of theorem 

13.4. (4) in [80].
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Definition 3.4.5. Warner and McLean [100]

An L-fts (X,7) is Hausdorff if and only if for every 

p,q e pr(L) and every pair x,y of distinct elements of X, 

there exist f,g ei with f(x)$p, g(y)^q and (VzeX) f(z) =0 

or g(z) =0 .

Proposition 3.4.6. (The goodness of Hausdorfness)

Warner and McLean [100]

Let (X, 5) be a topological space. Then (X,<5) is 

Hausdorff if and only if (X,u(5)) is Hausdorff.

Proof

See proposition 3.1. and definition (H3) in [100]. 

Proposition 3:4.7.

Let (X,7) be a Hausdorff L-fts. Then no net in
x

(X,7) converges to two L-fuzzy points in M(L ) with 

different supports.

Proof

Let (sm)meD be a net in (X,7) converging to two
V

fuzzy points x^, y^ e M(L ) with x*y.

Thus, by definition 3.1.9.(i), for all closed

L-fuzzy sets f,g with f (x) and g(y)̂ /3 there are mQ,

eD such that mam implies that f(supp S )th(S ) and tmsmo m ' m i

implies that g(supp Sm)^h(Sm) where h(S ) is the height

of S . Therefore there is m eD such that m^m implies

f(supp Sm)  ̂h(Sm) and g(supp Sm) h(Sm).

Let deD with d^m and S ,=z2 d y
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Thus f(z)^r and g(z)f=r. Hence there exists zeX with 

f(z)*l and g(z)*l, contradicting the Hausdorfness of

(X, T) .

Definition 3.4.8.

An L-fts (X,7) is regular if and only if for every 

pepr(L), for each xeX and each closed L-fuzzy set f such 

that there is yeX with y if' (i.e. f(y)^p') and f(x) = 0,

there are u ,veJ with x^eu (i.e., u(x)^p), y^ev for every

y i f  and (VzeX) u(z)=0 or v(z)=0.
P

Theorem 3.4.9. (The goodness of regularity)

Let (X,S) be a topological space. Then (X,5) is 

regular if and only if (X,u(S)) is a regular L-fts.

Proof

Necessity:

Let pepr(L), xeX and let f be a closed L-fuzzy set 

in (X,cj(5)) such that there is yeX with f(y)^p' and 

f (x) = 0 .

Therefore, F={teX; f(t)2:p' }*<p is closed in (X,5)

(proposition 3.2.9. (iii) ) and x i F . From the regularity

of (X, 6 ) , there are U , U_ € <5 with xeU , FcU„ and
x  r  X  r

UxnUp = 0 .

Let and v=* .
x UF

Thus u,v e w(5) (proposition 3.2.10.), u(x) = l^p 

and for every y i f ' , y ev because y i f  implies that yeF,
ir

then yeUF and v(y) = % •

We also have (VzeX) u(z)=0 or v(z)=0 because if
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zeX and u(z)*0 then zeU which implies zeU' and v(z)=0.
X •

Hence (X f cj (S ) ) is regular.

Sufficiency:

Let xeX, pepr(L) and let F be a closed set in (X,S) 

with xiF*<p.

f (x) =0 since x«iF. By proposition 3.2.9. (iii) , f is

closed in (X,u(S)), since f 1 ({teL; t^q}) = 

fX if q=0
-I F if q* 0 and p'^q is closed in (X,<5) .
[4> if q* 0 and p'^q

Thus, from the regularity of (X,w(S)), there are

open L-fuzzy sets u,v with u(x)^p; for every y i f ' , y ev
P P

and (VzeX) u(z)=0 or v(z)=0.

Let Ux = {teX; u(t)^p} and Up = {teX; v(t)^p}. 

Therefore, U , U„ e 5 (proposition 3.2.9. (i)), xeU
X  r  X

and FcUp because if yeF then y «sf' which implies y ev and
P P

then yeU„. We also have U nU_ = <p because if teU then
X  -L* X

u(t)^p which implies v(t)=0 and t£Up.

Hence (X,S) is regular.

Definition 3.4.10.

An L-fts (X,T) is normal if and only if for all

pepr(L) and for every pair f,g of closed L-fuzzy sets

such that there are x,yeX with x i f  (f(x)2qp') and
P

Consider f:X-»L defined by f (y)

yeX.

We have f closed in (X,u(5)), there is yeX with
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y eg' (g(y)^p' ) and (VzeX) f(z)=0 or g(z)=0, there are 
P
u,v € ïï with for every zp«f' , zpev (v(z)=fp); for every

z ëq' , z eu and (VzeX) u(z)=0 or v(z)=0.
P P

Proposition 3.4.11. (The goodness of normality)

Let (X, ô ) be a topological space. Then (X,<5) is 

normal if and only if (X,w(S)) is normal.

Proof

Necessity:

Let pepr(L) and let f,g be closed L-fuzzy sets in 

(X,u(5)) such that there are x,yeX with f (x) sp' and 

g ( y ) > p '  and (VzeX) f(z)=0 or g(z)=0.

Therefore, F = {teX; f(t)^p'} and G = {teX; g(t)^p'} 

are closed sets in (X,5) (proposition 3.2.9. (iii)) and 

FnG = (p because if teF then f(t)^p' which implies g(t) =0 

and then t iG .

From the normality of (X,5), there are U„, U_ e <5 with
r

FcUp, GcUq and UpnUG = <p.

Let u = Xr-r and v = xTT •
UG UF

Thus, u,v e w(6 ) (proposition 3.2.10.), for every 

z ^f', z^ev; for every z^gg', z^eu and (VzeX) u(z)=0 or 

v(z)=0. In fact, if z i f  then f(z)^p' which implies
Jr

zeF and then zeUp and v(z)=l^p, i.e., z ev. In the same
P

way we obtain z eu for every z i g ' . We also havep p

(VzeX)u(z)=0 or v(z)=0 because if zeX and u(z)*0 then 

zeUG which implies zeUp and then v(z)=0.

Hence ( X , u ( S ) ) is normal.
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Sufficiency:

Let F*<p and G*<p be closed sets in (X,S) with FnG = <p 

and let pepr(L).

Consider f:X-»L and g:X-»L defined by 

f(y> = { o ’ if y*F and 3^* * { o ’ if y S  for each y6X'

respectively.

We have that f,g are closed L-fuzzy sets in (X,u(5))

(as in sufficiency of theorem 3.4.9.). Since F*(p and

G*<p, there are x,yeX with x i f  and y i g ' . We also have
P P

(VzeX) f(z)=0 or g(z)=0 because if zeX and f(z)*0 then

zeF which implies zsiG and then g(z)=0.

Thus, from the normality of (X,<j (S)), there are

u,v e cj(5) with z ev for every z i f ' ; z eu for all z i g '
P P P P

and (VzeX) u(z)=0 or v(z)=0.

Let Up = {teX; v(t)^p} and UG = {teX; u(t)^p}. 

Therefore, FcUp, U^nG because yeF implies f(y)=p' 

and then y^f' thus y^ev, i.e., yeUp and in the same way 

we obtain GcU^. We also have Up and UG e 5 (proposition 

3.2.9. (i) ) and UpnUG = <p because if teU^ then v(t)^p

which implies u(t)=0 and then teUn .

Hence (X,<5) is normal.
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Chapter IV

Compactness in L-fuzzy topological spaces

This chapter is concerned with compactness in 

L-fuzzy topological spaces where L is a completely 

distributive lattice. We present our definition of 

compactness for arbitrary L-fuzzy sets and study some of 

its properties. We then concentrate on the other 

versions of L-fuzzy compactness introduced by various 

authors, set up their goodness and establish their 

interrelations.

Lowen [54] introduced in 1976 a good fuzzy 

compactness for [0 ,1 ]-fuzzy topological spaces, which we 

shall call here Lowen fuzzy compactness. Meng pointed 

out in [6 6] that in 1988, in a work in Chinese, Wang 

generalised it to L-fuzzy topological spaces by means of 

a-nets, for L a fuzzy lattice. In [6 6] , Meng obtained 

some other characterizations for Lowen's compactness in 

L-fuzzy topological spaces (which we shall call here 

Lowen L-fuzzy compactness) by means of remote 

neighbourhood families, R-covers, a-filters and families 

of closed L-fuzzy subsets which have the finite 

intersection property. Lowen [55] , in 1977, proved the 

Tychonoff product theorem for Lowen fuzzy compactness.

In 1978, Gantner, Steinlage and Warren [35]

proposed, for a fuzzy lattice L, the so-called
*

a-compactness and a -compactness in L-fuzzy topological
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spaces, observing that it is possible to have degrees of 

compactness. In this work they obtained the Tychonoff 

product theorem but with restrictions on a or on the 

lattice L.

In the same year, 1978, Lowen [56] suggested two 

more good definitions of compactness in [0 ,1 ]-fuzzy 

topological spaces, namely the well known strong fuzzy 

compactness and ultra-fuzzy compactness. For both, a 

Tychonoff product theorem was obtained in the same work. 

In this paper, he also showed that, in [0,1]-fuzzy

spaces, a-compactness [35] is a good extension but
* , 

oc -compactness [35] is not.

In 1993, Warner and McLean [100] generalized strong 

compactness [56] to an L-fuzzy topological space, for a 

completely distributive lattice L. It was proved that it 

is a good extension and also that compact Hausdorff 

L-fuzzy spaces are topological. In this work we shall 

call it just compactness.

Also in 1993, Meng [67] mentioned that, Wang, in a 

work in Chinese, generalized ultra-fuzzy compactness to 

L-fuzzy topological spaces, for L a fuzzy lattice. In 

[67], Meng also presented another characterization of 

this generalization that here will be called 

ultra-L-fuzzy compactness.

Hutton [44], in 1980, obtained the Tychonoff product 

theorem using a definition of compactness called here 

H-compactness. For doing so, in his pointless framework 

he gave a "pointless" definition of the product of fuzzy
V

topological spaces. He worked in a fuzzy lattice L .
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In 1983, Wang [95] introduced N-compactness, by- 

means of a-nets, in [0,1]-fuzzy topological spaces. This 

compactness is defined for arbitrary fuzzy sets and has 

some desirable properties. But, as remarked by Chadwick 

[15], because an N-compact fuzzy set has to attain a 

maximum value, it is possible to have fuzzy sets which 

are never N-compact, even if the fuzzy topology has only 

a finite number of open fuzzy sets. In 1987 Zhao [110] 

generalized N-compactness to L-fuzzy topological spaces 

where L is a fuzzy lattice. He also proved that this 

generalization, which will be called here 

N-L-compactness. has the same properties as 

N-compactness. In this work, Zhao, besides the a-nets 

characterization of N-L-compactness, presented a 

geometrical characterization by means of 

R-neighbourhoods.

In 1993, Xu [55] mentioned that in a paper by him, 

in Chinese, a new L-fuzzy compactness was introduced.

This compactness we shall call here X-compactness.

Thus, many papers on L-fuzzy compactness have been 

written and different kinds of compactness have been 

introduced. However, each of them has its own 

disadvantage. Some of them are not good extensions, some 

do not satisfy results related to separation axioms, for 

some the Tychonoff product theorem does not hold and so 

on. In spite of N-L-compactness having good properties, 

it also has its disadvantage as mentioned above.

Our aim is to suggest for arbitrary fuzzy sets a 

good definition of compactness with the satisfactory
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properties of N-L-compactness whilst avoiding Chadwick's 

drawback. This might well have applications not 

accessible to the stronger N-L-compactness.

We divide this chapter into seven sections.

In the first section we introduce our definition of 

compactness for arbitrary fuzzy sets and study some of 

its properties.

The second section is devoted to the Tychonoff 

Product Theorem for compactness.

In the third section we obtain results related to 

separation axioms.

The fourth section contains other characterizations 

of this compactness.

The fifth section is reserved for the goodness of 

N-L-compactness and a comparison of compactness with 

N-L-compactness.

In the sixth section we state the other definitions 

of compactness in L-fuzzy topological spaces where L is a 

completely distributive lattice and study them with 

respect to their goodness.

Finally in the seventh section we establish the 

interrelations between the compactness which are good 

extensions.
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1. Compactness in L-fuzzy topological spaces

Definition 4.1.1. Gantner, Steinlage and Warren [35]

Let (X,?) be an L-fuzzy topological space, where L

is a completely distributive lattice with an order

reversing involution and let aeL. A collection Bc!7 is

called an «-shading (resp. a -shading) of X if, for each

xeX, there exists feS with f(x)>g (resp. f(x)^g). A
*

subcollection i? of an a-shading (resp. a -shading) $ of X
*

that is also an g-shading (resp. a -shading) is called an
*

a-subshading (resp. a -subshading) of B. The L-fuzzy

topological space (X,3") is called a-compact (resp.

*
a -compact) if and only if each a-shading (resp.
*g -shading) of X has finite g-subshadmg (resp.

*g -subshading).

Definition 4.1.2. Lowen [56]

Let (X,ST) be a [0,1]-fuzzy topological space. (X,J) 

is called strong fuzzy compact if and only if it is 

g-compact for each ge [0 ,1 ).

Definition 4.1.3. Warner and McLean [100]

Let (X,?) be an L-fts where L is a completely 

distributive lattice. (X,7) is called compact if and 

only if for every prime p of L and every collection 

(f^)^eJ of open L-fuzzy sets with f̂ j (x) for all

0 $PxeX, there is a finite subset F of J with 

for all xeX.

,v f, 
ieF l

72



Now we give the definition proposed by us.

Definition 4.1.4.

Let (X,J) be an L-fts where L is a fuzzy lattice and 

let geLX . The L-fuzzy set g is said to be compact if and 

only if for very prime peL and every collection (f^^j 

of open L-fuzzy sets with fi (x)^p for all xeX with

g(x)£p', there exists a finite subset F of J with

(ieF fi) f°r a 1 1 xeX with g(x)-P' •

If the L-fuzzy set is the whole space X, then we say 

that the L-fts (X,J) is compact. In this case, 

definition 4.1.4. reduces to definition 4.1.3.

Remark 4.1.5..

We would like to draw attention to the fact that,

when we say, for all xeX with g(x)^p', it means for all
x

L-fuzzy points x epr(L ) such that x <tq' .
P P

This can be restated as follows:

The L-fuzzy set g is compact if and only if for 

every prime peL, every collection (f^)^eJ of open L-fuzzy

x i g ' there exists iej with x ef., has a finite 
P P i
subcollection with this property.

Theorem 4.1.6. (The goodness of compactness)

Let (X,5) be a topological space. Then (X,S) is 

compact if and only if (X,u(5)) is a compact L-fts.
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Proof

In [100], Warner and McLean proved the goodness of 

compactness for L a continuous lattice (proposition 4.4. 

in [100]) . Since we are working with L a fuzzy lattice 

(definition 1.1.10.), we have L a completely distributive 

lattice. By proposition 1.2.3. we know that every 

completely distributive lattice is a continuous frame. 

Hence we have our result.

Proposition 4.1.7.

Let (X , ï ï) be an L-fts where ÏÏ is a finite subset of
y
L . Then (X,?) is compact.

Proof

This immediately follows from definition 4.1.4.

Proposition 4.1.8. Warner and McLean [100]

Let (X,J) be an L-fts where X is a finite set. Then 

(X,J) is compact.

Proof

See proposition 4.6. in Warner and McLean [100] .

In spite of the fact that the proof of our next 

theorem has already been given by Warner and McLean 

[1 0 0 ], we included it here because we shall need it later 

in proposition 4.7.8..

Theorem 4.1,9. Warner and McLean [100]
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Let (X,y) be a fully stratified compact Hausdorff

L-fts. Then (X,y) is topological.

Proof

By definition 3.2.8. we need to exhibit a topology <5 

on X such that y = u ( S )  .

L e t  8 = {UeP(X) ; Xy e J}  .

We shall show that y = w(5).

Since by proposition 3.2.11. cj(5) is generated by 8 

and the constant functions from X to L, we have that 

u (8) e y .

Now we are going to show that Jew(6 ), i.e., every 

fey is a continuous map from (X,S) to L with its Scott 

topology. By proposition 3.2.9. it is sufficient to 

prove that for every fey and for all pepr(L) we have

e y.

Let fe3" , pepr(L) and let eeX such that f(e)^p and 

qepr(L) .

Then, by the Hausdorffness of (X,y) (definition 

3.4.5.), for each xeX such that f(x)ip, there are g , h
X  X

e J with g (e)iq, h (x)ip and (VzeX) g (z)=0 or h (z)=0.A ' .X. ’ X X

Therefore, x^x hx v fj (x)^p for all xeX. So, by 

f(x)ip

compactness there are xi,...,xm e X with f(x^)ip 

Vie{l, . . . ,m} such that fvhx v...v h (x ) f P for a11
 ̂ xi TIP

<xsX' f(x)^p} 6 S,i.e., £(x)4p}

xeX.

Thus, for all yeX with f(y)ip, there is je{l,...,m}

with h (y) ip which implies that g (y) = 0 .X . 1 X ■
3 3
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m
Let k =.A gx . •

M 1=1  1

We have that k e?, k (y)=0 for all yeX with f(y)ip 

and since g (e)iq for every i and qepr(L), follows that
X ■1

kq (e)̂ q.

So, for each eeX with f(e)^p and for each qepr(L)

there is k &ÏÏ with k (e)iq and k (y)=0 for all yeX with 
q q 1 q

f(yMp.

Let s = v k . 
e qepr (L) q

We have that seeT, sg (y) =0 for all yeX with f (y) ip

and se (e)^q for all qepr(L).

Since L is spatial by proposition 1.2.3., each of

its elements, except 1 , is a meet of primes by

proposition 1 ,2 .2 . and hence sg (e)=l.

Let g = Vv s 3 esX e
f(e)̂ p

Therefore ge?, g(y) = 0 for all yeX with f(y)ip and 

g(y) = 1 for all yeX with f(y)^p. Hence

*{xeX; f(x)$p} €

Proposition 4.1.10.

Let (X,J) be an L-fts. If h and g are compact 

L-fuzzy sets, then hvg is compact as well.

Proof

Let h and g be compact L-fuzzy sets. Let pepr(L) 

and let (f ^ j  be a family of open L-fuzzy sets with

fij (x)^p for all xeX such that (hvg) (x)ap'. But if 

(hvg) (x) ip' then h(x)^p' or g(x)£p' because pepr(L) and
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we always have that if h(x)ap' or g(x)*p' then

(hvg) (x)^p'. So, from the compactness of h and g, there 

are finite subsets F2 of J with f̂ j (x)^p for

all xeX such that h(x)ap' and i.V fi (x) £p for all xeX

such that g(x)sp'. Then, [ .V uF f± (x)^p for all xeX
' 1 2  '

such that h(x)ap' or g(x)ap'.

Thus, .VD „ f.' 1leF uF 11 2
(x)^p for all xeX with (hvg) (x)ap'

Hence hvg is compact.

Corollary 4.1.11.

Let ( X, J ) be an L-fts. Every L-fuzzy set g with 

finite support is compact.

Proof

Let g be an L-fuzzy set with finite support. By 

remark 2.1.8. we have that each L-fuzzy set is a join of 

functions of the form gx, : X -» L where
p y _> /p ' if y =.x

1 ( 0 otherwise

pepr(L). So, g is a finite join of functions gx,. Thus,
P

from proposition 4.1.10. it will suffice to prove that 

any gx, is compact.

Let pepr(L), pQepr(L), yeX and let

: X -» L 

x -> {Po

We have H

if

if
y = x
y * x 

{ xeX; g£,
{y}if p; £ P'

<p if p; k P' ’
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For every family (f.)igJ of open L-fuzzy sets with

.v f. (x)4p for all xeH.we must show that there is a 
is J lj J
finite subset F of J with f±j (x)=fp for all xeH.

If p̂  £ p' we have H = <f>.

If p' i p we have H = {y}, then f̂ j (y)^p

implies that there is iQ€j such that f^ (y)^p. Thus
o

there exists a finite subset F = {iQ} of J with 

(ieF fi) Hence g* , is compact.

Proposition 4.1.12.

Let (X,J) be an L-fts. If g is a compact L-fuzzy 

set, then for each closed L-fuzzy set h, hAg is compact

Proof

Let g be a compact L-fuzzy set and let h be a closed 

L-fuzzy set.

Let pepr(L) and let (f^)^gJ be a family of open 

L-fuzzy sets with |^j f̂ j (x)^p for all xeX with 

(hAg) (x) ip' .

Thus, B = (f-j_)j_€j <J{h' } is a family of open L-fuzzy 

sets in (X,9") with kj (x)^p for all xeX with g(x)ip'.

In fact, for each xeX with g(x)ip', if h(x)ip' then 

(hAg) (x)ip' which implies that f̂ j (x)̂ p, thus

(ke$ k) (X^P- if h(x)^p' then h' (x)^p which implies that

keB k] (X)$P- From the compactness of g, there is a 

finite subfamily ¡9 of B, say £ = {fi(...,f , h'} with 

(ke& k) (x H p for a 1 1 X€X with g(x) ip' . Then,

(ie{l m}1] X̂^ P  for a 1 1 xeX with (hAg) (x)ip'. In
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fact, if (hAg)(x)£p' then g(x)sp', hence (kgg kj (x)$p. 

Therefore, there is keS such that k(x)^p. However 

h(x)ip' , that is, h' (x)̂ p, so f...,m}^) x̂^ p for

all xeX with (hAg)(x)ip'. Hence hAg is compact.

Corollary 4.1.13.

Let (X, ST) be an L-fts. If g is a compact L-fuzzy 

set, then each closed L-fuzzy set contained in g is 

compact as well.

Proof

This immediately follows from proposition 4.1.12.

Proposition 4.1.14.

Let (X,3^) and (Y,^) be L-fts's and let 

f: (X, 3"x) -»(Y, 3",̂) be a continuous mapping such that f 1 (y) 

is finite for every yeY. If g is a compact L-fuzzy set 

in (X,JX), then f(g) is a compact L-fuzzy set in (Y,3y).

Proof

Let g be a compact L-fuzzy set in (X,ST )A Let

pepr(L) and let (f^)^gJ 136 a family of open L-fuzzy sets 

in (Y,yy) with fij (y)^p for all yeY with f (g) (y)ap' .

Then (f 1 (f^))^eJ is a family of open L-fuzzy sets in

(X,3"x) with f 1 (f_̂ )j(x)^p for all xeX with g(x)ip'.

In fact, since each f.eJ.. and f is continuous, f_1 (f.) el Y l

3"x for every ieJ. We also have f-1 (f̂ )j (x)^p for

all xeX with g(x)—p' because if g(x)ip' then

f (g) (f (x) ) ip' . So, ■ V t f ieJ (x) = • V t f- 1 € J 1 (f(x))^p.
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From the compactness of g in (X,?^) there exists a 

finite subset F of J with f_1 (f±) J (x)^p for all xeX
with g(x)*p'. Then f± (y)^p for all yeY with

f(g)(y)*p'. m  fact, if f(g)(y)*p' then, by definition

2 . 2 . 1 . , v
xef (y)

{g(x)}ap' , which implies that there is

xeX with g(x)^p' and f (x) = y. So, f ̂ (y) =

f 1 (fi>] (x)^P• Hence f(g) isieF fiJ(f(x)) = 

compact in (Y,9y

v
isF

When g = ^ for some A£X, f 1 (y) does not need to be 

finite.

Remark 4.1.15.

If ( X , J ) ,is a Hausdorff L-fts and f is a compact 

L-fuzzy set, we do not necessarily have f a closed 

L-fuzzy set. For example:

Let X = [0,1] and let V be the [0,1]-fuzzy topology 

{Xy. ; U usual open crisp set in X} .

(X,3") is Hausdorff because for every q,pe [0,1) = 

pr([0,l]) and for every pair x,y of X with x*y there 

exist f,g€? with f(x)^p, g(y)^q and (VzeX) f(z)=0 or 

g(z)=0. In fact, given x*y in [0,1], there are open 

crisp sets U , U such that xeU , yeU and U nU = <p.

Then take f = and g=Xy . So, f and g are in J,

f(x)=l^p for every pepr(L), g(y)=i^q for every qepr(L).

We also have that if zeX and f(z)=^u (z)*0 then zeUi ,
i

so z«U because D nU =<t>. Thus g(z)=rTT (z)=0.2 1 2  U2
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Let f: X -> L = [0,1]

x -> —
3

Clearly f is not closed. But f is compact. In 

fact, if pe [0,2/3) then {xeX; f(x)sp'} = {xe [0,1]; 

p'sl/3} = <p and given pe [2/3, 1] and a family (fi)ieJ of 

open [0,1]-fuzzy sets with fi (x) > p for all xeX

with f (x) —p' , i.e., for all xeX, we have that fij (x)

= 1 for all xeX because f^ = x^ where lb is an open set
i

in the topological space X = [0,1]. So, u U. = X and by
iej

compactness there is a finite subset F of J with u U. =
ieF

X. Thus, (x) =1>P for all xeX. Hence f is

compact.

Proposition 4.1.16.

Let (X,97 be a Hausdorff L-fts and let FcX such that 

X-r? is a compact L-fuzzy set in (X,?) . Then is ar r

closed L-fuzzy set in (X,?).

Proof

Let pepr(L) and xeF'. We shall show that there 

exists feJ with f(x)^p and f-Xp, . Therefore by 

proposition 3.1.4. we have x eJ and so is a closedr r

L-fuzzy set.

For all yeF, by the Hausdorffness of (X,3"), there 

are gy, hy eJ with gy (x)̂ p, hy (y)^p and (VzeX) h^(z)=0 or 

g^.(z)=0. Thus, $ = (hy)^eF is a family of open L-fuzzy

sets with v h [y€F yj  (z)^p for all zeF. Then by the

compactness of Xp , there is a finite subfamily S of $,
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say s. = K ..... *Vm} w i t h  L
V h

{l#... , w y
] (z) 
i'

for

all zeF.

Let f =
A

7iie{lf ...,m}

Then feST, f(x)^p and f ^ p, . In fact, since each

g eJ, feT and from g (x)^p for all ie{l,...,m} and 
yi yi
pepr(L), f(x)^p. We also have fs*p, because if zeF',

,(z)=l and if zeF, there is ke {l,...,m} with h (z)̂ p, 
F yk

so g (z) = 0 and f(z) = 0 .

X

Lemma 4.1.17.

Let (X,fT) be an L-fts, feL", pepr(L) and let f be a 

compact L-fuzzy set in (X,?). Then {xeX; f(x)ip'} is 

compact in the ordinary topological space (X,5) where <5 = 

{UcX; Xu eT}

Proof

Let 1:36 a family of open sets in the subspace

H = {xeX; f(x)^p'} of (X,5) with H = u F.. Therefore,
ieJ 1

for each ieJ there is 0.e«5 such that F. = O.nH. So,x x 1 '

( * 0 ) is a family of open L-fuzzy sets in (X,3") with 
x ieJ

(i€j *0 .) (x)=1k  for all xeH. From the compactness of f 

there is a finite subset K of J with j  (x)̂ p,

x.e. , , V y
xeK *0. x

(x)=1 for all xeH. Then u F. = H and H
ieK

is compact in (X,<5) .

Lemma 4.1.18. Liu and Luo [50]

82



X
Let (X,y) be an L-fts, xQeX, feL such that for

every eeL, ^|xeX. f(x)>e} is closed in (X-3̂ * Then f (xq)

= A v f(y), where $ is a neighbourhood base at the 
UeB yeU J

point xq in the topological space (X,5) where 6 =

{ UcX; X j j  eJ } .

Proof

See lemma 3 in Liu and Luo [50].

Lemma 4.1.19. Liu and Luo [50]

Let (X,3") be a fully stratified L-fts and let feLX 

such that for every beL X{xeX. f(x)>b} is cl°sed- Then f 

is closed as well.

Proof

See proposition 1 in Liu and Luo [50].

Proposition 4.1,20.

Let (X, ï ï ) be a fully stratified L-fts and (X,5) be a 

Hausdorff topological space, where <5 = {UcX; Then

each compact L-fuzzy set is closed.

Proof

Let f be a compact L-fuzzy set in (X, ï ï )  . Then from 

lemma 4.1.17. the set H = {xeX; f(x) ^p'} is compact in 

(X, <5 ) for every pepr(L) . Because (X,<5) is Hausdorff by 

hypothesis, H is closed in (X,<5), which implies that 

is closed in (X, ï ï) for every pepr(L).

Since, by proposition 1.2.2., for all beL, b = 

v {P'; pepr(L) and p'sb}, we have that X{xeX; f(x)>b} =
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A /T, v is closed in (X, ï ï )  . Then by lemma 4.1.19 f is 
pepr(L)
p' sb

closed in (X,ÏÏ).

Lemma 4.1.21. Warner and McLean [100]

Let (X, ï ï ) be an L-fts and let cp{ïï) be the topology
X

on X x pr(L) given by the image of <p : L -» P(Xxpr(L)) 

where <p ( f) = {(x,p}; p^f (x) } (proposition 3.2.19). Then 

the following are equivalent:

(i) (X, ï ï ) is compact

(ii) for every pepr(L), Xx{p} is a compact subspace 

of (Xxpr (L) , <p (ÏÏ) ) .

(iii) for every pepr(L), Xx{qepr(L); q^p} is a 

compact subspace of (Xxpr(L), <p (ÏÏ) ) .

Proof

See lemma 4.3 in Warner and McLean [100] .
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2. The Tychonoff Product Theorem

Theorem 4.2.1. Alexander's subbase theorem

Let (X,J) be an L-fts, geLX and let y be a subbase 

for 9". If for every prime p of L and every collection 

(f^)^6j of subbasic open L-fuzzy sets with (x) p̂

for all xeX with g(x) sp' , there is a finite subset F of 

J with (x)^P for all xeX with g(x)2=p', then g is

compact in (X,?).

Proof

Let pepr(L) . Let us say gc9" has the finite union 

property (for short FUP) in H = {xeX; g(x)^p'} if and 

only if for any c^...^ eS, there exists xeH with 

c (x) v...vcm (x)^p. Then g is compact if and only if no 

gc9" with the FUP in H satisfies fj (x)^p for all xeH.

Let Seif have the FUP in H and let 9 = {£; i?cBc9 and 

B has the FUP in H}.

Then 9= is nonempty since it contains g and 9: is 

partially ordered by inclusion. We now prove that each 

chain in 9: has an upper bound.

Let {2h for iel} be a chain. Then clearly gc u B.
iel 1

and to conclude that u $. ^  it remains to show that u
iel iel

B. has the FUP in H. Let B e  u B . be finite; then each i o . _ i  'lei

element of Bq appears first in some B^, therefore all of

Bq appears in the largest, say B^, of this finite set of

{B.}. Since B. has the FUP in H, for any b , ... b e B.(

there exists xeH with b (x)v...vb (x) p̂. Therefore, u
iel

B^ is an upper bound for the chain {B^}.
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Hence by lemma 1.2.5., there exists a maximal member D.

We must show that S does not satisfy fj (x)|p

for all xeH.

Since gcDc? it suffices to show that T> does not 

satisfy fj (x)$p for all xeH.

By our assumptions on the subbase i f , no 

subcollection i f * of if that has the FUP in H satisfies

(x) ̂ p for all xeH. Since D has the FUP in H, Dr\if 

is a subcollection of if that has the FUP in H, so Dr t f  

does not satisfy f) (x)^p for all xeH. Hence, it

will suffice to prove that f i f^Dnif f •

Since i f is a subbase (definition 3.1.3.), each deD

V * f 
fey

is of the form .V T (s. a . . . a s . ) , for m. elN, s. . e i f forlej n  im. ' l inl J

Then s . a  ,li a s . ^d for all im. 
i

each iej and je{l, ..., nu}

iej. We are going to prove that, for each iej we must 

have some j.e{l, ..., m.} with s.. e ynZ). It follows

for s . . eifnD,that d =  .vT(s. a . . . a s . )i.vT s..i e J  l i  lm. l e J  in .l J l

that is, and the proof will be complete.

Given deD and c , . . ., c e7 such that c a . . . a c  id,i m i m

we are going to show that ĉ eZ), for some i.

If ceZ) but ceJ, then no open set containing c

belongs to J). In fact, suppose that ceJ, ceD, be? and

that cib. Then Du{c} does not have FUP in H by

maximality of D, so there are d^ . . ., dm eZ) such that,

for every xeH, (dv...vdj (x)ip. But then
i m

(d^. . .vd^vb) (x)^p for all xeH, so we must have b£X>.
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If c, hiX but c , beJ , then CAb¿2). In fact, Du{c} and 

Du{b} do not have FUP in H, so there exist di, dm+_j

eX such that, for all xeH (d^. . .vd^vc) ( x ) a n d  

(dj+1v. . .vd_j+mvb) (x)$p. By letting d = d ^ . . .vd^+m# we 

then have that for all xeH (dvc) (x)^p and (dvb) (x)̂ p, 

whence (dv(cAb)) (x) ̂ p since p is prime. Hence CAbiD.

These results extended to c , . .., cm €X and

c , . . . , c eJ imply c a . . .ac i X .1 m c J 1 m

It now follows that, if c , ..., c i X but are open,i m

and d^c a . . .ac and de?, then d<iX. The contrapositive of 
i m

this says that if deZ) and c a ...ac ^d for c.eJ, then c.eZ) J i m i i

for some i.

Theorem 4,2.2.

L e c  ( (3v  % » )
be a family of L-fts's and let g.

AeJ

be a compact L-fuzzy set in (X^, ) for each AeJ. Then

the product set g = A rr,1(g. ) is compact in the L-fuzzyA6J A A

product space (X,9").

Proof

To prove this result we apply theorem 4.2.1. to the

subbase if = (û ) ; AeJ and u^ e7x l of the L-fuzzy

product topology 9" on X (definition 3.2.4.) .

We must show that given pepr(L), no Gcif having the 

FUP in H = {xeX; g(x)£p'}, satisfies fj (x)^p for all

xeH.

Let pepr(L), "Seif having the FUP in H and for each
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(h) eg}.AeJ, let = {he?x ;
A

Then each e has the FUP in H. Indeed, if h,

h e?,r , then since e has the FUP in H, there exists xeH 
m XA

such that Tt;‘(h ) (x) v. . .vn"1 (h > (x)sp. In other words,

V x) = xx e Hx = (xx«Xx,- gx (xx)ip'} and

h (x,)v...vh (x. )̂ p. Therefore, for each AeJ, £ does i A m a a

not satisfy |fVg fj ( x ^ p  for all x^eH^, because gA is 

compact. It follows that, for each AeJ, there exists y^e

Hx ” i t h  ( f i s x f ) ‘V * ? -
*

Let y=(yA)XeJ eH and for each AeJ define =

{ n x (h); het?̂ }.

Then ïïc!f> implies £ = u W* ; and
AeJ A fïc! fi <*> =

| (tt“1 (h) ) (y) ; het?Aj = v|h (tt̂  (y) ) ; he^j = {h(yA)} =

f) (ŷ ) p̂. Therefore, fgg, Y fj (y)-P and thenv
fee

v f fee

A > v A

(x)^p is not satisfied for all xeH.

Theorem 4.2.3.

The L-fuzzy product space (X,?) of the indexed

family (X,, Jv ) of L-fuzzy spaces is compact if
t A XA ' AeJ

and only if for each AeJ (X , J ) is compact.A XA

Proof

Necessity :

This follows from proposition 4.1.14. and the fact 

that the projection maps n : X-»X.. are continuous, ontoA A
and (X,J) by hypothesis is compact.

Sufficiency :

This immediately follows from theorem 4.2.2.
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3. Separation axioms

Theorem 4.3.1.

Let (X, 9") be a compact Hausdorff L-fts. Then (X,S) 

is regular.

Proof

Let pepr(L), xeX and let f be a closed L-fuzzy set

in (X,S) such that there is yeX with y s£f' and f (x) =0.

By definition 3.4.8. we need to prove that there are u,

vs? with x eu; for every y if' , y ev and (VzeX) u(z)=0 or 
p P P

v (z) =0 .

Let F = {teX; f(t)2=p'}. We have that x£F because 

f(x)=0 and p'*0 since pepr(L).

Since (X,fT) is Hausdorff for each yeF there exist 

fy, gy e 7 with fy (x)̂ p, gy (y)^p and (VzeX) fy (z)=0 or

gy (z)=o.

Let d = 

We have

gz (z)^P-

(gy)yeF *

hj (z)^p for all zeF. In fact, if zeF,

Since f is closed and (X,?) is compact, by corollary 

4.1.13. we have f compact.

Therefore, there is a finite subfamily $ of d, say £ 

= {gy » • • • . gy _̂} with hv$ hj (z)$p for all zeF.

Let u = .a fi=l y. and v = . q x=l ay •

We have u, v e S', u(x)^p; for every y e f' , y ev and
P P

(VzeX) u(z)=0 or v (z)=0. In fact, since each f and g
yi yi

is open we have u,v e 7. For each y^, f (x)̂ p, so
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u(x)^p since p is prime and v(y) "  ( i - i  3y J (y) *

(heiB h) for every ypif' » i-e., for every yeF. We

also have that (VzeX) u(z)=0 or v(z)=0 because if zeX and

u (z)*0 then for all ie{l, k} f (z)*0 which implies
yi

that for all ie{l, k} g (z)=0. So v(z)=0.
yi

Hence (X,J) is regular.

Theorem 4.3.2.

Let (X,J) be a compact Hausdorff L-fts. Then (X,3") 

is normal.

Proof

Let pepr(L) and let f,g be closed L-fuzzy sets such

that there are x,yeX with x i f ' and y i g ' and (VzeX)P P
f(z)=0 or g(z)=0. By definition 3.4.10. we need to

prove that there are u,v e 7 with for every z i f ' , z eu;P P
for every z i g '  , z ev and (VzeX) u(z)=0 or v(z)=0.P P

For every xeX with x i f '  , i.e., f(x)ap', we haveP
g(x)=0 because pepr(L), so p'*0 and by hypothesis we

must have g(x)=0. So, since (X,̂ ) is regular by

theorem 4.3.1., by definition 3.4.8. for each xeX with

f(x)ip' there are u , v d  with x eu ; for every z i g ' ,X x p x p

z ev and (VzeX) u (z)=0 or v (z)=0. p x x x

Let d = (ux)xeF where F = {teX; f(t)ap'}.

We have hj (z)^p for all zeF because for every

zeF u (z) ̂ p .

Since f is closed and (X,sn is compact, by corollary 

4.1.13. we have f compact.
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Therefore, there is a finite subfamily B of d, say B 

= |ux ..... u | with (hv2 h)(z)$p for all zeF.

Let u ^  u and v v .

We have u, v e 7; for every z if' , z eu; for every
r' .c'

z i q ' , z ev and (VzeX) u(z)=0 or v(z)=0. In fact,
P P

evidently u, v e J and u(z)=  ̂ ux . | ẑ  ̂= [h€S ^ ^or

all z i f ', i.e., for all zeF. Since for each je{l,...,k}
P

v (z)ip for all z gg' and p€pr(L) we have v(z) =
3 *

. a  v (z)^p for all z i g ‘ . We also have (VzeX) u(z)=0 or
j P '

v(z)=0 because if zeX and u(z)*0 then there is je{l,...,k}

such that u (z)*0 which implies v (z)=0 and then 
3 3

v (z) = 0 .

Hence (X,?) is normal.
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4. Other characterizations of compactness

X
Proposition 4.4.1.

Let (X,?) be an L-fts. Then geL^ is compact if and 

only if for every aeM(L) and every family (fi)igJ of

.A fie J ±) for all xeX withclosed L-fuzzy sets with 

g (x) —oi, there exists a finite subset F of J with 

|^A^ f̂ j (x)^a for all xeX with g(x)£a.

Proof

This immediately follows from definition 4.1.4.

Theorem 4.4.2,
x

Let (X,J) be an L-fts. Then geL is compact if and 

only if every constant a-net (sm)meD contained in g,
x

i.e., Sm^g for every meD, has a cluster point x^ eM(L ), 

with height a, contained in g, i.e., x^g, that is, 

g(x)^a, for each aeM(L).

Proof

Necessity:

Let aeM(L) and let (S ) n be a constant a-netm meD

(definition 2.3.8.) contained in g without any cluster 

point (definition 3.1.9.) with height a contained in g.
V

Then, for each xeX with g(x)^a, x^eMiL ) (remark

2.1.6.) is not a cluster point of (S ) i.e., therem meD

are N eD and a closed L-fuzzy set f with f (x)ia and

S f̂ for each m^N . m x x

92



Let x1, . . . , xk be elements of X with g{x.x )^a for

each ie{1, k}. Then there are Nxi, Nxk in D

and closed L-fuzzy sets fxi with fxi(x1)^a and S ^ ^ i

for each m^N i and for each ie{l, k}. Because D is a
X

directed set, there is NeD, NiN i for every ie{l,..., k},A

such that S if i for each ie{l, k} and for each m^N.m x

Let d = (f ) v , x xeX with
g(x)

Then _ A . f (y)ia for all yeX with g(y)£a because
x

f (y) .  We also have that for any finite subfamily B = 

{fi, f k} c ¡J there is yeX with g(y)^a and
X  X
k k
.A f i (y)^a since S i.A f i for each m^N because 1=1 x 1 m 1=1 x

S if i for each ie{l, k} and for each m^N.m x 1 ' ' 1

Hence g is not compact by proposition 4.4.1.

Sufficiency:

Suppose that g is not compact.

Then by proposition 4.4.1. there exists aeM(L) and a 

collection d = (f^)^gJ of closed L-fuzzy sets with 

|̂ Aj f̂ j (x)^a for all xeX with g(x)2=a but for any finite 

subfamily B of d there is x€X with g(x)2=ot and

(f.is £i)(x)20t-

Consider the family of all finite subsets of d,
(d)2 , with the order B iB if and only if 3B cB . Then1 2  1 1 2
(d)2 is a directed set.

. . (d)So, writing xff as S$ for every Be2 , XS a

constant a-net contained in g because the height of Sg

for all Be2 ̂  is a and S$^g for all Be2^, i.e., g(x)2:a.

ŜB^Be2^ also satisfies the condition that for
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each closed L-fuzzy set f^eB we have xa:=S2"fi- 

Let yeX with g(y)^a.

Therefore .A f.iej l
(y)|;a, i.e., there exists jeJ with

f  j  (y)

Let B = {f.} o D

So, for any B-SQ, s$-f A f , < 
€S 1

A
f . eB l o

f . = f . 
i D

Thus, we got a closed L-fuzzy set f^, with fj(y)^a and

B e2 ̂  such that for any B=ïB S^f . , that means that o o B ]
V

y^eM (L ) is not a cluster point of (SCR)cRc7(̂ ) for all yeXB' Be2

with g(y)^a.

Hence the constant a-net has no cluster

point with height a, contained in g.
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Definition 4.5.1. Wang [95]

Let (X,?) be a [0,1] - fuzzy topological space and

Xlet ge [ 0,1 ] . The fuzzy set g is said to be N-compact if

and only if every a-net (Sm)meD contained in f, i.e.,

Sm f̂ for each meD; has a cluster point with height a, x^e 

M([0,1]X), contained in f (x^f) , for each ae(0,l].

Remark 4.5.2.

In definition 4.5.1. the notion of a-net is 

different from our definition 2.3.9.. To Wang a net 

Ŝm^meD ;'‘S ca-*--'-e<̂  an “-net (ae(0,l]) if and only if the 

net (h(Sm))mgD converges to a in (0,1].

Definition 4.5.3. Zhao [110]

Let (X,7) be an L-fts where L is a fuzzy lattice.

Let aeM(L) and let d = (f^)^ be a family of closed 

L-fuzzy sets. The family d is called a family of 

g-R-neighbourhoods of an L-fuzzy set f if and only if for 

every xeX with f (x) sa there is f^ed such that f^ix^a.

The family d is called a family of a -R-Neighbourhoods of 

f if and only if there exists yep*(a) such that d is a 

family of y-R-Neighbourhoods of f. The L-fuzzy set f is 

said to be N-L-compact if and only if for each aeM(L), 

each family d of a-R-Neighbourhoods of f has a finite 

subfamily ® such that $ is a family of

a -R-Neighbourhoods of f.
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Remark 4.5.4.
Let (X,3") be an L-fts. Even if the L-fuzzy topology 

3" has only a finite number of open L-fuzzy sets it is 

possible to have L-fuzzy sets which are not N-L-compact. 

For example:

Consider X =  (0,1), L =  [0,1], f:X-»L and 3" =
x->x

{x, <p, f'}.

The L-fts (X,J) is not N-L-compact. In fact, 

considering a=l e M(L) = (0,1] and the closed L-fuzzy set 

f we have that f(x)<1 for all xeX but there is not 

je/3*(l) = (0,1) such that f (x) <v for all xeX.

Proposition 4.5.5. Zhao [110]

Let (X,3") be an L-fts and feLX . Then f is 

N-L-compact if and only if every a-net (Sm)m€D contained
V

in f has a cluster point with height a, x^eNKL ), 

contained in f, for each aeM(L).

Proof

See theorem 6.2 in Zhao [110].

Remark 4.5.6.

We have a-net in proposition 4.5.5. meaning the same 

as in definition 2.3.9.

Proposition 4.5.7,

Let (X,3") be an L-fts. If geLX is N-L-compact then 

it is compact.
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Proof

This immediately follows from proposition 4.5.5. and 

theorem 4.4.2. or by definition 4.5.3. and proposition 

4.4.1. as well since v/3*(a) = a for every aeM(L).

Theorem 4.5.8. (The goodness of N-L-compactness)

Let (X, 5) be a topological space. Then (X,<5) is 

compact if and only if (X,u(<5)) is an N-L-compact L-fts.

Proof

Necessity:

Let aeM(L), let (Sm)mgD be an a-net in the L-fts

(X,u>(5)) with xm=supp S for every meD. By propositionm

4.5.5., to prove the N-L-compactness of (X,<j (S)), it will

suffice to shdw that (S ) ^ has a cluster point inm meD

(X,u(S) ) .

Since (Sm)mgD is an a-net in (X,u(5)), (xm)meD is a 

net in (X,S). From the compactness of (X,<5), the net 

(xm)meD has a cluster point x in (X,8 ).
y

We shall prove that x^eMiL ) is a cluster point of

(S ) that is, for each closed L-fuzzy set f withm meD J

f(x)^a we have that for all jeD there is meD such that 

m—j and f (xm) £h (Sm) .

For each closed L-fuzzy set f with f(x)^a, since by
*

proposition 1.2.7. ¡3 (a) is a minimal set relative to a,

there is Ae/3 (a) with f(x)iA^a. Since (S ) ^ is an' m meD
*

a-net and A.e/3 (a), by definition 2.3.9., there is mQeD

such that h(S )=A for all m^m .m m  o

Let H = {teX; f' (t)̂ A' }.
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Since f'ecj(ô), by proposition 3.2.9. HeS . We also

have that xeH, so by the fact that x is a cluster point

of (xm) ^ in ( X , 8 ) , for each jeD there is meD such that 
meD

m^j , m-tno and xmeH. We have then f (xm) . Thus,

“ h(Sm>-

Hence xaeM(LX) is a cluster point of (Sm)meD and by 

proposition 4.5.5. (X,to ( 8 ) ) is N-L-compact.

Sufficiency :

If (X,u(5)) is N-L-compact, by proposition 4.5.7. it 

is compact. Then by theorem 4.1.6. (X,<5) is compact.

Definition 4.5.9.
V

Let (X, ï ï) be an L-fts and feL . The L-fuzzy set f 

is said to be'M(L) accessible if and only if for every 

directed subset H of J = {aeM(L); f(x)^a for some xeX} 

with VH eM(L) we have VH eJ.

Proposition 4.5.10.

Let (X,J) be an L-fts and let f be an N-L-compact 

set in (X,7). Then f is M(L) accessible.

Proof

Let H be a directed subset of J = {aeM(L); f(x)^a 

for some xeX} with vHeM(L). We need to prove that f 

being N-L-compact implies VH ej, i.e., there is xeX with 

f(x)^vH. Since by proposition 4.5.5., f N-L-compact 

implies that every a-net contained in f has a cluster 

point with height a, contained in f, which implies that
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there is xeX with f(x)£<x, it will be sufficient to prove 

that there exists an a-net contained in f where a=vH.

So, we are going to exhibit an vH-net contained in 

f.

Since HcJ, for each meH there is xmeX such that

f(xm )̂ m. We also have, by proposition 1.2.7., that

/3*(VH) is a minimal set relative to VH e M(L) and is a

directed set as well. From the fact that |3 (VH) is a

minimal set relative to VH we have for each 7 6/3* (VH),

there is m €H such that m * 7 .
If If

So, for each 7 (VH) there exists m eH and xmye X
If

with f (xm,r)  ̂m £ 7 .
(f

Consider the net (Ŝ ) (Vjj) where supp S^ = xmy

and h(S ) = 7 . 0

Actually' yei3* (Vh ) is an a-net where a=vH because 
* *

for each be/3 (a) , there exists 7 e/3 (a) such that h(S ) =0 7

7 *b whenever 7^7Q (take 7Q = b) We also have

(Sy) ye/3* (Vh ) contained in f/ i.e., f (supp S ) 2 h(S ) 

because f (xmr) 2: 7 for each •jre£!*(vH) .

Now we are going to state a result obtained by Zhao 

in [1 1 0 ] which we shall use to prove our next theorem.

Proposition 4.5.11. Zhao [110]

Let (X,7) be an L-fts. If g is an N-L-compact 

L-fuzzy set, then for each closed L-fuzzy set h, gAh is 

N-L-compact.

Proof

See theorem 4.9. in Zhao [110].
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Theorem 4,5.12.

Let (X, ï ï ) be an L-fts and geLX . The L-fuzzy set g 

is N-L-compact if and only if g is compact and for each 

closed L-fuzzy set h in (X,2T), gAh is M(L) accessible.

Proof

Necessity :

From proposition 4.5.7., g N-L-compact implies g 

compact. If h is a closed L-fuzzy set then by 

proposition 4.5.11. gAh is also N-L-compact. Then by 

proposition 4.5.10. gAh is M(L) accessible.

o

with

= (f.) . „of closed L-fuzzy sets1 16JN.

Sufficiency:

Suppose that g is not N-L-compact. Then there exist 

a^eM(L) and a family

^AK f̂ j (x)^aQ for all xeX with g(x);=ao but for any 

finite subfamily $ of d and any ye/3 (aQ) there is xeX 

with g(x)ay and A$ fij(x)sr.

From the compactness of g, by proposition 4.4.1.,

there is a finite subset F of K with .A f. (x)ia for(i€F iJ ' T o

all xeX with g(x)^a .3 o

Let h = .A f. .ieF l

So, h is a closed L-fuzzy set. Now we are going to 

prove that gAh is not M(L) accessible.

We need to exhibit a directed set H, HcJ = {<xeM(L); 

( g A h )(x)^a for some xeX} with VH e M(L) but VH i J.

Take H = (3 [a ) .o

By proposition 1.2.7., v/3* (aQ) = ocq and since aQ <= 

M(L) , /3*(aQ) is a directed set. Then VH = clq eM (L) and 

vH=aQ i J because (gAh) (x)^aQ for every xeX because if
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g(x)^ao then ^ A p fij (x)  ̂aQ which implies (gAh) (x)£ aQ 

and if g(x)^aQ then immediately (gAh)(x)^aQ. We also 

have HcJ because for any ^eH = (3* (ctQ) there is xeX with 

g(x)sy and h(x) = fiJ(x)sir, which implies

(gAh) (x) .

Remark 4.5.13.

Let (X, ï ï ) be a [0,1]-fuzzy topological space and let 

fe[0,l]X . The [0,1]-fuzzy set f is (0,1] accessible if 

and only if there is xQeX such that f (xq) = v{f(t); teX} .

Necessity :

In fact, if f is (0,1] accessible then for every 

Y£J={ae(0,1]; f ( x ) f o r  some xeX} with VY e (0,1] we 

have VY e J. Let Z = (0,l]n{f(t); teX} . Thus, we have 

Z£J and VZ e(0', 1] then VZ e J. Therefore there is x qsX

such that f (x ) ̂ VZ and then we have f (x ) = VZ. Henceo o

f (xQ) = v{f (t) ; teX} .

Sufficiency:

Let Y£J = {ae(0,l]; f ( x ) f o r  some xeX} with VY

e(0,l] . If there is xQeX with f (x ) = v{f(t); teX}, then

Y£J = (0, f(x )] . Thus VY i VJ = f(x ) and since VY*0, o o

we have VY ej. Hence f is (0,1] accessible.

Remark 4.5,14.

By remark 4.5.13., proposition 4.5.10. is a 

generalization of the following result obtained by Wang 

in [95]

"If (X,J) is a [0,1]-fts and f is N-compact in (X, ï ï )  

then there is xQeX such that f(x ) =v{f(t); teX}".
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6. Other compactnesses in L-fuzzy topological spaces

Definition 4.6.1. Hutton [44]

Let (L, ST) be a fuzzy topological space where L is a 

fuzzy lattice. An open cover d of a fuzzy set f is a 

collection of open fuzzy sets such that f-g^ 9 - A 

subcollection $ of a cover ¡d of f that is also a cover of 

f, i.e., f-ggB 9/ is called a subcover of f. The fts 

(L,7) is said to be H-compact if and only if every open 

cover ¡d of a closed fuzzy set f has a finite subcover.

Remark 4.6.2.

In 1968, Chang [18], defined compactness for a 

[0,1]-fts (X,?) as follows: "(X,T) is Chang compact if 

and only if every open cover of X has a finite subcover".

Lowen [54] showed that Chang compactness is not a 

good extension by exhibiting a compact topological space 

(X,S) such that the [0,1]-fts (x,u(S)) is not Chang 

compact.

Since H-compactness implies Chang compactness, we 

can conclude that H-compactness is not good as well.

Definition 4.6.3. Lowen [54]

Let (X, ¡1) be a [0,1]-fts. (X,3") is called fuzzy 

compact if and only if for each a€[0 ,l] and each 

collection (f^)^gJ of open fuzzy sets with f̂ j (x)

for every xeX and for each ce(0,a], there is a finite

subcollection (f.). „ with
i leF

xeX.
f̂ j (x)^a-e for every

Definition 4,6.4. Wang [6 6]

Let (X,y) be an L-fts where L is a fuzzy lattice.
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(X,?) is said to be Lowen L-fuzzv compact if and only if 

for each aeM(L) and every a-net (sm)meD in (x »?) and each 

re/3*(a), (Sm)meD has a cluster point xr eM(L ), with 

height r.

Proposition 4.6.5. Meng [66]

Let (X,?) be an L-fts. Then (X,̂ ) is Lowen L-fuzzy 

compact if and only if for each aeM(L) and each re/3 (a), 

each family d of r-R-neighbourhoods of X has a finite 

subfamily 23 such that B is a family of a-R-Neighbourhoods 

of X.

Proof

See theorem 2.5 in Meng [6 6].

Proposition 4.6,6.

Let (X,?) be an L-fts. Then (X,7) is Lowen L-fuzzy

compact if and only if for every pepr(L), every j eh such 
*that r'e/9 (p') and every family (f^)^ of open L-fuzzy 

sets such that f̂ j (x)^ for all xeX, there exists a

finite subset F of J with Lv fj (x)^p for all xeX.

Proof

By proposition 4.6.5. we have that (X,̂ ) is Lowen

L-fuzzy compact if and only if for every aeM(L), every 
*

<5e£ (a) and every family of closed L-fuzzy sets

such that A
leJ (x)̂ 5 for all xeX, there exists a finite 

subset F of J with (x)^a for all xeX.

So, (X,̂ ) is Lowen L-fuzzy compact if and only if 

for every a'=p e pr(L), every <5'=reL such that r'=5e
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/3*(p'=a) and every family 

(f± = g^) such that 

exists a finite subset F 

xeX.

(f^)^eJ of open L-fuzzy sets

f .l (x)̂  y for all xeX, there 

of J with f±j (x)^p for all

Proposition 4.6.7.

Let (X,T) be a compact L-fts. Then (X,T) is Lowen 

L-fuzzy compact.

Proof
*

Let pepr(L), yeh such that y' e/3 (p') and let 

(f^)^gj be a family of open L-fuzzy sets with

fij (x)^y for all xeX.
* . .

Since y'e/3 (p') implies that y'eM(L), i.e., y€pr(L);

by the compactness of (X,T) there is a finite subset F of

J with fjj (x)^ for all xeX. But, because y'€/3*(p' )

and by proposition 1.2.7. v£*(p') = p', we have y' <p '  ; so

y^p. Then (x)^p for all xeX. Hence, by

proposition 4.6.6., (X,T) is Lowen L-fuzzy compact.

Theorem 4.6.8. (The goodness of Lowen L-fuzzy 

compactness)

Let (X, <5 ) be a topological space. Then (X,<5) is 

compact if and only if the L-fts (X,cj(S)) is Lowen 

L-fuzzy compact.

Proof

Necessity :

By theorem 4.1.6., (X,<5) compact implies that the

L-fts (X, (j (5 ) ) is compact. Hence by proposition 4.6.7.
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(X, (j (5 ) ) is Lowen L-fuzzy compact.

Sufficiency:

Let (A.). T be an open cover of (X,S) and let 
1 lej

pepr(L). Then, by proposition 3.2.10, (*A ) is a
i iej

family of open L-fuzzy sets in (X,u(S)) and we also have 

ieJ *a I ^  = 14y f°r a 1 1 X€X and f°r a 1 1 7€h such that' i'

p') . From the Lowen L-fuzzy compactness of 

(X, to (<5) ) and theorem 4.6.7., there is a finite subset F

of J with | xA j(x)^p, i.e.

xeX. Thus u A. = X and hence 
ieF x

ieF XA. ( x ) = 1  for a 1 1  

(X,6 ) is compact.

Remark 4.6.9.

Let (X,T) be an L-fts where L is a fuzzy lattice and

let i (f) = {xeX; f (x)^p} where feJ and pepr(L) . Then 
P

the collection <p(J) = {i (f) ; pep[r(L) and fe?} u{x} is a
P

subbase for some ordinary topology, iT (7), on X.
Lt

Definition 4.6.10. Lowen [56]

Let (X,?) be a [0,1]-fuzzy topological space. (X,T) 

is said to be ultra-fuzzy compact if and only if the 

topological space (X,i ̂Q ^  (J)) is compact.

Definition 4.6.11, Wang [67]

Let (X,9') be an L-fts. (X,7) is said to be 

ultra-L-fuzzy compact if and only if the topological 

space (X, i (!7) ) is compact.

Proposition 4.6.12

Let (X,?-) be an ultra-L-fuzzy compact L-fts. Then
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(X,J) is N-L-compact.

Proof

Let (Sm)meD be an a_net in • Let ^  be the

support of Sm for each meD.

So, (xm)meD is a net in the ordinary topological

space (X, i (7) ) . Since (X,7) is ultra-L-fuzzy compact

we have that (X, i (J) ) is compact. Thus, (xm)meD has a

subnet (xmi). „ converging to some xeX.

So, (S ) is a subnet of (sm)m€D converging to 
mi ieE 

y
x^eM(L ). In fact, if f is a closed L-fuzzy set with 

f(x)^a, since by proposition 1.2.7. /3 (a) is a minimal 

set relative to a, there is aQe/3 (a) such that f(x)^aQ̂ a. 

Let U = {teX; f  (t)^a'}. Since a^epr(L) and f'eJ, we 

have that Uei_ (?). We also have that xeU. Thus, becauseLi

xmi-»x in (X, iT (y) ) , there exists i eE such that i^i L o o

implies that xmi eU, that is, f(xmi)^aQ for every i2tiQ.
*

Moreover, since (S ) is an a-net and a e/3 (a) , there
i ieE 0

is i eE such that 
i

h (S )*a m . o l
for every i^i . Take i eE2

such that i a max2 H- o H- t—‘ So, f (xmi)ta s < 0 h(sm.>l
for

every i-i2- Hence S -wc m. al

Therefore, by proposition 3.1.10., xft is a cluster 

point of <Sm)m6D .

Hence, by proposition 4.5.5., (X,y) is N-L-compact.

Theorem 4.6.13. (The goodness of ultra-L-fuzzy 

compactness)

Let (X, <5) be a topological space. Then (X,<5) is
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compact if and only if the L-fts (X,u(5)) is 

ultra-L-fuzzy compact.

Proof

Necessity:

If (X,5) is compact then we need to prove that 

(X, iT (u(5))) is a compact topological space.

Let (Ai)ieJ be a subbasic open cover of 

(X, iL (w(5))). Thus each is of the form {xeX; f(x)^p} 

for some feu(6 ) and pepr(L) or A^=X. By proposition 

3.2.9., feu(5) implies that for each pepr(L), {xeX;f(x)^p} 

e6 . So, (A^)^gJ is an °pen cover of (X,«5) . By the 

compactness of (X,<5), there exists a finite subset F of J

such that u A. = X. 
ieF 1

Hence (X, iL (u(5))) is compact.

Sufficiency:

If (X, u(5)) is ultra-L-fuzzy compact then by 

proposition 4.6.12. (X, u(5)) is N-L-compact. From

theorem 4.5.8., (X, u(5)) N-L-compact implies that (X,5)

is compact.

Definition 4.6.14. Xu [105]

Let (X,!7) be an L-fts where L is a fuzzy lattice and 

let feL . The L-fuzzy set f is called X-compact if and 

only if for any aeM(L), each family d of 

a -R-Neighbourhoods of f has a finite subfamily £ such 

that £ is a family of a -R-Neighbourhoods of f.
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Proposition 4.6.15.

Let (X,y) be an L-fts and let feLX . The L-fuzzy set 

f is X-compact if and only if for each prime peL and 

every collection (f.)^ej of open L-fuzzy sets such that 

there is yeL with y'e 0* (p') and f±J (x) =jsy for all

xeX with f(x)—k ' , there exist a finite subset F of J and

y^L with y'e/3 (p') such that . v_ f. (x) iy for all xeXleF l T l

with f(x)iy'

Proof

By definition 4.6.14. we have that f is X-compact if

and only if for every aeM(L) and every family (f^)^gJ of
*

closed L-fuzzy sets such that there is Se/3 (a) with

f̂ j (x) <̂5 for all xeX with f (x) 2=6 , there exist a
*

finite subset F of J and 6^0 (a) such that

f̂ j (x)^^ for all xeX with f (x)s6i. And this is 

clearly equivalent to our result.

Proposition 4.6.16.

Let (X,J) be an L-fts and let f be a compact L-fuzzy 

set of (X,3"). Then f is X-compact.

Proof

Let pepr(L) and let (f^)^ 138 a family of open

L-fuzzy sets such that there is yeL with y'e0*(p') and

f^j(x)^y for all xeX with f(x)2:y'. Since y'e/3*(p'), 

yepr(L). By the compactness of f, there is a finite 

subset F of J such that f̂ j (x )̂ y for all xeX with

f(x)*y' .
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Hence f is X-compact by proposition 4.6.15.

Theorem 4.6.17. (The goodness of X-compactness)

Let (X,5) be a topological space. Then (X,ô) is 

compact if and only if the L-fts (X, u ( 8 ) ) is X-compact.

Proof

Necessity :

If (X,6 ) is compact, by theorem 4.1.6., the L-fts 

(X,w(<5)) is compact. Then from proposition 4.6.16. 

(X,cj(<5)) is X-compact.

Sufficiency :

This is similar to the sufficiency of theorem 4.6.8.

Theorem 4.6.18. (The goodness of a-compactness for a * l )  

Let (X,<5) be a topological space and let aeL with 

a*l. Then (X,<5) is compact if and only if (X, td(<5)) is 

a-compact.

Proof

Necessity :

Let d = (f
e.U.l l

iej
be a family of basic open L-fuzzy

sets in (X, tj (ô ) ) such that for each xeX there is iej 

with f^(x)>a. By proposition 3.2.11., we consider

e.U.e . u . /ti .
1 1 / \ I 1
i <x) ■ to

e. if xeU.eôl
otherwise for all xeX and each iej.

e.U.
Let £ = {U., there is iej with a<e. and f . 1 1 e* 1 1 1 1

Therefore u U. = X. 
iej 1

By the compactness of (X,<5), there exists a finite
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X.subset F of J with u U. =
ieF

Hence for each xeX there is ieF with 1 (x)>a and

(X, cj(5)) is a-compact.

Sufficiency :

Let (A^^j be an open cover of (X,5) . Then by

proposition 3.2.10. (*, ) is a family of open L-fuzzy
l iej

sets in (X, u (5)). Since u A. = X, for each xeX there
iej

is iej with *A (x) = l>a. So, by the a-compactness of
i

(X, cj(<5)) there exists a finite subset F of J such that 

for each xeX there is ieF with *A (x)>a, i.e., xA (x) =1.
i l

Hence u A. = X and (X,S) is compact. 
ieF 1

Remark 4.6.19.

1 -compactness is not a good extension.

In fact, it is immediate from definition 4.1.1. that 

every L-fts is 1-compact. So, by considering X=[0,1]=L 

with the discrete ordinary topology 6 , we have that (X,S) 

is not compact but (Xfw(S)) is 1-compact.

Remark 4.6.20.

By proving that if X is infinite and 8 is the finite 

complement topology on X then (X, co ( 8 ) ) is not a*-compact 

for any ae(0,l], Lowen [54] showed that a*-compactness is 

not a good extension.
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7. Relations between the good definitions of compactness 

in L-fuzzy topological spaces

Proposition 4.7.1.

Let (X,7) be an X-compact L-fts. Then (X,3") is 

Lowen L-fuzzy compact.

Proof

Let pepr(L), ye L such that y'e/3 (p') and let (f^)^eJ

■ V  t  f 1 € J i) (X)^ forbe a family of open L-fuzzy sets with 

all xeX. By the X-compactness of (X,7) there exists a 

finite subset F of J and y' e£*(p') such that f. (x)
1 I X  £ r  1 J

=fy for all xeX. Since by proposition 1.2.7. v£*(p') = 

p' we have y'^p', i.e., y^p. So, fij(x)^p for all

xeX.

Hence, by proposition 4.6.6., (X, ï ï ) is Lowen L-fuzzy 

compact.

Remark 4,7.2.

We can have an N-L-compact L-fts (X,̂ ) which is not 

ultra-L-fuzzy compact.

Consider L = [0,1], X = IN.

For each ae(0,l) there exists melN such that 

(m-1) /m<a^m/ (m+1) .

Let €[(m-l)/m, a), ie{l, ..., m} and let

f (a,  a , .. . , a ) (x)l ' ' m
f a if x>m

if x=i ie{l, ..., m} .

Let J consist of <p,X and all those L-fuzzy sets that 

are complements of the L-fuzzy sets above.

We have that (X,3") is N-L-compact and it is not 

ultra-L-fuzzy compact (see example 5.2. [95]).
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Remark 4.7.3.

We can have a compact L-fts (X,3") which is not 

N-L-compact.

Consider X =  (0,1), L = [0,1], f:X-»L and 7 =
x-»x

{X, 0, f'}.

By remark 4.5.4. (X,7) is not N-L-compact and by

proposition 4.1.7. it is compact.

Remark 4.7,4.

We can have an X-compact L-fts (X,i7) which is not 

compact.

Consider X = [0,1] = L and 7 the fuzzy topology with

a subbase consisting of X,(p and all the L-fuzzy sets

f (y) = / ^  ^ ~ x for each xeX and t<i/2. x J  ̂t if y * x

(i) (X,?) is not compact.

In fact, by taking p<i/ 2 and considering the family

*’ = (fx°)xsx where V P '  we have that (x€X £x°) (y> m ;>p 

for all yeX and there is no finite subfamily B of d with

i v[feB f j (y) >p for all yeX because if B
( t

■ (fv  • •

then i v[feB f) (y)
J1/2 if y e 

v t0 if y £

{Xj, •••>

{xi7 ...,

xnJ and t0
x } mJ

(ii) (X,?) is X-compact.

In fact:

If pe[i/2, 1) and 4 is a family of subbasic open 

L-fuzzy sets with f j (y) >3f for an  y€x for some y>p

then xe^. Therefore there exists a finite subfamily B of 

d, B = {x}, and y^p such that fj (y) > for an

yeX.
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If pe[0 ,1/2) and 4 is a family of subbasic open 

L-fuzzy sets with fj (y) > 7 for yeX for some y>p and if

Xe4, there exists a finite subfamily $ of 4, B = {X} and 

y^p such that fj (y) >T1 for all yeX. If Xid then 4 =

teTc [0,1/2) 
xeZcX

So, (y)
( 1 / 2 if yeZ 
|VT if y«Z

Take T 

of Z and y

Let B =

any finite subset of T, 

such that max T1>yi>P-

teT
xeZ1

1

Z and finite subset 1

Therefore (y) 11 / 2 it y 6 Zt > r, for all
'max T if yiZ 1 1 1

yeX.

Hence (X,J) is X-compact since Alexander's subbase 

theorem is valid for X-compactness (see this remark in 

[105] .

Remark 4.7.5.

We can have a Lowen L-fuzzy compact L-fts which is 

not X-compact.

Consider X = L = [0,1].

For all xeXnO let x = p/q in smallest terms and then 

put fx = | + q *{x} for a11 S€[N' O-s-q-1-

{x}

fa; xeXn(D, x=p/q, selN, 0^s^q-l|.

xeX, x irrationalj and let ^  =Let ST
■ = {’

Let 3" be the fuzzy topology on X generated by S = 

(ft)t€[o 1 ] where ft (y) = t for all yeX.

We have that ip(^) = {i (f) ; feST} is generated by
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and is the discrete ordinary topology(f (p, L] ) f6y
1

on X for all pe[0,l). (See counterexamples pp 451 in 

[56] ) .

So, (X, T) is not X-compact.

In fact:

Take p = 1/2 and consider the family ^=(f)f€g-u3- of
1 2

open L-fuzzy sets. Then f (x)=l>y for all xeX where

ye (1/2, 1) and since i (7) = ({xeX; f(x)>p})fe^ is the 

discrete topology for every pe[0,l) there is no finite 

subfamily S of d and y^e (1/2,1 ) with fj (x) > ŷ  for

all xeX.

Hence [ X , J ) is not X-compact.

But we have that (X,3") is Lowen L-fuzzy compact (see 

pp 451 in [56] ) .

Theorem 4.7.6.

The relations we have established between 

ultra-L-fuzzy compactness, N-L-compactness, compactness, 

X-compactness and Lowen L-fuzzy compactness are the 

following :

ultra-L-fuzzy £ N-L-compactness £ compactness £ 
compactness

4
X-compactness => Lowen L-fuzzy

compactness

Proposition 4.7.7.

Let (X,J) be a Hausdorff Lowen L-fuzzy compact 

L-fts. Then (X,7) is compact.

Proof

Let aeM(L) and let (S ) _ be a constant a-net inm meD
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(X,J) where supp S^ = xm .

We want to prove that (Sm)meD has a cluster point zft 

in X with height a, i.e., there is zeX such that for each 

closed L-fuzzy set f with f(z)£a we have that for all jeD 

there is meD such that m^j and f(xm)̂ a.

By the Lowen L-fuzzy compactness of (X,?) we have 

that given ye/3 (a), (Sm)m€D has a cluster point x' eM(L ) 

with height y and support x*. So, by proposition

3.1.10., (Sm)meD has a subnet (Pq)q€D converging to x *.

Let f be a closed L-fuzzy set with f(x^)£a. So,
* . . .

since ¡3 (a) is a minimal set relative to a by proposition

1.2.7., there is y ê/3 (a) such that f ( x  ) f y ^ a .

Since (P ) is an a-net, by the Lowen L-fuzzy
q q i

compactness of (X,?), (P ) has a cluster point y eq q€D̂

X ^ iM(L ) with height y and support y So, by proposition

3.1.10., (P ) _ has a subnet converging to yq qeû  y

We also have that this subnet of (pq)q€D converges 

to x^ because P ->x*. By proposition 3.4.7. we havey m ^ r  J rr Jr

yx =y

Therefore x® is a cluster point of (S ) ^ . As fy * m meD

is a closed L-fuzzy set with f(xy)^yi and x* is a

cluster point of (sm)meD/ for all jeD there is meD such 

that m^j and f(xm) .

Proposition 4.7.8.

Let [ X , J ) be a Hausdorff compact L-fts. Then (X,3") 

is ultra-L-fuzzy compact.
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Proof

We need to prove that (X, iL (9")) is compact.

Let (A.). T be a family of subbasic open sets in
X  X € iJ

(X,iT (ST)) such that X = u A.
L ieJ 1

So, each Ai is of the form Ai = {xeX; f(x)^p, feï ï and 

pepr(L)} and xA j (x) =l^p for all xeX and all pepr(L) .
By theorem 4.1.9. we have 9cu(<5) where <5 = {AcX; xA 

eï ï} . Therefore we have that if feï ï then fe(j(«5) which, by 

proposition 3.2.9. (i), implies that {xeX; f(x)^p}eô for 

all pepr(L). So, ^{xeX; f(x)̂ p} e J for everY pepr(L).

By the compactness of the L-fts ( X , ï ï ) , there is a 

finite subset F of J such that .V, xA (x)^p for all xeX,

x. e V
ieF X-, (x)=1 for all xeX. Therefore X = u A.

ieF 11

Hence (X, i ^ ( ï ï ) )  is compact.

So we have the following:

Theorem 4.7.9.

In a Hausdorff L-fts compactness, ultra-L-fuzzy 

compactness, N-L-compactness, X-compactness and Lowen 

L-fuzzy compactness are equivalent.

Remark 4.7.10.

Since we have heard of X-compactness and Lowen 

L-fuzzy compactness only very recently and they seem to 

have been studied only in works in Chinese, we do not 

know what work has been done on them. We do not even 

know if Lowen L-fuzzy compactness has been defined for 

arbitrary L-fuzzy sets or not.
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Chapter V

Countable compactness, sequential compactness and

Lindelofness

In this chapter we introduce good definitions of 

L-fuzzy countable and sequential compactness and the 

Lindelof property for L a fuzzy lattice. Each of them is 

defined on arbitrary L-fuzzy sets and their properties 

studied.

The first attempt to define the Lindelof property, 

sequential and countable compactness was done by Wong

[102]. But his definitions are not good.

Following the lines of Gantner, Steinlage and 

Warren's a-compactness (definition 4.1.1.), Malghan and 

Benchalli defined countable compactness and the Lindelof 

property in [61].

Sequential compactness was also studied by Xuan 

[107] . His definition is based on N-compactness 

(definition 4.5.1.).

In [1], Abd El-Hakeim introduced and studied 

N-compactness and N-sequential compactness in fuzzy 

neighbourhood spaces.

All of these works were developed on [0,1]-fuzzy 

topological spaces. As far as we know, none of these 

notions has been introduced in L-fuzzy topological spaces 

for L * [0,1].
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We divide this chapter into 3 sections.

In the first section we present our definitions of

countable compactness, Lindelofness and sequential 

compactness. In this section we also prove their 

goodness.

The second section is reserved for other 

characterizations of countable compactness.

In the third section we study some of their 

properties.

From this chapter on, L will be always a fuzzy 

lattice.
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1. Proposed definitions and their goodness theorems

X
Definition 5.1.1.

Let (X,7) be an L-fts and geL'”. The L-fuzzy set g 

is said to be countably compact if and only if for every 

prime peL and every countable collection (f^)^gJ of open 

L-fuzzy sets with f̂ j (x) for all xeX with g(x)ap' ,

there exists a finite subset F of J with (X)^P for

all xeX with g(x)^p'.

If g is the whole space, then we say that the L-fts 

(X,?) is countably compact.

Theorem 5.1.2. (The goodness of countable compactness) 

Let (X, <5) be a topological space. The L-fts 

(X,w (5)) is countably compact if and only if (X,S) is 

countably compact.

Proof

Necessity:

This is similar to the proof of sufficiency in our 

theorem 4.6.8.

Sufficiency:

Let pepr(L) and let be a countable family of

open L-fuzzy sets in (X, u(5)) with fij(x)^p for all

xeX.

Therefore (f/({teL; t^p}))^gK is an open cover of 

(X, 5) . In fact, since f .e u ( S ) for all ieK and {teL; t^p} 

is Scott open, f^1 ({teL; t^p})eS for every ieK. We
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also have fT1 ({teL; t=fp}) = X because for each xeX 

there is ieK with f^x^p, i.e., for every xeX there is 

ieK with xef^ifteL; t^p}) .

From the countable compactness of (X,5), there 

exists a finite subset F of K with f^1({teL; t^p}) = 

X. Therefore, .v_ f.) (x) ip for every xeX because for
lie* 1J

each xeX there is ieF such that f^(x)^p.

Hence (X, w(5)) is countably compact.

Definition 5.1.3.

Let (X,7) be an L-fts and let geLX . The L-fuzzy set 

g is said to be Lindelof if and only if for every prime 

peL and every collection (f^)^gj of open L-fuzzy sets 

with f̂ j (x)^p for all xeX with g(x)^p', there is a

countable subcollection of (f.). T with this property.

If g is the whole space, then we say that the L-fts 

(X,7) is Lindelof.

Theorem 5.1.4. (The goodness of Lindelofness)

Let (X,5) be a topological space. The L-fts 

(X,cj(5)) is Lindelof if and only if (X,S) is Lindelof.

Proof

This is similar to the proof of theorem 5.1.2. 

Definition 5.1.5.

Let (X,3") be an L-fts and let geL^. The L-fuzzy set

g is said to be sequentially compact if and only if each

constant a-sequence (S ) .. contained in g (i.e., S igm melN m
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for every melN) has a subsequence converging to an L-fuzzy 

point xa<sM(LX)( with height a, contained in g (i.e., 

x ^g), for each aeM(L).

If g is the whole space, then we say that the L-fts 

(X,J) is sequentially compact.

Theorem 5.1.6. (The goodness of sequential compactness) 

Let (X,5) be a topological space. The L-fts 

(X,u(5)) is sequentially compact if and only if (X,S) is 

sequentially compact.

Proof

Necessity:

Let (xm)me[N be a sequence in (X,5) and aeM(L) . Then

(xm) .. is a constant a-sequence (remark 2.3.9.) in a melN

(X,u(5)). From the sequential compactness of (X, w(<5)),
m.

(x«) melN has a subsequence ( converging to some

x eM(LX). a

Let P be a closed set in (X,5) with x£P. Then *p is

a closed L-fuzzy set in (X, w(S)) by proposition 3.2.10.

and since x«P, *p (x)=0^a. 
m.

Since x^Sx^, by definition 3.1.9. (i), there is melN
m .  m .

such that i^mQ implies that , i,e-' *p(x 1)̂ a for
m . ^

every i-mQ, that is, x 1 <£V for every i^m . Then

mi m ° mi(x ) ̂ g(N is a subsequence of (xm)me(N and x x->x.

Hence (X,<5) is sequentially compact.

Sufficiency:

Let aeM(L) and let (sm)mg(N be a constant a-sequence
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with supp (S ) = xm for each melN.

Then (xm)meW is a sequence in (X,<5). Since (X,6) is

sequentially compact, the sequence (xm)me(̂  h-as a 
m .

subsequence (x 1) j_e(N converging to some xeX.
m .

We shall prove that (x x) converges to xa, i.e.,
ieDSI

for each closed L-fuzzy set f with f(x)£a there exists
m.

m €lN such that i^m implies that f (x )ta. o o c I

Let f be a closed L-fuzzy set in (X, <j (5)) with 

f (x) .

Let H = {teX; f' (t)̂ a' }. Since f/ew(5)> by

proposition 3.2.9. we have He<5 . We also have that xeH.
m.

Since x is a limit point of (x x ) . .. , there exists m elN^ lelN ' o
m .  m .

such that i^mQ implies that x eH, i.e., f(x 1)̂ a for 

every i-mQ.
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2. Other characterizations of countable compactness

P ro p o s it io n  5 .2 .1 .
x

Let (X,7) be an L-fts. Then geL is countably 

compact if and only if for every cxeM(L) and every 

countable collection (f.). T of closed L-fuzzy sets with1 16J
r '
. A_ f. (x)ia for all xeX with g(x)^a, there exists a iej ij i

finite subset F of J with fij (x)^a for all xeX with

g (x) .

Proof

This immediately follows from definition 5.1.1.

Theorem 5.2.2.
x

Let (X, 9”) be an L-fts. Then geL is countably

compact if and only if every constant a-sequence (sm)m6(N
x

contained in g has a cluster point x^eMiL ) with height 

a, contained in g, for each aeM(L).

Proof

Necessity:

Let aeM(L) and let (sm)me[N/ where support and height

of Sm are respectively supp S = xm and h(S ) = a, be a m m m

constant a-sequence contained in g without any cluster 

point with height a contained in g.

For each melN define a closed L-fuzzy set f = A{f; f 

is closed in (X,J) and ftx1)^ for all ie(N with i^m} .

Thus, d = is a countable family of closed

L-fuzzy sets with fmj (x) for all xeX with g(x)act.
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.X.In fact, if xeX and g(x)s<x, then xaeM(L ) is not a

cluster point of (Sm)me[N, i.e., there are je(N and a

closed L-fuzzy set g* with g*(x)^a and S^g (g* (x1) *a)

for each isj . Thus, f^g* and f ̂ (x) ̂ g* (x) . So,

fj(x)^a, which implies fmj(x)^a.

We also have that for any finite subfamily Bed there

is xeX with g(x)sa and f (x)sa. In fact, if B =

(f. , ..., f. } since f (x1)^ for every ielN with ism, we1 ~\ i , mJ i . Jk

r Dk i ihave fmj (x1)-« for every is max {ji# ..., jfc} .

Hence g is not countably compact.

Sufficiency:

Suppose that g is not countably compact. Then there

exist aeM(L) and a countable collection d = (f.) . .. ofl leIN

closed L-fuzzy sets with .A f ie(N i) for all xeX with

g(x)sa but for any finite subfamily B of d there is 

xaeM(LX) with x ^g and |f fij(x)sa.

Thus, for each melN there is xmeX with g(xm)sa and

/ tn. _(x )sa.

Therefore (S m, where suppS =x and h(S )=a, is am meIN' " ^ ' m  m'

constant a-sequence contained in g with no cluster point

with height a contained in g. In fact, if yeX and g(y)sa

then fL (y)^a. Thus, there exists jelN with f.(y)^a.

We also have asLA1 fL (xm)ifj(xm) for all msj Hence, y^

is not a cluster point of (S ) for all yeX withm meIN J

g (y) .
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3. Some properties

Proposition 5.3.1.

Let (X, 3") be an L-fts. Every compact L-fuzzy set g 

is countably compact and Lindelof.

Proof

This is immediate from the definitions.

Theorem 5.3.2.

Let (X,9) be a second countable (C2) L-fts. Then
V

geL is compact if and only if g is countably compact. 

Proof

Necessity:

This follows from proposition 5.3.1.

Sufficiency:

Let pepr(L) and let (f^)^eJ be a family of open

L-fuzzy sets with fjj (x) ̂ p for all xeX with g(x)2:p'.

Since (X,9) is C2 (definition 3.4.2.), 9" has a

io
countable base $ = (b ) ... Then f. =. b., where im melN l k=l lk o

may be infinity.

Thus, ¿ej is a countable family

ke{l,2,...,iQ}

of open L-fuzzy sets with L  gg for all xeX

with g(x)sp'. By the countable compactness of g, there

exists a finite subcollection $ of S with thisi o

property. Each member he$i satisfies h=sf̂  for some iej.
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for some i'ej andIn fact, if heSB̂  then h=bi#k, 

k'e{l,...,i } because $ic$q and h bi'k' v b k=l i'k

fi'

Let if = {fi; h * f L , beSj.

Therefore if is a finite subcollection of (fi)ieJ

with f f 1 (X)^p for all xeX with g(x)sp' because 
lr i J

satisfies this property.

Hence g is compact.

Proposition 5.3.3.

Let (X,?) be an L-fts. If g is a sequentially compact 

L-fuzzy set, then g is countably compact.

Proof

Let g be a sequentially compact L-fuzzy set and let 

m̂̂ rnelN be a constant a-sequence contained in g.

Thus, by the sequential compactness of g,
V

has a subsequence converging to some xa<=M(L ), contained

in g. From proposition 3.1.10. x^ is a cluster point of

(S ) ~|m melN

Hence g is countably compact by theorem 5.2.2. 

Theorem 5 .3 .4 .

Let (X,3") be a Ci L-fts. If g is a countably 

compact L-fuzzy set, then g is sequentially compact.

Proof

Let g be a countably compact L-fuzzy set and let
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(S ) be a constant a-sequence contained in g. Thus,
' m melN

X
by theorem 5.3.2., (Sm)m6[N has a cluster point xaeM(L ), 

with height a, contained in g.

Since (X,7) is C (definition 3.4.1.), by 

proposition 3.4.4., (Sm)me[N has a subsequence converging 

to Xa .

Hence g is sequentially compact.

Proposition 5.3.5.

Let (X,2T) be an L-fts and let g be a sequentially 

compact L-fuzzy set. Then each closed L-fuzzy set h 

contained in g is sequentially compact as well.

Proof

Let oteM(L) and let h be a closed L-fuzzy set

contained in g. Let (S ) be a constant a-sequence J m meiN

contained in h.

Thus, (S ) ...is contained in g as well and from them melN J

sequential compactness of g, there exists a subsequence

(Ti)i€lN of (sm)melN converging to an L-fuzzy point
x

x^eM(L ) with x^ig, i.e., for each closed L-fuzzy set f

with f(x)ia there is melN such that i^m implies that 1 o o r

T ^ f . But T.sh for every ielN and since h is a closed 

L-fuzzy set, h(x)£oc, i.e., x^sh.

Hence h is sequentially compact.

Proposition 5.3.6.

Let (X,i7) be a Ci L-fts and let g be a compact 

L-fuzzy set. Then g is sequentially compact.

127



Proof

Let asM(L) and let (Sm)m€jN be a constant a-sequence 

contained in g.

From theorem 4.4.2., (Sm)me[N has a cluster point
V

x eM(L ) contained in g. a
Since (X, J) is C , by proposition 3.4.4. (sm)me[N has 

a subsequence converging to x.^.

Hence g is sequentially compact.

Proposition 5.3.7,

Let (X,JX) and (Y, ï ïY) be L-fts's, let 

f : (X, 7X) -» (Y, ï ïy) be a continuous mapping such that f 1 (y) 

is finite for every yeY and let g be a sequentially 

compact L-fuzzy set of (X,?x). Then f (g) is a 

sequentially compact L-fuzzy set of {Y, ï ï^)  .

Proof

Let aeM(L) and let (sm)me[N be a constant a-sequence 

contained in f(g) with supp Sm = ym . Then f(g) (ym) for 

every meIN, i.e., v{g(z); zeX, f(z) = ym}^a for every meIN. 

Thus, for each meIN there is xmeX with g(xm)s:a and f (xm) = 

ym . Therefore (x™)me[N is a constant «-sequence contained 

in g.

From the sequential compactness of g, (xm) has aa meIN

mi  Xsubsequence (xft ) converg ing to  some x^eMiL )

con ta ined  in  g.

Now we are going to prove that the subsequence 
m .

(O i € l N  o f  •VmsIN converges to  y a = f ( x ) a .

In fact, for each closed L-fuzzy set h in (Y,JY)

with h(y)^a we have that f_1(h) is closed in (X,JX) and
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m .
f_1 (h) (x) = h(y)^a, i.e., x^f'‘(h). Since (x^) ie(N

converges to x , there exists mQelN such that i^mo implies 
m. a m. m.

that x ^ f  1 (h), i.e., h(y ) = f (h) (x ) ^a for all

m.
iimo, that is, yo,1^h for every i£mQ.

Hence f(g) is sequentially compact.

When <3=Xa  for some A£X, f-1(y) does not need to be 

finite.

Theorem 5.3.8.

Let (X , be a countable family of L-fts's

and let X be their product. X is sequentially compact if

and only if (X , 9T. ) is sequentially compact for each m a m

meIN.

Proof

Necessity:

This follows from proposition 5.3.7. and the fact

that the projection maps n :X-»X are onto, continuous andm m

X by hypothesis is sequentially compact.

Sufficiency:

Let aeM(L) and let (sm)m€lN be a constant «-sequence

in X, where supp Sm = xm for each meIN. Then xm is of the

form xm = (x̂ m) . for each meIN.
j  elN

Thus, (S )' m meIN
,11 21 (x , x a ' a

(xlm a ' • • •) ,

) .

We have that (xim) = (x11a meIN a
1 2x lm 

c« ' . .) is
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a constant a-sequence in Xi. Since (X^ 9”x ) is

im.
sequentially compact, the constant a-sequence (xa )meIN

lk lk
has a subsequence (xa

xa m, ...) converging to

in (X , ) . As (X , 9V ) is also sequentially compact," X o x X

2k 2k
, / 1 2 the constant a-sequence (x , x^ , ...,

2km
a a .) in

2k 2k‘
X2 has a subsequence (xfl

2x ] a

reIN (xI
r-i

.., x^ m , ...) converging to

rk
(xa

(X2, ?x ) • So,
2

rkr rkr
i m. . ., Xa ' ' a

i i r-irkm
/ ' a '

.) subsequence of the a-sequence 

) in the sequentially compact

L-fts (Xr, 9" ) , converging to x^ in Xr>
Ar, r , rrk rk

Since (x̂  , ..., x , ...) is a subsequence of the

rkr-i

a-sequence (xa

rk

a

r-i
'm , we have that the

IT 10sequence (ki, ..., k , ...) is a subsequence of the

monotone increasing sequence (k 

r-i , r-i

r-i
, k

r-i
m ) . So,

k-1" < k  ̂k for each relN-{l}.r-i r r 1 1
_r
Lr

vm> lk
Hence (x )a meIN

i kI

lkm m
- (<xa ‘.....xa 1' •••).....

. , LLL
iĵ m jk x

(x , ..., x^ is a subsequence of the constant

a-sequence (sm)m€fN and we are going to show that this

subsequence converges to x^ where x = (x1, ..., xr, ...)

in the product X, that is, for each closed L-fuzzy set h

with h(x)4a there exists m elN such that m^m implies that 

km
h (x m) ̂ a .

Firstly we want to remark that except for the first
i , m

mr-1 terms, the sequence (xff 1, ..., xft , ...) is a
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rk
, r , r rk rk r r+i

subsequence of the a-sequence (xft , •••> xa ' xa
,i , mrk rk

...) that converges to xft. So (xa , . . . , xa , ..

10converges to x^ for each reiN.

Since h = (g. ) where g. is closed in
e_1 3e -* e

(X_. , Jv ) for each e e {l, . q}, it is sufficient to

' e _

prove that for each closed L-fuzzy set f = V n .1(g. )
-1 e e

with f(x)ta there exists m elN such that m^m implies that 

km
f (x m) ̂ a.

q
Let f = V ttT 1 (g. ) (g. closed in (X. , 3"x ))

^ e - ' e  -1 e Je jJ e
q

with f(x)^a. TheneY-[_ 9' (x-'e)̂ a. Thus, g. (x̂ e)̂ «* for

mj k^
each ee{l, . . . .  q} . Since x e m -> x-̂ e, there exists m elN 1 ' < a a e

m

such that implies that g(x
j k
e m) \a for each ee{l,

q}. Let mQ = max {me; ee{l,...,q}} 

, m q m

Therefore, f(x m) = i v n .1 (g. ) 1 (x m) f o r  each
v — 0 ̂  -J J

m^m (aeM (L) ) o

Hence X is sequentially compact.

Proposition 5.3.9.

Let (X,?) be a CL-fts. Then (X,̂ ) is Lindelof.

Proof

Let pepr(L) and let (f^)^ be a collection of open 

L-fuzzy sets with fyj (x) ̂ p for all xeX.

Since (X,?) is C ,̂ 7 has a countable base B =
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Then f^meIN'
= ,V b., where i may be infinity. 
k=l lk o

Thus, £o (bik; iej
is a countable family of

ke{l, . .., iQ}

open L-fuzzy sets with , b^k
 ̂ lk

have that each member b^k of £q is

(x) ̂ p for all xeX. We 

less than or equal to

f . . x

Let y = {f . ; b ., ^f.,b., e£ } .1 i' lk i' xk oJ

Thus, y is a countable subcollection of (f.). _ with
1 1GJ

fyj (x)|p for all xeX because £q satisfies this 

property.

Hence (X,̂ ) is Lindelof.

Theorem 5.3.10.

Let (X,3") be an L-fts and let g be a Lindelof 

L-fuzzy set. Then g is countably compact if and only if 

g is compact.

Proof

Necessity:

Let pepr(L) and let (f^)^ be a family of open 

L-fuzzy sets with fyj (x)^p for all xeX with g(x)^p'

Since g is Lindelof, there exists a countable 

subfamily (f±) ieK with fi](x)^p.

From the countable compactness of g, there is a

finite subfamily (f.) . , , wi1 1 € ( 1 , . . . , K - f
th v f .

ie{l, ..w k}
(x)

4p for all xeX with g(x)^p'. 

Hence g is compact.
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Sufficiency :

This follows from proposition 5.3.1.

Proposition 5.3.11.

Let (X,y) be an L-fts and let h and g be countably 

compact (Lindelôf) L-fuzzy sets. Then hvg is countably 

compact (Lindelôf) as well.

Proof

This is similar to the proof of proposition 4.1.10. 

Proposition 5.3.12.

Let (X,7) be an L-fts and let g be a countably 

compact (Lindelôf) L-fuzzy set. Then for each closed 

L-fuzzy set h, hAg is countably compact (Lindelôf).

Proof

This is similar to the proof of proposition 4.1.12. 

Proposition 5.3.13.

Let (X,JX) and ( Y, ï ïy) be L-fts's, let g be a 

countably compact (Lindelôf) L-fuzzy set of {X.Ï Ï  ) and 

let f : (X, Jx)-> (Y, Jy) be a continuous mapping such that 

f 1(y) is finite for every yeY. Then f(g) is a countably 

compact (Lindelôf) L-fuzzy set of (Y,Jy).

Proof

This is similar to the proof of proposition 4.1.14.

When for some A£X, f 1 (y) does not need to be

finite.
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Chapter VI

Local compactness in L-fuzzy topological spaces

In this chapter we focus on local compactness in 

L-fuzzy topological spaces.

In ordinary topology there are two ways to define 

local compactness. One of them, more truly "local" in 

nature than the other, implies the continuity of the 

locale of open sets.

Here we present the two corresponding formulations 

of L-fuzzy local compactness, both of which are good 

extensions of those in ordinary topology and study their 

properties. We prove that one of them, in the case L = 

[0,1], implies the continuity of the locale of fuzzy open 

sets. We also obtain a one point compactification.

Local compactness was introduced in [0,1]-fuzzy 

topological spaces by Wong [103]. In [22], Christoph 

weakened Wong's definition. Both worked with Chang's 

compactness (remark 4.6.2.).

By using a-compactness (definition 4.1.1.), Gantner, 

Steinlage and Warren defined local a-compactness in 

L-fuzzy topological spaces [35] and obtained, with some 

restrictions on a, a one point compactification.

Rodabaugh [83], also using a-compactness (a*-compactness) 

defined local a-compactness (local a*-compactness) and 

introducing a-Hausdorffness obtained an extension of the
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one point compactification proposed by Gantner, Steinlage 

and Warren [35].

Malghan and Benchalli [106], weakening the 

definition of local a-compactness given in [35], 

introduced another definition of local a-compactness 

(local a*-compactness), but in [0,1]-fuzzy topological 

spaces.

Each of these local compactnesses failed to produce 

fuzzy versions of important results, such as the 

regularity of locally compact Hausdorff spaces.

This chapter is divided in six sections.

In the first section we present the proposed 

definitions and prove their goodness.

The second section is reserved for the proof of the 

fact that, in the case of L = [0,1], one of the proposed 

definitions implies the continuity of the locale of fuzzy 

open sets.

In the third section we establish some properties of 

the proposed definitions. We obtain fuzzy versions of 

the main classical properties of local compactness, but 

leaving to section five the regularity of locally compact 

Hausdorff L-fts's.

In the fourth section we present a comparison 

between the proposed L-fuzzy local compactnesses.

The fifth section contains the proof of the 

regularity of weakly locally compact Hausdorff L-fts's 

and a fuzzy version of k-spaces as well as the proof that
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every weakly locally compact L-fts is a k-space.

The last section is devoted to the one point 

compactification.

Remark

If (X,5) is a topological space then we shall say 

that (X,5) is locally compact if and only if each xeX has 

a base of compact neighbourhoods. And we shall say that 

(X, <5) is weakly locally compact if and only if each xeX 

has a compact neighbourhood.
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1. Proposed definitions and their goodness theorems

Definition 6.1.1.

Let (X, 3") be an L-fuzzy topological space. An 

L-fuzzy set k is very compact if and only if for some eeL 

it is of the form k(x) = j® otherwise and for every 

prime p of L and every collection (f.K _ of open L-fuzzy

sets with v f. 
ie J l (x)^p for all xeD, there is a finite 

subset F of J with f̂ j (x)^p for all xeD.

Remark 6.1.2.

In definition 6.1.1. D is the support of k and it is 

simply required that *D be compact.

Remark 6.1.3.

Clearly a very compact L-fuzzy set is compact.

Definition 6.1.4.

An L-fuzzy topological space (X,9") is locally 

compact if and only if for all xeX, for every pepr(L) and 

for every open L-fuzzy set g with g(x)^p, there exists a 

very compact L-fuzzy set k and fe7 such that g^k^f and 

f (x)$p.

Theorem 6.1.5. (The goodness of local compactness)

Let (X,5) be a topological space. Then (X,6) is 

locally compact if and only if the L-fts (X,w(5)) is 

locally compact.
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Proof

Necessity:

Let xQeX, pepr(L) and let f be a basic open L-fuzzy 

set in <X,o(S>) with £ (x) - otherwise* “ and f(xo>k-

Thus, x eUeS and by the local compactness of (X,6), 

there are C compact in (X,5) and VeS such that xo€V£C£U.

By defining g(x)

{
= i b 1\0 o

f xeV 
otherwise and k(x) =

b if xeC have gsksf, geu(5), g(x)=bip and x r
0 otherwise 3 3 3 o C

compact in (X,td(5)). In fact, obviously gsk^f, gecd(<5) 

and g(xQ)^p and from the compactness of the subspace 

(C, <5C) of (X, 5) we have by the goodness of compactness 

(theorem 4.1.6.) that (C,id(5c)) is compact. Hence x c is 

compact in (X,u(5)).

Sufficiency:

Let x eX, pepr(L) and let UeS with x eU.o o

By considering £ (x) = (b oth^wise where bk' we

have feu(5) and f(xQ)̂ p. By the local compactness of 

(X,w(6)), there are a very compact L-fuzzy set k and a 

getd(5) such that g^ksf and g(xQ)^p where k(x) = 

feeL if xeDSX , .
\0 otherwise and *D 1S comPact in (X,cd(5)). Since 

gecd(5) and g(xQ)̂ p, there is a basic open L-fuzzy set 

h(x) - {o otherwise such that hs9sksf and h <x0>k- Then 

V£D£U, xQeVe6 and D is compact in (X,S) because since *D 

is compact in (X,cd(S)) the L-fuzzy subspace (D,cd(<5D)) of 

(X,cd(S)) is compact and by lemma 4.1.21. Dx{p} is a 

compact subspace of (Dxpr(L), S^xtpCL) ) , thus projection 

from Dx{p} onto D give the compactness of D in (X,5).
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Definition 6.1.6.

Let (X, 3”) be an L-fts. We say that (X,fT) is weakly 

locally compact if and only if for all xeX and for every 

pepr(L) there exist a very compact L-fuzzy set k and feJ 

such that k^f and f(x)^p.

Theorem 6.1.7. (The goodness of weak local compactness) 

Let (X,<5) be a topological space. Then (X,5) is 

weakly locally compact if and only if the L-fts (X,u(5)) 

is weakly locally compact.

Proof

This is similar to the proof of theorem 6.1.5.
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2. The continuity of the locale

Theorem 6.2,1.

Let (X,J) be a fully stratified locally compact 

[0,1]-fuzzy topological space. Then the locale 3' is 

continuous.

We know that 3" is isomorphic to the topology 0(3") on 

Xxpr(L) (proposition 3.2.19) and in this case on 

Xxpr ( [0,1]) = Xx [0,1) .

Since if a topological space (X,<5) is locally 

compact then 5 is a continuous lattice [45], it is only 

necessary to prove that the topological space (Xxpr(L), 

0(3")) is locally compact in order to deduce the 

continuity of the locale 0(3") and therefore of 3".

Let ( x q , pQ) e Xx [0,1) and 0(f) e 0(3") such that

Then f ( x q ) >p and by the local compactness of ( X , J), 

there are a ge3" and a very compact L-fuzzy set k with

Therefore ( x q , pQ) e 0 ( g )  £0 (k) £0 (f) in Xx[0,l). As 0 (k)

= j ( x , p )  e Xxpr (L) ; x e D ,  e>p| and since * D is compact in
(X, 3”) , the L-fuzzy subspace (D^ ) of (X,3") is compact 

and by lemma 4.1.21. C=Dx{pepr (L) ; p^q} is compact in 

Xx [0,1) for all qe[0,l).

Take qe[0,l) such that pQ<q<e.

Then V=0(gAq) e 0(3") where q denotes here the 

constant fuzzy set with value q. We also have (xq, pQ) e

Proof
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V£C£<Mf) . In fact, since g(xq) >pQ<q, (gAq) (xQ) >pQ, i.e., 

(x , pQ)eV and C£0(f) because for every (x,p) e 

Dx {pepr (L) ; psq}, f(x)£e>q£p. Now we are going to check 

that V£C.

V=0 ( g )  n</> ( q )  = j ( x , p )  e Xx[0,l); g ( x ) > p |  n j ( x , p )  e 

Xx [0,1) ; p < q j - £  Dx[0,e) n Xx[0,q) = Dx[0,q) £ Dx[0,q] = C 
Hence (Xx[0,l), <p(3) ) is locally compact.

Remark 6.2.2.

We were unable to extend this result to L-fuzzy 

topological spaces.
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3. Some properties

Proposition 6.3.1.

A fully stratified compact Hausdorff L-fts (X, ï ï ) is 

locally compact.

Proof

By theorem 4.1.9. we have that ïï = u>(5) where <5 = 

{UeP(X); }. Since compactness and Hausdorffness are

good extensions (theorems 4.1.6. and 3.4.6. respectively), 

( X ,8) is compact Hausdorff, so is locally compact.

Hence, by the goodness of local compactness (theorem 

6.1.5.), (X,J) is locally compact.

Proposition 6.3.2.

A compact L-fts (X,J) is weakly locally compact.

Proof

Given xeX and pepr(L) just take X as the required 

very compact L-fuzzy set k and the open L-fuzzy set f. 

Then k—f and l=f(x)^p.

Proposition 6.3.3.

Let (X,3"x) and (Y,3"Y) be L-fts's and let 

h: (X:Srx)->(Y,JY) be a continuous open surjection. If 

(X,JX) is locally compact then (Y,JY) is also locally 

compact.

Proof

Let pepr(L), yeY with h(x)=y and let such that
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f (y)^p-

Then h“1(f)e3'x and h"1 (f) (x) =f (h (x) ) =f (y) £p. Since 

(X,9"v) is locally compact, there are a very compact k in 

(X,^) and ge9" with g(x)^p such that g^k^h"1 (f) . Since 

h is an open mapping, higJe^Y and h(g)(y) = v {g(z); 

z€h_1(y)}^p because h(x)=y and g(x)^p. We also have 

h(g)^h(k)^h(h-1(f) )=f and h(k) very compact in (Y,Jy) 

because k is very compact in (X,3"x), i.e,. k(x) =

If" otherwise and *D is comPact in <X' V ; we have

h (k) (u)
- i

k (z) ; zeh 1(u) = v -lzeh (u)
ie i 
^0 o

f zeDSX 
otherwise

n and since *D is comPact in <X' V '  h is|0 otherwise 

continuous and h(*D = ^h(D)/ by proposition 4.1.14.

is compact in (Y,^) .

Hence (Y,3"Y) is locally compact

Proposition 6.3.4.

Let (X,YV) be an L-fts and let FcX such that is
X  r

closed in (X,3'x) . If (X,YX) is locally compact then the 

subspace (F,3"F) is locally compact.

Proof

Let pepr(L), xeF and fp eJp such that fp (x)̂ p.

Then there is feJ^ such that fp=f|F, so f(x)^p. 

From the local compactness of (X,^), there are a very
X

e eL if zeDSX , _ ,„ . , . and geJv such0 otherwise 3 Xcompact L-fuzzy set k(z) =

that g^k^f and g(x)^p. Therefore g| =g eS" and gp (x)^p 

o have

= i S 1[0 o

We also have g^kp^fp with ^DnF compact in (F,9p) where

kF (z) .f zeDnF 
otherwise In fact, since is closed andr
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XD is compact in (X,3"x), by proposition 4.1.12. *DnF = 

Xda*f is compact in (X,3"x) . Then *DnF is compact in

(F-V •

Hence (F,ÏÏ ) is locally compact.r

Theorem 6.3.5.

Let (X,, ) be a family of fully stratified
t x X X A e J

L-fts's. Then the product L-fuzzy topological space X is 

locally compact if and only if each X^ is locally compact 

and all but finitely many X^ are compact.

Proof

Necessity:

Since, the A-th projection, ti :X->X. , is a continuousA A

open surjection (proposition 3.3.3.) and X is locally 

compact, by proposition 6.3.3., X. is locally compact for 

each AeJ.

Now let pepr(L), x€X and let f be an open L-fuzzy 

set in X with f(x)4p-

Thus, by the local compactness of X, there are an

open L-fuzzy set g in X with g(x)^p and a very compact

e if zeDSX ,
0 otherwise such that 3aksf • Then' 

m

L-fuzzy set k(z]

there is a basic open L-fuzzy set A n~1(g ) such that. A . A .1 = 1 1 X
m
i V ^  (gA )^g^k^f. Therefore xD = X

X

1

“i x 

m

suppk

■ s u p P i V x ! ( 9  > 
X X

*m - 1 .
x Q fS u p p  n  ( g A .

X X
m m
A y  -  i 
. = 1'*'s u p p  n x (gx )

= A y  _ i
i = l  ^  ( s u p p ( g

m
A - l
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Thnq tt (y  ) >TT ( .A 71 1 ( X  ) ) = X, for all X iinus, TTA ^ suppk  ̂ n \ 'i=l ' Xi ^suppgx ;/ X

{A^ xm}. Since nA is continuous, *suppk is compact

in X and tt̂  (*suppk) = XA' we have proposition 4.1.14.

X compact for each X except possibly Xe{Xi7 ..., Xm} .

Sufficiency:

Let pepr (L) , xeX and let f = (f̂  ) be a basic
m

~ ^ rA 1 x

open L-fuzzy set in the product L-fts X such that f(x)^p,

where f. is an open L-fuzzy set in X, . We assume that 
l Ai

the set {Xi( ...» Xm} is expanded to include all X for

which X, is not compact.
A m

We have that f(x) = f^ (x̂  )̂ p implies for all
l Ai

iejl, ..., m} f^ (x̂  )̂ p. From the local compactness of 
Ai Ai

each X , there are open in X^ and a very compact 
Ai Ai Ai

w  ’  C 1

i f  z e  D S X
x i Ai Ai in X^ with g. (x. ) ip
otherwise Ai x Ai

m

and 9x.akx.3fX.X X X

gx x...* gx x

Thus, the L-fuzzy set g =.A t, {g ) =
1 — X  A  j  A  j

n xx
X  X

is an open L-fuzzy set in
m X*{X1# ..., Xm}

r m - i  Ì mX and g(x) = L a t t (gx ) (x) = .A g (tt (x) ) =
l i i ' i i

m
(x̂  )^p (pepr(L)). We also have 

Ai Ai
m m

9 * ill "x! (9x.)a k - iil V  (kX.> af'

(  m
k (z)

=  i2i ^ > a .
V X X

m /e, if z, e D
. A  .1 A . A .

X  X
X  = 1 '‘O otherwise

m

<Z) = iil kx.(ZX.> -
X  X

X  .
X X  =

145



and{
™ e^ if z e n tt% 1 (D̂  ) £ X
i = 1 1
0 otherwise

„ X. X . 
i = l  l  l

m _
^ s u p p k  -  * S U P P  i V ^ ( k X i ) = i Q1S U P p  T I ^ ( k x

m 
. A
i = l *supp TrA'(kx ) i = l ,lX± v*supp k1

L •l l

"l l

m
= ,A 7T. 1 (*

1 1

) =

y , x ... x y . x T T  X-
SUPP k, SUPP k xL {x , x ___ k l

i 1 i mJX . 1

by theorem 4.2.2. since x s p k is compact
X .l

ie{l, ... . , m} and X is compact for every

x* ( \ '  Xn ) ’

is compact

for every

Remark 6.3.6.

By considering weak local compactness instead of 

local compactness we can obtain, in the same way, the 

results obtained in propositions 6.3.3. and 6.3.4. and in 

theorem 6.3.5.
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4. A comparison of our proposed L-fuzzy local

compactnesses

Theorem 6.4.1.

Let (X,J) be a fully stratified Hausdorff L-fts.

Then {X, ï ï ) is locally compact if and only if (X,J) is 

weakly locally compact.

Proof

Necessity :

This immediately follows from the definitions. 

Sufficiency :

Let xeX, pepr(L) and let geff such that g(x)^p.

We want to show that there are a very compact 

L-fuzzy set c in (X, ï ï ) and jeJ such that g^c^j with 

j(x)^p.

By the weakly local compactness of [X, ï ï ) there are a 

very compact L-fuzzy set k(y) = j® otherwise and fe7 such 

that k^f and f(x)^p.

Since f(x)^p and kaf, we have k(x)^p which implies 

that xeD.

From the fact that k is a very compact L-fuzzy set 

in ( X, ï ï), we have that *D is compact. So, the L-fuzzy 

subspace (D,^) is compact. As (X,T) is a fully 

stratified Hausdorff L-fts, we have (D,3"D) fully 

stratified Hausdorff.

Thus, (D,3"d) is a fully stratified Hausdorff compact 

L-fts. Therefore, by proposition 6.3.1., (D,^) is
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locally compact.

We have gD = g|D xeD and gD (x)$p. Then, by the

local compactness of (D,^) there are a very compact

L-fuzzy set cD <y) = otherwise in (D' V  and V fD such

that gD~CD~hQ with hD (x) p̂.

Since hDeJD, there exists h*e3" such that hD=h*|D .

Let ceLX such that c (y) = |q ^  yeX-V anĉ  j=hAf*

Thus, g^c^j, c is a very compact L-fuzzy set in 

(X,V), jeV and j(x)4p-
* *

In fact, because h and fe3", h Af = jeV. Since 

h*(x) = hD (x)^p f(x)^p and pepr(L) we have (h*Af)(x) = 

j(x)^p. As cD is a very compact L-fuzzy set in (D,3"D),

Xy is compact in (D,3"D) . So Xy is compact in (X,J) and 

then c is a very compact L-fuzzy set in (X,V). Now we 

are going to show that g^c^j.

Since gD  ̂cD , gD (y)2:b for all yeV. So g^c. From 

k^f we have f(y)=0 for all yeX-D. Since for every yeD 

h (y)=hD (y)^cD (y), we have h*(y)=0 for all yeD-V and 

h (y)^b for all yeV. Then j (y) = (h*Af) (y)sf(y)=o for 

all yeX-D and j(y)sh*(y)=0 for all yeD-V and j (y)ih*(y)^b 

for all yeV. Therefore ĵ c.
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5. Further properties

Theorem 6.5.1.

Let (X,ST) be a weakly locally compact Hausdorff 

L-fts. Then (X,ST) is regular.

Let xeX, pepr(L) and let h be a closed L-fuzzy set 

such that h(x)=0 and there is yeX with h'(y)-P-

We want to show that there exist u, ve? with u(x)^p, 

v(y)^p for every yeX with h' (y)^p and (VzeX) u(z)=0 or 

v(z)=0.

Since (X,J) is weakly locally compact, there exist a 

very compact L-fuzzy set k and an open L-fuzzy set f 

such that kaf and f(x)|p where for each yeX k(y) =

X-q  is compact. Thus, the L-fuzzy subspace (D,^) is 

compact. From the Hausdorffness of (X,^), we have the 

Hausdorffness of (D, . So, by theorem 4.3.1., (D,^)

is regular.

From the fact that (X,J) is Hausdorff and x^ is 

compact in (X,7), we have by proposition 4.1.16. that x^ 

is a closed L-fuzzy set in (X,J).

Since k^f and f(x)^p, we have k(x)^p. Thus k(x)*0 

and xeD. We also have f(y)=0 for every yéD.

Since (D,^d) is regular and xeD if there is yeD such 

that h' (y)sp, then there are uD, v ^ ^  with uD (x)̂ p,

Proof

Because k is a very compact L-fuzzy set,

Case 1 :
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(y)  ta? for every yeD with h'(y)£p and (VzeD) uD (z)=0 or

(z) =0.
* *

Because uD# vDe3"D< there exist u , veJ such that

u D=U" I d  and VD = V" I d -
Take u = u*Af and v = v v*D, .

Thus u, v e 5 and we are going to show that they 

satisfy what we want.

I *Since u_(x)fp and xeD, u (x) = uT :)fp. We also

have f (x)4p. From the fact that p is prime we conclude 

that u(x) = u (x)Af(x)|p.

If yeD and h'(y)-p, then vD (y)4p- So, v (y)^P and 

hence v(y)^p. If yeD' and h'(y)^p, then x ^ , (y) = 1 p̂ 

and hence viyj^p. Therefore for every yeX with h'(y)sp 

we have v (y )| s p .

If zeX and u(z)*0 then u*(z)*0 and f(z)*0. From

f(z)*0 we conclude that zeD. Thus from u (z)*0 we have
$

uD (z)^0 which implies v (z) = v (z)=0. And since zeD, 

X-q , (z) =0 . Therefore v(z)=0.

Case 2:

If there is no yeD with h' (y)̂ p, then take u=f and 

v = *D' ■

Thus u, v eJ, u(x) = f (x) ̂ p and for every yeX with 

h' (y)sp we have v(y)^P because in this case h' (y)-p 

implies y£D and so v(y)=^D,(y)=l£p• We also have 

that (VzeX) u(z)=0 or v(z)=0. In fact, if u(z)=f(z)*0 

then zeD and so v (z) =X-D, (z) =0 .

Hence (X,T) is regular.
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Theorem 6.5.2.

Let (X, 9") be a locally compact Hausdorff L-fts.

Then (X,J) is regular.

Proof

Since every locally compact L-fts is weakly locally 

compact we have this result from theorem 6.5.1.

Definition 6.5.3.

An L-fts (X, 9") is said to be a k-space if and only

Xif the closed L-fuzzy sets are those feL for which f|p 

is closed in (F,9"F) for each compact L-fuzzy subspace

(F,=V •

Theorem 6.5.4.

Let (X, 9”) be an L-fts. Then (X^) is a k-space if
x

and only if the open L-fuzzy sets are those feL for 

which f|F e?F for each compact L-fuzzy subspace (F^p).

Proof

Necessity:

We always have that f|F €9"F for every F£X if fe9".
x

Now let feL be an L-fuzzy set such that f|p e9"F for 

each compact L-fuzzy subspace (F, 9' ) .
r

Then f' | F is a closed L-fuzzy set in (F^p) for each 

compact L-fuzzy subspace (F,9p). Since (X,9") is a 

k-space, f' is closed in (X,V)  . So, fe9\
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Sufficiency:

We always have that f|p is closed in (F,?p) for every 

F£X if f is closed in (X,T).
XT

Now let feL be an L-fuzzy set such that f|p is 

closed in (F,3„) for each compact L-fuzzy subspacer

Then f' I „ eJ^ for each compact L-fuzzy subspace1 r r

( F , 7 „ ) .  Thus, by hypothesis, f'e?. Therefore f isr

closed in (X,J) .

Theorem 6.5.5.

Let (X, 5) be a topological space. Then (X,<5) is a 

k-space if and only if (X,t¿(5)) is a k-space.

Proof

Necessity:

By theorem 6.5.4. it is sufficient to prove that for
x

every feL such that f|p is an open L-fuzzy set in 

(F,u(Sp)) for each compact L-fuzzy subspace (F,u(Sp)) we 

have feu(5) .
x

Let feL be such that f|p is open in (F,u(Sp)) for 

each compact L-fuzzy subspace (F,G)(S_) ) .r

Thus, by proposition 3.2.9., H = {xeF; f(x)^p}e6F 

for each pepr(L) and for each compact L-fuzzy subspace 

(F, w(Sp) ) .

Therefore, by the goodness of compactness (theorem

4.1.6.), H = Fn{xeX; f(x)^p} is open in (F,Sp) for each 

compact subspace (F,5F) and each pepr(L) . So, by the 

fact that (X,5) is a k-space, {xeX; f(x)^p} is open in
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(X,5) for every pepr(L). Then, by proposition 3.2.9., 

few(5) .

Sufficiency:

Let USX such that UnC is open in C for each compact 

subspace C of (X,<5).

Thus, by theorem 4.1.6. and proposition 3.2.10.,

X tUnC = * | e u ( 6 r ) f o r  each compact L-fuzzy subspace 
C UIC L

(F, w(S )). So, by the fact that ( X , u ( S ) ) is a k-space

and by .theorem 6.5.4., â ern ( S ) 

Hence Ue<5.

Theorem 6.5.6.

Let (X,7) be a weakly locally compact L-fts. Then 

(X, ï ï ) is a k-space.

Proof
y

By theorem 6.5.4. we only need to prove that if feL 

is such that f|p is open in (F,3p) for each compact 

L-fuzzy subspace (F,JF) then f is open in (X,J).
y

Let feL be such that f|p is open in (F,9"F) for each 

compact L-fuzzy subspace (F, ï ï  ) .r

We want to prove that feST. For this, let pepr(L) , 

xeX with f(x)^p. By proposition 3.1.4., it is sufficient 

to show that there is geJ such that g^f and g(x)^p.

By the weakly local compactness of ( X , ï ï ), there are 

a very compact L-fuzzy set k(x) = j® otherwise and he? 

such that k^h and h(x)^p.
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in ( X , J ) , so (D,9"d) is a compact subspace.

Thus, by our assumptions on f, f|D eSTp. Then there
* . * . 

exists f e3" such that f |D = f |D -

Take g=f Ah.

Therefore, ge3\ g=sf and g(x)^p. In fact, since f

and he? we have ge3". As h(x)^p and ksh we have k(x)^p

which implies that xeD. Because f(x)^p and xeD we also

have f*(x) = f(x)^p. Thus g(x)^p since pepr(L). Now we

are going to prove that g^f.

Since k^h and k(x)=0 for every xeD, h(x)=0 for every

xeD. So, g(x)=0 for every xeD and then g(x)^f(x) for
*

every xeD. If xeD then f (x) =f (x) which implies that 

g(x) = (f Ah) (x)sf (x) =f (x) for every xeD. Hence g^f .

Theorem 6.5.7.

Let (X,7) be a locally compact L-fts. Then (X,7) is 

a k-space.

Proof

Since every locally compact L-fts is weakly locally 

compact we have this result from theorem 6.5.6.

Since k is a very compact L-fuzzy set, *D is compact
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6. One point compactfication

Definition 6.6.1.

Let (X, 9"v) be an L-fts which is not compact, but is 

locally compact and Hausdorff. Take some object outside 

X, denoted by the symbol co for convenience and adjoin it 

to X forming the set Y=Xu{oo} . Fuzzy topologize Y by 

defining as a subbase the collection

y = {f!; f€Jx}u{xB ; x B 6 £} Where:

f e LY defined by f (x) = X€X for each
1 1 1 \ 0 if X=oo

(i) f € L̂  1

f‘5X-

(ii) e - {*:

(iii) For *B

Let 7y

BcX ; x-n is compact in (X,?v)
a j A

“B
f xeB 
f xeB

Let ?Y be the L-fuzzy topology on Y having if as a

subbase.

The L-fuzzy space (Y, ï ï  ) is called the one point 

compactification of (X,7V).
A

Theorem 6.6.2.

Let (X(3"x) be a locally compact Hausdorff space which 

is not compact and let (Y,?) be its one point 

compactification. Then {Y, ï ï  ) is a compact Hausdorff 

L-fts, (X,?x) is a subspace of (Y,7 ) and cl(X) = Y.

Proof

(i) Clearly (X,9"x) is a subspace of ( Y , ï ï ^ ) .

(ii) cl(X)=Y. In fact, if cl(X)*Y in (Y,yy) then cl(X)
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. /vW , fl if xeX cl(X)(x) = |e,1 if x=„ •

is an L-fuzzy set of the form:

The complement of cl(X) is then the open L-fuzzy set

(cl (X) )' (x) = {°,i0 jj.f xeX.f X=oo

Since if is a subbase for 9" and (cl(X))'e9Y, there

L , • • • / /lg
i m

are B , ..., B ini' ' m

*B 00 A .

VI8m*<

i m

Thus e'=l, so e=0 and X = X-q v v xB Hence
i m

(X,9V) .is compact, yielding a contradiction.

(iii) (Y,Jy) is compact. In fact:

Let pepr(L) and let d = (f^)^ be a collection of

9'Y~subbasic open L-fuzzy sets with f̂ j (y)^p for all

yeY.

This collection must contain an element of the type

X-q • Then x - q (x ) =ljp for all xeX-B.
00 00

By taking all the members of d different from X-r,n>oo
. * and restricting them to X, we have a collection d of 9"v

open L-fuzzy sets with i v h (y)ip for all yeB. Since x-n
^he^ 1 B

■ . . . . .  . *is compact, there is a finite subcollection of d , say
m

{hx, ..., hm}, with hujiy^p for all yeB. Then

' r m n

i = i hi  v^b  (y ):fp fo r  a11 ye Y -1 ' C0'

Hence, by theorem 4.2.1., (Y,9y) is compact.

(iv) (Y,9"Y) is Hausdorff. In fact:

Since (X,9"x) is Hausdorff (definition 3.4.5.), given

p,q e pr(L) and x,y e X with x*y, there exist f , g e 9"p q x

with f (x)̂ p, g (y)^q and (VzeX) f (z)=0 or g (z)=0.

156



Hence ( f p ) j ( x ) ^ P .  (gq) 1 (y)$q and (VzeY) (fp)1(z)=0

or (gq) i (z) =° where (fp)i and (gq)1 are defined as in

definition 6.6.1.(i).

Suppose now that xeX and y=oo.

Since xeX and {X,ï ï  ) is locally compact, given p,q e 

pr(L) and feJ with f(x)^p; there are k very compact and 

ge3"x such that g^k^f and g(x)|p. Then *suppk is compact 

and since (X,3"x) is Hausdorff, we have by proposition

4-1-16- *suppk closed in (X' V Thus, x , e t? and suppk

(suppk) e Therefore g^x)^? where g^Y-^L is defined

^  9i(z) = {g(z) if III■ x(suppk) Jy' = 1:fc where

(z) =*<suppk) J Y->L is defined by * (suppk)>

{ 0 if zesuppk , ».
1 if ze{oo}u (X-suppk) an îe Y'

We also have (VzeY) gi(z)=0 or X(suppk) (z)=0

because :

If z =oo then g (z)=0.

If zesuppk then x  (suppk) (z) *

If z e X-suppk, g(z)=0 and then g (z)=0. 

Hence (Y,JY) is Hausdorff.

Remark 6.6.3.

In this section, considering weak local compactness 

instead of local compactness, we can obtain the same 

results in the same way.
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Chapter VII

Paracompactness in L-fuzzy topological spaces

In this chapter we suggest a good definition of 

L-fuzzy paracompactness and study some of its properties.

Some definitions of paracompactness were presented 

in [0,1]-fuzzy topological spaces by Malghan and 

Benchalli [61], Luo [59], Abd El-Monsef and al [2] and 

Bulbul and Warner [13]. The works [13] and [2] are based 

on fuzzy compactness (definition 4.6.3.) and [61] and 

[59] are based on a-compactness (definition 4.1.1.).

In L-fuzzy topological spaces, paracompactness was 

studied by Chen [21] and Xu [106] . The first one based 

on N-L-compactness (definition 4.5.3.) and the latter 

based on X-compactness (definition 4.6.14.).

By introducing a new definition of a locally finite 

family of L-fuzzy sets and combining it with our 

definition of compactness for arbitrary L-fuzzy sets, we 

propose a different L-fuzzy paracompactness which is 

defined on arbitrary L-fuzzy sets. We also study some of 

its properties such as:- paracompactness is a good 

extension; is inherited by closed L-fuzzy subsets; the 

product of a compact L-fts and a paracompact space is 

paracompact and prove that a Hausdorff paracompact space 

is regular.
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This chapter is divided in three sections.

In the first section we present the proposed 

definition and prove its goodness.

In the second section we study some of its 

properties.

The third section is devoted to the regularity of a 

paracompact Hausdorff L-fts and to the paracompactness of 

the product of a paracompact L-fts with a compact L-fts.
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1. Proposed definition and its goodness

Definition 7.1.1.

A family of L-fuzzy sets in an L-fts is said

to be locally finite in an L-fuzzy set g if and only if 

for each pepr(L) and for each xeX with g(x)ip' ; there are 

an open L-fuzzy set r with r(x)^p and a finite subset Jq 

of J such that (VzeX) f^(z)=0 or r(z)=0 for every ieJ-JQ.

When g is the whole space X, we shall directly say 

locally finite, omitting "in an L-fuzzy set g".

Definition 7.1.2.

Let (X, 3") be an L-fts. A family (f j_)-¡_6l of L-fuzzy 

sets is said to be a refinement of the family (gj)jej of 

L-fuzzy sets if and only if for each iel there is jeJ 

with f.sg..

Definition 7.1.3.

An L-fuzzy set g in an L-fts (X,3") is said to be 

paracompact if and only if for every pepr(L) and every 

family (f^)^eI of open L-fuzzy sets with f̂ j (x) p̂

for all xeX with g(x)ip', there exists a family (gj)jgJ 

of open L-fuzzy sets that is a refinement of (f^)^ ,

locally finite in g and 9j (x)^p for all xeX with

g(x)ip' .

If the L-fuzzy set g is the whole space X, we say 

that the L-fts ( X, J ) is paracompact.
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Theorem 7.1.4. (The goodness of paracompactness)

Let (X, 6) be a topological space. Then (X,<5) is 

paracompact if and only if (X,u(<5)) is a paracompact 

L-fts.

Proof

Necessity:

Let pepr(L) and let 4 = be a family of open

L-fuzzy sets in (X,u(S)) with (x)^p for all xeX.

Thus, B = ({xeX; f^(x)^p})^gI is an open cover of

(X,5). In fact, since f^s w(<5) for every iel, by

proposition 3.2.9. {xeX; f̂ (x)̂ p}e«5 for all iel. We also

have that for each xeX there is iel such that f^(x)^p, so

B is an open cover of (X,5).

From the paracompactness of (X,<5), B has a locally

finite open refinement £ that covers X. Since S is a

refinement of B, for each CeS we can take f . ~e4 such that
iC

Cc {xeX; fic(x)$p}.

Therefore T> = (^Af -¡_c) is a family of open 

L-fuzzy sets in (X,u(5)) with hj (x)^p for every xeX

and is a refinement of 4. In fact, evidently D is a 

refinement of 4 because for each h=*cAf^ceZ) there is

^ fiC such that h g. We also have he£, h (x )fp for 

every xeX because for every xeX there is C* e'S such that 

xeC* which implies that for all xeX there is C*e£ such 

that ^c*(x)= l^p and fic*(x)^p since C*c {xeX; fic* (x)^p}, 

so ^c*AfiC*j (X)^P (P is prime) . Hence hj (x)^p for

every xeX.

We now prove that D is locally finite.
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For each xeX, take Bx<=S with xeB̂ . such that Bx 

intersects only a finite number of members of £, which is 

possible because is locally finite. So, for each xeX 

and for each pepr(L), there exists an open L-fuzzy set 

r=*B with r(x)=l^p such that (VzeX) h(z)=0 or r(z)=0 for
x

all but finitely many he®, 

and we also have that (VzeX) 

finitely many heB because h 

X-r, *0 if and only if zeCnB
n> X

In fact, r(x)^p and retd (5) 

h(z)=0 or r(z)=0 for all but 

(z)*0 and r (z) = 

and we have that BnC*0 only

(Z) = U CAfic

X

for a finite number of Ceg. Thus T> is also locally 

finite.

Hence (X,td(S)) is paracompact.

Sufficiency:

Let d be an open cover of (X,5).

Thus, (*û Ueai '*'s a family of open L-fuzzy sets in

(X, to (6) ) with (x) = 1 ^p for all xeX and for all

pepr(L).

From the paracompactness of (X,td(S)), there exists a 

locally finite open refinement £ with f (x)^p for all

xeX and for all pepr(L).

Let B = ({xeX; f(x)^p})fgg, .

Therefore B is a refinement of d and an open cover 

of (X, 5) . In fact, since & is a refinement of (^^Uesi' 

for each feSf there is Ue^ such that fs* so {xeX; f (x) ̂ p} 

c {xeX; ^(xj^p} = U and B is a refinement of d.

We also have that for all xeX there exists feg with 

f (x)|p, so S is a cover of (X,5) . Actually B is an open 

cover of (X,S) because each fee belongs to (d(<5) and by
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proposition 3.2.9. each {xeX; f(x)̂ p}€<5.

Now we are going to prove that £ is locally finite, 

that is, for all xeX there exists Keô with xeK such that 

{xeX ; f (x) :£p}nK>0 for at most finitely many f .

Since £ is locally finite, let xq€X and reu(<5) with 

r(xQ)^p such that (VzeX) f(z)=0 or r(z)=0 for all but 

finitely many fee, say f , ..., fm -

Let K = {xeX; r(x)^p}.

Thus, by proposition 3.2.9. Ke«5 and since r(xQ)̂ p, 

we have xq€K. We also have {xeX; f(x)^p}nK*<A for at 

most finitely many fe£ because if ye{xeX; f(x)4p}nK then 

r(y)4p and f(y)^P which implies that feff^ ..., f }. 

Therefore $ is locally finite.

Hence (X,5) is paracompact.
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2. Some properties

Proposition 7.2.1.

Every compact L-fuzzy set in an L-fts is paracompact.

Proof

This immediately follows from the definitions. 

Proposition 7.2.2.

Let (X,y) be an L-fts, let h be a paracompact 

L-fuzzy set and g a closed L-fuzzy set. Then gAh is a 

paracompact L-fuzzy set.

Proof

Let pepr(L) and let (f^)^6j =d be a family of open 

L-fuzzy sets with fjj (x)^p for all xeX with

(gAh) (x)—p ' .

Thus, B=siu{g'} is a family of open L-fuzzy sets with 

(kefi k) (X^P for a-*'1 xeX with h(x)ap' . In fact, for each 

xeX with h(x)ap', if g(x)sp' then (gAh)(xĵ p' which 

implies that fij (x)̂ p, thus k| (x)^p. If g(x)^p'

then g' (x)^p which implies that kj (x)£p.

From the paracompactness of h, there exists a family 

£ of open L-fuzzy sets that is a refinement of B, locally

finite in h and v k
ke<? (x)^p for all xeX with h(x)ap'.

Let {ke(?; there is f .e d , k^f. } .

*
Evidently £ is an open refinement of d and also is 

locally finite in gAh. We also have that v ^k (x)^p for
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all xeX with (gAh) (x)sp'. In fact, otherwise there is

xeX with (gAh)(x)ap' and V j A  (x)sp. 
>

But we have

kj (x)^p which implies that there exists such

that ki (x) j=p. Since S is a refinement of 2, there is k2e2

*
such that k =sk and since k1 2  1

k =g'. Therefore, p^k (x)sk (x)2 1 2

contradiction.

Hence gAh is paracompact.

because v k (x)sp, 
^keC

= g ' (x)sp, yielding a

Corollary 7.2.3.

Let (X,J) be an L-fts. IF g is a paracompact 

L-fuzzy set, then each closed L-fuzzy set contained in g 

is paracompact as well.

Proof

This immediately follows from proposition 7.2.2.
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3. Further properties

Lemma 7.3.1.

Let (X,J) be a paracompact L-fts, pepr(L) and let A 

= (f )igI be a family of open L-fuzzy sets with 

iel fi) for a11 xeX- Then' there exists a family

(g^i^I = B of open L-fuzzy sets with g^j (x)^p for

all xeX and B locally finite, such that g^fy for all 

iel.

Proof

From the paracompactness of (X,T), A has a locally

finite refinement t? = (h.) . _ with each h.e? and
3 3eJ 3

h_. j (x)^p for all xeX. Every ĥ  is associated with a 

containing set from d. Hence there is defined a mapping

& : J-»I such that h.^f
J &(j)

for all jeJ. For iel we put

g.= v h. where g. = <p if there is no j with #(j
1 #(j)=i 3 1

) = i

By the construction of # we have that each ĝ eST, 

and (g.). satisfies .v g-](x)ip for all xeX. For xeX 

there are an open L-fuzzy set r with r(x)^p and a finite 

subset Jq of J such that (VzeX)h^(z)=0 or r(z)=0 for 

every jeJ-JQ. So, we have g^(z)*0 and r(z)*0 only when 

i=#(j) for jeJ

Hence S is locally finite.

Theorem 7.3.2.

Let (X, T) be a paracompact Hausdorff L-fts. Then 

(X,ST) is regular (definition 3.4.8.).
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Proof

Let pepr(L), xeX, and let f be a closed L-fuzzy set 

in (X,7) such that there is yeX with f(y)^p' and f (x) =0.

Let F = {teX; f(t)sp'}.

We have that xa=F. Since (X,T) is Hausdorff 

(definition 3.4.5.) for each yeF there exist f , e J 

with f (x)̂ p, gy (y)^p and (VzeX) f̂ .(z)=0 or g^(z)=0.

Let 4 = (gy )y€F ^ {f'}-

We have v h hed (z)^p for all zeX. In fact, if zeF

v h he^ (z)^p forthen gz (z)^p and if z iF then f' (z)̂ p, so 

every zeX. From the paracompactness of (X,T) and from

lemma 7.3.1., there is a family B = (k ) p u {kQ} of 

open L-fuzzy sets that is a refinement of d, locally 

finite and v k v k 
yeF Y

(z)^p for all zeX, where k sg f°r

each yeF and k sf' .

Thus, for our point x in X and our p in pr(L), there 

are reT with r(x)^p and a finite subfamily Bq of $ such 

that (VzeX) b(z)=0 or r(z)=0 for every beE-BQ.

Therefore, there are reJ with r(x)^p and a finite subset 

Fq of F such that (VzeX) k̂ .(z)=0 or r(z)=0 for every 

y€F-Fo.

Since for each yeF k sg and because f (z)=0 or
y y

g (z)=0 for all zeX, we have that k (z)=0 or f (z)=0 for-Jy y y

all zeX and for all yeF.

Let u = rA ( a f ] and v = v„ k lyeFQ yj yeF y

We have u,v eJ, u(x)^p; for every zeX with f ( z ) z p ' ,  

v(z)^p and (VzeX) u(z)=0 or v(z)=0. In fact since r,
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each f and ky are open L-fuzzy sets we have u,veJ. As 

each f satisfies fy (x)=fp and r(x)$p, from the fact that 

p is prime we have u(x)^p. For every zeX with f(z)£p', 

that is, zeF, we have v(z)^p because v (z) (yeF ky) 

for all zeF. We also have u(z)=0 or v(z)=0 because if 

zeX and u(z)*0 then r(z)*0 and f (z)*0 for every yeFQ. 

Thus, from r(z)*0, we have ky (z)=0 for every yeF-FQ and 

from f (z)*0 for every yeFQ, we have ky (z)=0 for every

yeF . So, v(z)=
yeF y
v k (z)=0 .

Hence (X,J) is regular.

Theorem 7.3.3.

Let (X, ¡7) be a paracompact L-fts and let (Y,?^) be a 

compact L-fts. Then the product XxY is a paracompact 

L-fts.

Proof

Let pepr(L) and let A be a family of open L-fuzzy

sets in the product space XxY with fj (x,y)^p for all

(x,y)eXxY. Select for each (x,y)eXxY, g e^, h e9\..1 3xy X xy Y

with gxy(x)^p and hxy(y)^p such that A ^

— 1 - l
tc (g ) a  7r (h ) where n , n are the projection maps.1 1 2

This is possible because for every (x,y)e XxY there is 

feA such that f(x,y)^p and since f is an open L-fuzzy set 

in the product space XxY (definition 3.2.4.),

f = v „ n
g 13xy X 
hxy Y

h e91_ with xy Y

1 (gxy} A (hxy) ' So there are 9Xys3X and

^p which implies
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gxy(x) p̂ and hxy(y) P̂-
Therefore, for a given xeX, (hxy)ygY = i? is a family

of J^-open L-fuzzy sets with |Cgg cj (z2)fp f°r a11 z2eY-

Thus, by the compactness of (Y,JY), there exists a

finite subfamily <?1 of <?, say (1^ (x) ) i€{lf m(x)}'
m(x)

with v h
[i=l nxyi (x)

(z2)^p for all z2eY.

m(x)

Let gx = i=l gxYi(x) •

Thus, since each _ (x) & x , gxy (x) (x) jsp for every

ie{ 1, , m(x) } and pepr(L) we have g and gx (x)̂ p.

Therefore (g ) v is a family of V -open L-fuzzy sets
X  X € X  A

Vv g ] (z ) ip for all z eX.[xeX 3xJ 1 i

From the paracompactness of (X, 3"x) , there is a family

with

D of 3"v-open L-fuzzy sets that is a refinement of 

(gx)xeX' locally finite and djtz^fp for all z^X.

For each deD take x.eX with d^g , which is possible
a xd

because D is a refinement of (g ) v .X X£X

Let H = n 1 (d) att-1 (h , . ) , ^i 2 xdyi(xd) JdeZ)
ie{l, ..., m(xd)}

Thus, H is a family of open L-fuzzy sets in the 

product space with hj (z)^p for all zeXxY because, for

each z = (z , z ) eXxY there is d e2) with d (z ) i p and1 2  1 1 1 1

corresponding to it there exists h :, y (x d 1 i c
e £ with

i

i v \ (z )&>• Further from the choice of g , ,
a yi a ’ 2 xdy i xd

and

from tt 1 (d) att„ 1 (h* (h , s ) —tt 1 (g . . ) att 1 (h , . )
2 x<jW  1 V i (xd> 2 xdyi <xd> 

it follows that H is a refinement of d.

-i
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Now we are going to prove that H is locally finite.

Let (x ,y )e XxY. o ■* o

Since T> is locally finite, there are a ^-open 

L-fuzzy set g with g(xQ)^p and a finite subfamily X)q of T> 

such that (Vz eX) d(z ) = 0 or g(zi)=0 for every deD-T>Q.

oLet W_ = In"1 (d)ATr'1 (h , , ) ,
1 2 xd-*i a ' deZ)

-l

ie{l, . . . ,m(xd) }

and let r = n 1 (g) .

We have r(xQ,yo)̂ p and (VzeXxY) h (z) =0 or r(z)=0 for 

every h€«-HQ. In fact, r(zQ,yo) = n"1 (g) (xQ,yQ) = 

g(xQ)̂ p. We also have that if z= (z, z^) eXxY and h(z)*0

then h(z) = n 1(d)An 1 (h , . )
1 2 xdyi(xd)

(z) =

d(z )a h , . (z )*0. So, d(z )*0 and h , . (z )i x , y .  (x,) 2 i x , y .  x .  2d̂  x d d-'x d

*0 which implies that g(zi)=0 for every deT)-DQ, hence

r(z)=0 for every heW-tf . Thus, H is also locally finite. 

Hence XxY is paracompact.
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Chapter VIII

Some weaker forms of compactness

The aim of this chapter is to introduce good 

definitions of almost and near compactness in L-fuzzy 

topological spaces. These weak compactnesses are defined 

for arbitrary L-fuzzy sets and their properties studied.

In ordinary topology, near compactness was

introduced by Singal and Mathur in [89] and almost

compactness was studied by many authors such as Cameron

[14]. A topological space (X,S) is said to be almost

compact (nearly compact) if and only if for every open

cover (A.). T of X, there is a finite subset F of J with 1 xeJ

u_ cl(A.) = X (.u_ int(cl(A.)) = X)..eF i leF l

Almost and near compactness were introduced and 

studied by several authors in [0,1]-fuzzy topological 

spaces. Some of them, such as Di Concilio and Gerla [28], 

Es [33], Mukherjee and Sinha [72] and Mukherjee and Ghosh 

[73], based their work on Chang's compactness (remark 

4.6.2.), which is not a good extension of compactness

[54]. Some others, such as Allam and Zahran [3] and 

Mashhour and al. [64], adopted a-compactness (definition

4.1.1.). In [12], Bulbul and Warner used fuzzy 

compactness (definition 4.6.3.) to produce in [0,1]-fts 

good extensions of these dilutions.

In L-fuzzy topological spaces, where L is a fuzzy
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lattice, almost compactness was defined by Chen [20], by 

means of a-nets.

This chapter is divided in three sections.

The first section contains the proposed definitions 

and their goodness.

The second section is reserved for other 

characterizations of these weak compactnesses.

And lastly, the third section is devoted to some 

properties.
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1. Proposed definitions and their goodness

Definition 8.1.1.

Let (X, 3") be an L-fts and let geLX . The L-fuzzy set 

g is said to be almost compact if and only if for every 

pepr(L) and every collection of open L-fuzzy sets

with f_jJ (x)^p for all xeX with g(x)ap' , there exists

a finite subset F of J with cl(f^)j (x)^p for all xeX

with g(x)^p' .

If g is the whole space, then we say that the L-fts 

(X,7) is almost compact.

Definition 8.1.2.
y

Let (X,if) be an L-fts and let geL . The L-fuzzy set 

g is said to be nearly compact if and only if for every 

pepr(L) and every collection (f^)^ of open L-fuzzy sets 

with (x)^p for all xsX with g(x)^p', there exists

a finite subset F of J with | ^ F int (cl(f^))j (x)^p for 

all xeX with g(x)^p'.

If g is the whole space, then we say that the L-fts 

(X,3") is nearly compact.

Theorem 8.1.3. (The goodness of almost compactness)

Let (X,5) be a topological space. Then (X,5) is 

almost compact if and only if (X,cj(5)) is an almost 

compact L-fts.

Proof
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Necessity:

Let pepr(L) and (f^^j = A be a family of basic 

open L-fuzzy sets in (X,u(5)) with f ± (x)fp for all

x€X. Thus, by proposition 3.2.11., for each iej,

e.U. /e. if xeU^eJ
consider f± (x) = f±1 X(x) = jg1 otherwise •

Since |.VT f.I (x)ip for all xeX, for each xeX there

e.U.
is iej such that f.1 1(x)ip, i.e., e.ip.

eiUi
Let U = {Û ; there is iej with p£e^ and f^ e A } .

Thus, £ is a family of open sets covering (X,5).

From the almost compactness of (X,5), there is a

finite subfamily £ of U, say {U , ..., Um) such that

r, U ,Cl(U.) = X. ie{l, ..., m} x'

Since, by proposition 3.2.13., cl(f.) (x) =

e . if xecl(U.) x x
0 otherwise 

all xeX.

we have ie{l, .V ., m}cl(fi) (x)^p for

Hence (X,cj(<5)) is almost compact.

Sufficiency :

Let be an open cover of (X,<5) .

Thus, by proposition 3.2.10., (* ) is a family
x iej

of open L-fuzzy sets in (X,u>(<5)) . We also have 

(x) =l^p for all xeX and for all pepr(L) .

From the almost compactness of (X,u(<5)) there exists 

a finite subset F of J with C1 ( x ) (x) =l^p for

all xeX and for all pepr(L).

Since, by proposition 3.2.13. cl {x-, = Xcl(Ai) we

have y  *cl(A.)](x)=1 for all xeX. So, .u cl(A.) =X.l^r 1 j X€r 1

Hence (X,5) is almost compact.
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Theorem 8.1.4. (The goodness of near compactness)

Let (X,5) be a topological space. Then (X,S) is

nearly compact if and only if the L-fts ( X , u ( 8 ) ) is
»

nearly compact.

Proof

By using corollary 3.2.14., this is similar to the 

proof of theorem 8.1.3.
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2. Other characterizations

Proposition 8.2.1.
V

Let (X,?) be an L-fts. Then geL is almost compact 

if and only if for every aeM(L) and every family (fi)ieJ 

of closed L-fuzzy sets with fij (x)^a for all xeX with

g(x)^a, there exists a finite subset F of J with 

int(f^)j (x)^a for all xeX with g(x)£a.

Proof

This immediately follows from the definition and 

remark 3.1.6.

Theorem 8.2,2.
y

Let (X,3") be an L-fts. Then geL is almost compact 

if and only if every constant a-net (sm)meD contained in 

g, has a 0-cluster point (definition 3.1.9.(iii)
y

x^eM(L ), with height a, contained in g, for each aeM(L). 

Proof

This is similar to the proof of theorem 4.4.2.

X

Theorem 8.2.3.

Let (X, 3”) be an L-fts. Then geL"“" is almost compact 

if and only if for every pepr(L) and every collection

of regularly open L-fuzzy sets with |^j f̂ j (x) ^p 

for all xeX with g(x)£p' , there is a finite subset F of J

with cl(f^) (x)^p for all xeX with g(x)^p'
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Proof

Necessity:

Let pepr(L) and let (f.)ieJ be a collection of 

regularly open L-fuzzy sets (definition 3.1.7.(i)) with

Since each f. is a regularly open L-fuzzy set f̂ <=7 

for each ieJ. Then by the almost compactness of g, there 

is a finite subset F of J with cl(f^)j (x)^p for all

xeX with g(x)ap' .

Sufficiency:

Let pepr(L) and let (f^)^eF be a collection of open 

L-fuzzy sets with f̂ j (x)^p for all xeX with g(x)ap'.

From remark 3.1.8. (iv)(int(cl(f) is a regularly 

open L-fuzzy set for each ieJ. Then, by our hypothesis, 

there exists a finite subset F of J with

cl (int (cl (f̂ ) ) ) j (x) p̂ for all xeX with g(x)2=p'.

From remark 3.1.8. (iii) cl(f^) is a regularly closed 

L-fuzzy set, so cl(fi) = cl(int(cl(fi))). Therefore 

(ieF (X)$P for a11 xeX with g(x)ip'.

Hence (X,7) is almost compact.

Proposition 8.2.4,

Let (X,7) be an L-fts. Then geLX is nearly compact 

if and only if for every aeM(L) and every family (f^)^

of closed L-fuzzy sets with f^ (x)£a for all xeX with

g(x)2=a, there exists a finite subset F of J with

^ g F cl (int (f̂ ) ) j  ( x ) f o r  all xeX with g(x)^a.
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Proof

This immediately follows from the definition and 

remark 3.1.6.

Theorem 8.2.5.
y

Let (X,fT) be an L-fts. Then geL is nearly compact 

if and only if every constant a-net (sm)meD contained in 

g has a 5-cluster point (definition 3.1.9. (iv) )
y

x^eMiL ), with height a, contained in g, for each aeM(L). 

Proof

This is similar to the proof of theorem 4.4.2. 

Theorem 8.2.6.
x

Let (X,i7) be an L-fts. Then geL is nearly compact 

if and only if for all pepr(L) and every collection 

(f^)^eJ of regularly open L-fuzzy sets with f^j(x)^p

for all xeX with g(x)^p', there exists a finite subset F 

of J with (x)^p for all xeX with g(x)^p'.

Proof

This is similar to the proof of theorem 8.2.3.
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3. Some properties

Proposition 8.3.1.

Let (X, ï ï ) be an L-fts and let g,h be almost compact 

L-fuzzy sets. Then gvh is almost compact.

Proof

This is similar to the proof of proposition 4.1.10. 

Proposition 8.3.2.

Let (X,J) be an L-fts, let g be an almost compact 

L-fuzzy set and h be a clopen L-fuzzy set. Then hAg is 

almost compact.

Proof

This is similar to the proof of proposition 4.1.12. 

Corollary 8.3.3.

Let (X. Ï Ï ) be an almost compact L-fts. Then each 

clopen L-fuzzy set is almost compact in ( X , ï ï ) .

Proof

This immediately follows from proposition 8.3.2. 

Proposition 8.3.4.

Let (X,3"x) and (Y, ï ï ^) be L-fts's; let 

f : (X, 9̂ ) -» ( Y, 9"y) be an almost continuous mapping such that 

f 1(y) is finite for every yeY and let g be an almost 

compact L-fuzzy set of (X,JX). Then f(g) is an almost 

compact L-fuzzy set of (Y,7 ).
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Proof

Let pepr(L) and let (f±)i€j be a family of regularly 

open L-fuzzy sets of (Y,Jy) with fij(y)fp for all yeY

with f(g) (y)̂ p' .
— \

Thus, from the almost continuity of f, (f

is a family of open L-fuzzy sets in (X,TX) . We also have

. V f-1(f.) (x)±p for all xeX with g(x)^p' because if^xej x J i

g(x)^p' Chen £ (g) (£ (x) ) =p', so f Mf^Hfx) =

(ieJ fi)(f(x))+P-

From the almost compactness of g in (X,^), there

exists a finite subset F of J with 

for all xeX with g(x)^p'.

Therefore

ieF cl(f"1(fi) (x)$p

cl(f^)j(y)4p for all yeY with 

f ( g ) ( y ) ^ p '. In fact, if f(g)(y)sp' then x^f-i {g(x)}

^p7 which implies that there is xeX with g(x)2p>' and

f (x) =y. So, cl (f i) j (y) = cl (f ± ) J (f (x) ) =

(ieF f"1(cl(fi))] (x) = [±VF cl(f"1(cl(fi) ))] (x) *

cl(f 1 (f ) ) J (x)^p where the last equality is due to 

the fact that cl(f^) is regularly closed by remark 3.1.8. 

(iii) and then f 1(cl(f^)) is closed by the almost 

continuity of f.

Hence f(g) is almost compact by theorem 8.2.3.

When g=*A for some A£X, f 1 (y) does not need to be 

finite.

Proposition 8.3.5.

Let (X,3"x) and (Y, Jy) be L-fts's, let 

f : (X, ÏÏ ) -» ( Y, 9" ) be a weakly continuous mapping such that
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f 1(y) is finite for every yeY and let g be a compact 

L-fuzzy set of (X,^). Then f (g) is almost compact in

(Y,yy)•

Proof

Let pepr(L) and let (f^^j be a family of open 

L-fuzzy sets in (Y,Jy) with f̂ j (y)^p for all yeY with

f (g) (y) *p' •

Thus, l^j f‘1(fi) (x)^p for all xeX with g(x)ip'.

By the weak continuity of f (definition 3.3.1.

(iv)), f_1(fi)i int(f_1(cl(fi))). Then

int(f 1 (cl (f ̂) ) ) j (x) ̂ p for all xeX with g(x)ip'. 

Since g is compact, there is a finite subset F of J with 

.v_ int(f 1(cl(f.)))] (x)ip for all xeX with g(x)ip' .1 € r 1 I 1

Therefore . V cl (f . ) xeF x (y)^p for all yeY with

f(g)(y)*p' • In fact, if f(g)(y)ap' then x^f-i {g(x)} 

ip' which implies that there is xeX with f(x)=y and

g (x) ip' . So, cl(fi) j  (y) = c K L ) ]  (f (x) ) =

V f (cl(f .) ) leF l (x)i i^F int(f"1(cl(fi))) (x)fp.

Hence f(g) is almost compact

When g=*A for some A£X, f 1 (y) does not need to be 

finite.

Proposition 8.3.6.

Let (X,3"x) and (Y,3"Y) be L-fts's, let

f : (X, 3"x)-> (Y, J ) be a strongly continuous mapping such 

that f 1(y) is finite for every yeY and let g be an 

almost compact L-fuzzy set of (X,J ). Then f(g) is
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compact in (Y,^) .

Proof

Let pepr(L) and let (f.)ieJ be a family of open

v f.xe J 1 (y)^p for all yeY withL-fuzzy sets in [ Y, Jy) with 

f (g) (y)*p' .

Since f is strongly continuous (definition 3.3.1.

(vii)), it is continuous as well. So, (f 1(f^))^gJ is a

family of open L-fuzzy sets in (X,9"x) and we also have 
-1 1

V  f ■For' 31 1 "vcz Y  t*ti V Vi
i e j  i (x)|p for all xeX with g(x)^p'.

From the almost compactness of g, there is a finite

-lsubset F of J with V cl(f "(f.)) leF l

g(x)sp' . Then p^f cl(f 1 ( f ) J
(x) ^p for all xeX with

(y) =

±XF f <cl(f i(fi)))j(y) - [iiF f(f i(fi))j(y) * [iSF fiJ (y)

for all yeY with f (g) (y)^p', where the inequality before 

the last one is due to the strong continuity of f.

Hence f(g) is compact in (Y,^).

When g=*A for some A£X, f 1 (y) does not need to be 

finite.

Proposition 8.3.7,

Let (X,T) be an L-fts and let g and h be nearly 

compact L-fuzzy sets. Then gvh is nearly compact.

Proof

This is similar to the proof of proposition 4.1.10.
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Proposition 8.3.8.

Let (X, ST) be an L-fts and let g be a nearly compact 

L-fuzzy set and let h be a regularly closed (definition

3.1.7. (ii)) L-fuzzy set. Then hAg is nearly compact.

Proof

This is similar to the proof of proposition 4.1.12. 

Corollary 8.3.9.

Let (X, 3”) be a nearly compact L-fts. Then each 

regularly closed L-fuzzy set is nearly compact.

Proof

This immediately follows from proposition 8.3.8. 

Corollary 8.3.10.

Let (X,̂ ) be an L-fts and let g be nearly compact 

L-fuzzy set and let h be a clopen L-fuzzy set. Then hAg 

is nearly compact.

Proof

This immediately follows from proposition 8.3.8. 

since h clopen implies h regularly closed.

Corollary 8.3.11.

Let (X,3") be a nearly compact L-fts. Then each 

clopen L-fuzzy set is nearly compact.

Proof

This immediately follows from corollary 8.3.10.
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Proposition 8.3.12.

Let (X,yx) and (Y,yy) be L-fts's, let 

f : (X, 9" ) -» (Y, J) be an almost continuous (definition
A 1

3.3.1.(iii)), almost open (definition 3.3.1.(vi)) mapping 

such that f_1(y) is finite for every yeY and let g be a 

nearly compact L-fuzzy set of (X,?̂ ) . Then f (g) is 

nearly compact in (Y,J y ) .

Proof

Let pepr(L) and (f^)^ be a family of regularly 

open L-fuzzy sets in (Y,Jy) with fjj (y^p for all

yeY with f(g) (y)̂ p' .

By proposition 3.3.4., (f * (fj_) )-¡_ej is a family of 

regularly open L-fuzzy sets in (X, ï ï  ). We also have 

^Y f 1(f.) (x) ̂ p for all xeX with g(x)^p'.

From the near compactness of g and theorem 8.2.6., 

there exists a finite subset F of J with 

¿Vp f 1 (f j_) ] (x) ̂ P for all xeX with g(x)ap' .

Thus, f±j (y)^p for all yeY with f (g) (y)sp' . In

fact, if f(g)(y)ap' then Xg{f-i(y)j {g(x)}ap' which 

implies that there is xeX with g(x)^p' and f(x)=y. So,

ieF £i] <y> - (ieF - (iÏF f" (fi>) (x)te-

Hence by theorem 8.2.6. f(g) is nearly compact.

When g=*A for some A£X, f 1 (y) does not need to be 

finite.

Proposition 8.3.13.

Let (X,3"x) and (Y,3"y) be L-fts's, let 

f: (X, ?x) -»(Y, ¡7 ) be an almost continuous mapping with
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f_1(cl(h))̂ cl(f_1 (h) ) for all heJ such that f-1(y) is 

finite for every yeY and let g be a nearly compact 

L-fuzzy set of (X,TV). Then f(g) is nearly compact in

(Y,Ty).

Proof

By using theorem 8.2.6. and proposition 3.3.5., this 

follows as in proposition 8.3.12.

When <3=Xa  for some A£X, f 1 (y) does not need to be 

finite.

Proposition 8.3.14.

Let (X,7X) and (Y,3"Y) be L-fts's, let 

f : (X, 3"x)-> (Y, 3"y) be a weakly continuous mapping such that 

f 1 (y) is finite for every yeY, with f 1 (cl (h))scl (f_1(h)) 

for every regularly open L-fuzzy sets h in (Y , ï ï  ) and let 

g be a nearly compact L-fuzzy set of {X ,ïï ) . Then f(g) is 

nearly compact in (Y,3"Y).

Proof

By using theorem 8.2.6. and proposition 3.3.6., this 

follows as in proposition 8.3.12.

When g = xA for some A ex, f_1(y) does not need to be 

finite.

Proposition 8.3.15.

Let (X,JX) and (Y,Jy) be L-fts's, let
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f:(X,Jv)-»(Y,TV) be an almost continuous mapping such that 

f-1(y) is finite for every yeY and let g be a compact 

L-fuzzy set of (X,JX). Then f (g) is nearly compact in

(y , j y ) .

Proof

Let pepr(L) and let (f^)^gJ be a family of regularly 

open L-fuzzy sets in (Y,^) with (y)^p for all yeY

with f(g) (y) ap'.

From the almost continuity of f, (f i-s a

family of open L-fuzzy sets in ( X, J  ). We also have

f 1 (f,)) (x)^p for all xeX with g(x)2:p/ because if 

g(x)ap' then f(g) (f(x))ap' , so f.Y f_1(f.)](x) =

.iSj ii)(f(x))tp-

By the compactness of g, there is a finite subset F 

of J with f 1 ( f j  (x) |p for all xeX with g(x)ap'.

Then fij (y)^p for all yeY with f (g) (y)ap'.

Hence by theorem 8.2.6. f(g) is nearly compact.

When g=XA for some ASX, f 1 (y) does not need to be finite.
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Chapter IX

S-closedness in L-fuzzy topological spaces

In this chapter we introduce S-closedness in L-fuzzy 

topological spaces. S-closedness is defined for 

arbitrary L-fuzzy sets and is a good extension. We give 

other characterizations of S-closedness and study some of 

its properties.

In ordinary topology, S-closedness was introduced by

Thompson in [93] and also studied by several authors [14,

46, 63, 76, 94]. A topological space (X,S) is said to be

S-closed if and only if for every semiopen cover (A^)^eJ

of X, there is a finite subset F of J with .u_cl(A.)=X.' ieF l

S-closedness was introduced and studied in 

[0,1]-fuzzy topological spaces by Mashhour, Ghanim and 

Fath Alla in [64]. In their work they adopted 

a-compactness (definition 4.1.1.) and defined aS-closed 

fuzzy spaces. In [4], Allam and Zahran extended 

aS-closedness to arbitrary fuzzy sets.

In [23], Coker and Es, considering Chang's 

compactness (remark 4.6.2.), defined S-closed [0,1]-fuzzy 

topological spaces.

Bulbul and Warner in [12], using fuzzy compactness 

(definition 4.6.3.), presented a good definition of 

S-closed [0,1]-fuzzy topological spaces.
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This chapter contains three sections.

In the first section we present our definition and 

establish its goodness.

In the second section we obtain some other 

characterizations of the proposed S-closedness.

The third section focuses on some properties.
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1. Proposed definition and its goodness

Definition 9.1.1.

Let (X, 9") be an L-fts and let geLX . The L-fuzzy set 

g is said to be S-closed if and only if for every pepr(L) 

and every collection (f ^ j  of semiopen L-fuzzy sets 

(definition 3.1.7. (iii)) with 

with g(x)sp', there exists a finite subset F of J with 

cl(fi)J (x)^p for all xeX with g(x)ap'.

If g is the whole space, then we say that the L-fts 

(X,T) is S-closed.

Theorem 9.1.2. (The goodness of S-closedness)

Let (X, <5 ) be a topological space. Then (X,ô) is 

S-closed if and only if the L-fts (X,cj(<5)) is S-closed.

Proof

Necessity :

By using proposition 3.2.18. and proposition 

3.2.13., this is similar to the proof of the necessity of 

theorem 8.1.3.

Sufficiency :

By using proposition 3.2.15. and proposition 3.2.13. 

this is similar to the proof of the sufficiency of 

theorem 8.1.3.

(x)^p for all xeX
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2. Other characterizations

Theorem 9.2.1.

Let (X,J) be an L-fts and let geLX . Then g is

S-closed if and only if for all pepr(L) and every

collection (f^)^eJ of regularly closed L-fuzzy sets with

i.vT f. (x)ip for all xeX with g(x)^p', there is a finite 
UsJ ij T

subset F of J with f̂ l (x)^p for all xeX with g(x)^p' .

Proof

Necessity:

Let pepr(L) and let (f.). T be a collection of 

regularly closed L-fuzzy sets (definition 3.1.7. (ii)) 

with f̂ j (x)^p for all xeX with g(x)^p'.

Since every regularly closed L-fuzzy set is a 

regularly semiopen L-fuzzy set because if f=cl(int(f^)) 

then int(fi)sfi<cl(int(fi)), we have that fi is a 

regularly semiopen L-fuzzy set for each iej.

Therefore, from the S-closedness of g there exists a 

finite subset F of J with cl (fi) J (x)$p for all xeX
with g(x)ap'. Since every regularly closed L-fuzzy set 

is closed, then fi](x)^p for all xeX with g(x)sp'.

Sufficiency:

Let pepr(L) and let (f.). _.x lej

semiopen L-fuzzy sets with

be a collection of

(x)^p for all xeX with

g (x) £p' .

Thus, for each iej there exists freJ such that 

hj_-f -[-cl (ĥ ) . So we have cl (f=cl (fr ) and by remark
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3.1.8. (iii) cl(h.) is regularly closed.

Since f^cKhjJ for every iej and fi (x)^p for

all xeX with g(x)*P', we have c M h ^ j  (x) =fp for all

xeX with g(x)sp'.

Thus, by hypothesis, there exists a finite subset F 

of J with y .F cl(hi)J (x)^p for all xeX with g(x)ap',

cl(f.) (x)^p for all xeX with g(x)ap'.

Hence g is S-closed.
e 1 ( i

Theorem 9.2.2.

XLet (X,?) be an L-fts and let geL“'. The L-fuzzy set 

g is S-closed if and only if for all pepr(L) and every 

collection (f^)^ of regularly semiopen L-fuzzy sets 

with fjj (x)^p for all xeX with g(x)^p', there exists

a finite subset F of J with cl(f^)j (x)^p for all xeX

with g (x) 2:p' .

Proof

Necessity:

Since every regularly open L-fuzzy set is an open 

L-fuzzy set, we have that every regularly semiopen 

L-fuzzy set is a semiopen L-fuzzy set. Hence the result 

follows immediately.

Sufficiency:

Let pepr(L) and let (f^)^ 

semiopen L-fuzzy sets with .v

be a collection of

f.l (x)^p for all xeX with

g(x)sp'.

Thus, for each iej there exists freJ such that
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h .sf.scl(h.) I X  1
Then, int(cl(h^))s int(cl(f^))£

int (cl (1^))* cl (int (cl (hi) ) ) = clfL), the last equality 

is due to the fact that from remark 3.1.8. (iii) cl(h^) 

is a regularly closed L-fuzzy set. Thus, from f^cl(h^) 

and int (cl (f . ) ) ̂ cl (ĥ ) we have (int (cl (f ) ) vf ̂-cl (In) 

and from int(cl(h^))sint(cl(f^(int(cl(f))vf^ we have 

int (cl (hi) (int (cl (fi) ) )vfi^cl (hi) = cl (int (cl (In) ) ) . 

Then, (int(cl(f^)))vf^ is a regularly semiopen L-fuzzy 

set for every ieJ with (int (cl (f ) ) vf (x) ̂ p for all

xeX such that g(x)^p'. So, by hypothesis, there is a 

finite subset F of J with cl(int(cl(f^)))vf^ (x)^p

for all xsX such that g(x)^p'. Then

cl (int (cl (f̂ ) ) ) vcl (f̂ ) j (x) ̂ p for all xeX with 
g(x)^p'. Since cl (int (cl (f^ ) ) vcl (fi) =cl (f . ) , we have 

cl(fi)j(x)^p for all xeX with g(x)ap'.

Hence g is S-closed.

Proposition 9.2.3.

Let (X,?) be an L-fts. Then geL^ is an S-closed

L-fuzzy set if and only if for all aeM(L) and for every

collection (fi)i of semiclosed (definition 3.1.7. (iv))

L-fuzzy sets with ±Aj fiJ (x)2:a for all xeX with g(x)^a,

there exists a finite subset F of J with (.A int(f.)|(x)
(leF l J

for all xeX with g(x)^a.

Proof

This immediately follows from the definition.
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Theorem 9.2.4.
y

Let (X,ST) be an L-fts. Then geL is an S-closed 

L-fuzzy set if and only if every constant a-net (Sm)mgD 

contained in g, has a semi-0-cluster point (definition
y

3.1.9. (vi)) x̂ elVKL ), with height a, contained in g, for. 

each aeM(L).

Proof

This is similar to the proof of theorem 4.4.2.
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3. Some properties

Proposition 9.3.1.

Let (X,J) be an L-fts and let g and h be S-closed 

L-fuzzy sets. Then hvg is S-closed as well.

Proof

This is similar to the proof of proposition 4.1.10. 

Corollary 9.3.2.

Let (X,J) be an L-fts. Every L-fuzzy set g with 

finite support is S-closed.

Proof

By using proposition 9.3.1., this is similar to the 

proof of corollary 4.1.11.

Proposition 9.3.3.

Let (X, ï ï ) be an L-fts and let g be an S-closed 

L-fuzzy set. Then for each regularly open L-fuzzy set h, 

hAg is S-closed.

Proof

By using theorem 9.2.1., this is similar to the 

proof of proposition 4.1.12.

Corollary 9.3.4,

Let (X,7) be an S-closed L-fts. Then each regularly 

open L-fuzzy set is S-closed in (X,7).
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Proof

This immediately follows from proposition 9.3.3. 

Corollary 9.3.5.

Let (x,y)  be an L-fts. If g is an S-closed L-fuzzy 

set, then for each clopen L-fuzzy set h, hAg is S-closed.

Proof

This follows from proposition 9.3.3. because if h is 

clopen, h=int(h)=cl(h) then, int(cl(h))=h, i.e., h is 

regularly open.

Proposition 9.3.6.

Let (X, ï ï  ) and (Y ,ÏÏ ) be L-fts's. LetA Y
f : (X, ïï ) -> (Y, ÏÏ ) be an almost continuous (definitionA Y
3.3.1. (iii)), almost open (definition 3.3.1. (vi)) 

mapping such that f 1(y) is finite for every yeY and let 

g be an S-closed L-fuzzy set in (X,J ). Then f(g) is an 

S-closed L-fuzzy set in ( Y, ï ï ^) .

Proof

By using theorem 9.2.1. and proposition 3.3.4., this 

is similar to the proof of proposition 4.1.14.

When g=*A for some A£X, f 1 (y) does not need to be 

finite.

Proposition 9.3.7.

Let (X,3"x) and ( Y, J  ) be L-fts's. Let
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f : (X, J) be a weakly continuous mapping

(definition 3.3.1. (iv)), such that f_1(y) is finite for 

every yeY, with f_1 (cl (h) ) scl (f_1 (h) ) for every regularly 

open L-fuzzy set h in (Y,^) and let g be an S-closed 

L-fuzzy set in (X,3"x). Then f (g) is S-closed in (Y, .

Proof

By using proposition 3.3.6. and theorem 9.2., this 

is similar to the proof of proposition 4.1.14.

When g=*A for some A£X, f 1 (y) does not need to be 

finite.

Proposition 9.3.8.

Let (X,TV) and (Y,3" ) be L-fts's. Let
A  i

f : (X, 3"x) -» (Y, Ty) be an irresolute almost continuous 

(definition 3.3.1. (iii) (viii)) mapping such that f 1 (y) 

is finite for every yeY and let g be an S-closed L-fuzzy 

set in (X,?x). Then f(g) is S-closed in ( Y , J  ) .

Proof

Let pepr(L) and let (f^)^eJ be a family of semiopen 

L-fuzzy sets in (Y,Ty) with f̂ j (y)^p for all yeY with

f (g) (y) ̂ p' .

Since f is irresolute, (f_1 (f-̂ ) ) ¿ej is a family of 

semiopen L-fuzzy sets in (X,7 ). We also have

f a(f^)j(x)^p for all xeX with g(x)^p' because if 

g(x)2:p' then f (g) (f (x) ap'. So

= 'iYj

From the S-closedness of g in (X,TV), there exists a
A

• V T f'1€ J :f±)I (x)
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(x)^p for all( i Vp Cllf-Ifjllfinite subset F of J with 

xeX with g(x)ip' .

Therefore, cl (f i) j (y) ̂ p for all yeY with
f ( g ) ( y ) a p ' .  in fact, i f  f (g) (y) ̂p' then

_ !  { g  (x) }sp' which implies that there is xeX with 

g(x)ap' and f(x)=y. So, .V cl(f .) ieF 1
(y) cl(fi) j (f (x))

= f _1 (cl (fi) ) j cl (f _1 (fi) ) j (x) ̂ p where the
last inequality is due to proposition 3.3.11 

Hence f(g) is S-closed.

When g=*A for some A£X, f 1 (y) does not need to be 

finite.
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Chapter X

RS-compactness in L-fuzzy topological spaces

This chapter is reserved for RS-compactness in 

L-fuzzy topological spaces. We prove the goodness of the 

proposed definition, obtain different characterizations 

of it and study some of its properties.

In ordinary topology, RS-compactness has been 

introduced by Hong [43] and has also been studied by 

Noiri [77] . A topological space (X,<5) is said to be 

RS-compact if and only if every regularly semiopen cover 

of X has a finite subfamily whose interiors cover X [43]. 

In [77], Noiri claimed without proving that this is 

equivalent to every regularly closed cover of X has a 

finite subfamily whose interiors cover X. Similarly to 

our proof of theorem 10.2.2. one can prove that these are 

also equivalent to every semiopen cover of X has a finite 

subfamily whose interiors of closures cover X. Here we 

use this last characterization of RS-compactness to prove 

the goodness of our definition. In the same way as we 

proved our theorem 10.2.3. we can prove that ordinary 

RS-compactness is also equivalent to every regularly 

semiopen cover of X has a finite subfamily whose 

interiors of closures cover X.

In [0,1]-fuzzy topological spaces, RS-compactness 

was studied by Coker and Es [24]. Their definition is
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along the lines of Chang's compactness (remark 4.6.2.). 

Also in [0,1]-fuzzy topological spaces, Allam and Zahran, 

using the concept of a-shading (definition 4.1.1.), 

suggested another version of this concept.

This chapter is divided in three sections.

In section 1 we introduce our definition and 

establish its goodness.

The second section contains other characterizations 

of RS-compactness.

In the third section we focus on some properties.
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1. Proposed definition and its goodness

Definition 10.1.1.
x

Let (X,7) be an L-fts and let geL . The L-fuzzy set 

g is said to be RS-compact if and only if for all pepr(L). 

and every collection (f^)^ of semiopen L-fuzzy sets 

(definition 3.1.7. (iii)) with f^jixj^p for all xeX

with g(x)£p', there is a finite subset F of J with 

int (cl (f ̂) ) j  (x) ̂ p for all xeX with g(x)£p' .

If g is the whole space, then we say that the L-fts 

(X,J) is RS-compact.

Theorem 10.1.2. (The goodness of RS-compactness)

Let (X,S) be a topological space. Then (X,5) is 

RS-compact if and only if the L-fts (X,u(5)) is 

RS-compact.

Proof

Necessity:

By using proposition 3.2.18. and corollary 3.2.14., 

this is similar to the proof of the necessity of theorem 

8.1.3.

Sufficiency :

By using proposition 3.2.15. and corollary 3.2.14. 

this is similar to the proof of the sufficiency of 

theorem 8.1.3.
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2. Other characterizations

Theorem 10.2.1.
x

Let (X,7) be an L-fts and let geL . Then g is 

RS-compact if and only if for all pepr(L) and every 

collection (f.). T of regularly closed L-fuzzy sets 

(definition 3.1.7. (ii) ) with (x)^p for all xeX

with g(x)2:p' , there is a finite subset F of J with 

int(f^)j (x)^p for all xeX with g(x)^p'.

Proof

This is similar to the proof of theorem 9.2.1..

X

Theorem 10.2.2.

Let (X,3") be an L-fts and let geL-11. The L-fuzzy set 

g is RS-compact if and only if for all pepr(L) and every 

collection (f^)^gJ of regularly semiopen L-fuzzy sets 

wiCh (isj fi) <x):tP for all xeX with g(x)sp', there exists

(x)^p for all xeXa finite subset F of J with 

with g(x)^p' .

v int(f.) leF x

Proof

Necessity:

Let pepr(L) and let (f^)^ej be a family of regularly 

semiopen L-fuzzy sets (definition 3.1.7. (v) ) with

f̂ j (x)^p for every xeX with g(x)£p'.

Thus, for each ieJ there exists a regularly open 

L-fuzzy set fu such that h^f <cl(hi). So, by definition 

3.1.7. (i) , fr=int (cl (ĥ ) ) and we also have cl (f =cl (ĥ )
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and that is a semiopen L-fuzzy set.

Therefore, by the RS-compactness of g, 

finite subset F of J with int(cl(f^))

there is a 

(x)^p for all

xeX with g(x)ip'; i.e., (igF hi] <x> &  • Since h^int (f±) ,

.v int(f.)] (x)ip for all xeX with g(x)ip'.
1 € F  1 I •

Sufficiency:

Let pepr(L) and let (f-¡_)-¡_ej 136 a family of regularly 

closed L-fuzzy sets with (x)^p for all xeX with

g(x)sp' .

Since each f^ is a regularly closed L-fuzzy set f̂  

is a regularly semiopen L-fuzzy set (proved in the 

necessity of theorem 9.2.1.).

Therefore, by our hypothesis, there exists a finite 

subset F of J with int(f^)j (x)^p for all xeX with

g(x)ip' .

Hence, by theorem 10.2.1., g is RS-compact.

X

Theorem 10.2.3.

Let (X,J) be an L-fts and let geL^. The L-fuzzy set 

g is RS-compact if and only if for all pepr(L) and every 

collection (f^)^gJ of regularly semiopen L-fuzzy sets 

ith (x)^p for all xeX with g(x)ip', there exists

int (cl (f i) ) j  (x) ̂ p for all
wi

a finite subset F of J with 

xeX with g(x)ip'.

Proof

Necessity:

Let pepr(L) and let (f^)^ be a family of regularly
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V
ie J fj (x) for all xeX withsemiopen L-fuzzy sets with 

g (x)ip' .

Thus, by theorem 10.2.2. and the RS-compactness of 

g, there is a finite subset F of J with int(f^) (x)^p

for all xeX with g(x)^p'. Therefore,

int(cl(f^))|(x)^p for all xeX with g(x)^p' because 

int (f i) ̂ int (cl (f i) ) .

Sufficiency:

Let pepr(L) and let (f^)^gj be a family of regularly 

closed L-fuzzy sets with j^j f̂ j (x)^p for all xeX with 

g(x)ap' .

As showed in the necessity of theorem 9.2.1., each 

f^ is a regularly semiopen L-fuzzy set. So by our 

hypothesis there exists a finite subset F of J with 

j^^p int (cl (f ̂) ) j (x) ̂ p for all xeX with g(x)ap'. But each 

fi is regularly closed, so is closed, i.e., cl(f^)=fi. 

Thus int(fi)j (x)^p for all xeX with g(x)ap' .

Hence, by theorem 10.2.1., g is RS-compact.

Proposition 10,2.4.

Let (X,J) be an L-fts. Then geLX is an RS-compact 

L-fuzzy set if and only if for all aeM(L) and for every 

collection (f^)^gj of semiclosed L-fuzzy sets with

f^ (x)^a for all xeX with g(x)^a, there exists a 

finite subset F of J with cl (int (fi) ) j (x) for all

xeX with g(x)^a.
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Proof

This immediately follows from the definition. 

Theorem 10.2.5.
v

Let (X,T) be an L-fts. Then geL is an RS-compact 

L-fuzzy set if and only if every constant a-net (sm)m€D

contained in g has a semi-6-cluster point (definition
x

3.1.9. (v)) x^eMCL ), with height a, contained in g, for

each aeM(L).

Proof

This is similar to the proof of theorem 4.4.2.
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3. Some properties

Proposition 10.3.1.

Let (X,J) be an L-fts and let g and h be RS-compact 

L-fuzzy sets. Then hvg is RS-compact as well.

Proof

This is similar to the proof of proposition 4.1.10. 

Proposition 10.3.2.

Let (X,7) be an L-fts and let g be an RS-compact 

L-fuzzy set and h a regularly semiopen L-fuzzy set. Then 

hAg is RS-compact.

Proof

By using theorem 10.2.2. and the fact that if h is a 

regularly semiopen L-fuzzy set (definition 3.1.7. (v) )

then h' is also regularly semiopen, this is similar to 

the proof of proposition 4.1.12..

Proposition 10.3.3.

Let (X,7) be an L-fts and let g be an RS-compact 

L-fuzzy set and h a regularly closed L-fuzzy set. Then 

hAg is RS-compact.

Proof

Since h regularly closed L-fuzzy set implies h 

regularly semiopen (proved in the necessity of theorem

9.2.1.), by proposition 10.3.2. hAg is RS-compact.
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Proposition 10.3.4.

Let (X, 9’x) and (Y,^) be L-fts's. Let 

f : (X, 9") -> (Y, T) be an almost continuous (definitionA. JL

3.3.1. (iii)), almost open (definition 3.3.1. (vi)) 

mapping such that f-1(y) is finite for every yeY and let 

g be an RS-compact L-fuzzy set in (X,?x) . Then f (g) is 

an RS-compact L-fuzzy set in (Y,3y).

Proof

Let pepr(L) and let (f^)^gj be a family of regularly 

closed L-fuzzy sets with f̂ j (y)^p for all yeY with

f (g) (y) *p'.

Thus, by proposition 3.3.4., (f (f.)). T is a 

family of regularly closed L-fuzzy sets in (X,T ). We 

also have f  1 ( f _ ^ ) j  (x)^p for all xeX with g(x)^p'

because if g(x)^p' then f  (g) ( f  (x) ) sp', so

isj f" < fi>)(X)=U j  £i)(E<x)>*P-

From the RS-compactness of g in (X,TV) and by 

theorem 10.2.1., there is a finite subset F of J with 

int (f 1(fi))j(x)^p for all xeX with g(x)^p'.

Thus, p^f[±VF int (f-1) (f±))j (y) =

(±^F f (int(f_1(fi) ) )] ( y ) s int(cl(f (int(f"1(fi) ) ) ) ) j (y)

(y) =±vp int (cl (f (f ‘(f.)))) (yjs .Vp int (cl (f ±) )

int(f^)j (y) for all yeY with f(g) (y)>p', where first 

inequality is due to the fact that since each f_1(fi) is 

closed we have, by remark 3.1.8. (iv), int(f-1(f̂ )) is 

regularly open and so by the almost openness of f we have 

f(int(f 1(f^)))e?Y . And last equality is due to the
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closedness of each f^.

Hence, by theorem 10.2.1., f(g) is RS-compact.

When g=*A for some ASX, f 1 (y) does not need to be 

finite.

Proposition 10.3.5.

Let (X,3"x) and (Y,?̂ ) be L-fts's. Let 

f : (X, (7 ) -» (Y, 3"y) be a weakly continuous mapping 

(definition 3.3.1. (iv)) such that int(f 1 (h))̂  

f_1(int(h)) for each regularly semiopen L-fuzzy set h in 

(Y,3"y) with f 1 (y) finite for every yeY and let g be an 

RS-compact L-fuzzy set in ( X, J^)  . Then f(g) is an 

RS-compact L-fuzzy set in (Y , .

Proof

Let pepr(L) and let (f^)^ _ be a family of regularly 

closed L-fuzzy sets with |^j f̂ j (y)^p for all yeY with

f (g) (y) sp# .

Thus, by proposition 3.3.8., ( f  1 ( f .)). T is a 

family of regularly closed L-fuzzy sets in (X, ï ï  ) . We 

also have f  1 ( f ^ ) j  (x)^p for all xeX with g(x)^p'

because if g(x)ap' then f(g) (f(x))sp', so • V T f_1(f.) xej l (x)

■V T f ■ (f (x) îej i

From the RS-compactness of g in (X,2TV) and by 

theorem 10.2.1., there is a finite subset F of J with 

int (f 1(fi))j(x)^p for all xeX with g(x)^p'.

Since every regularly closed L-fuzzy set is 

regularly semiopen (proved in the necessity of theorem
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9.2.1.) we have that each f. is a regularly semiopen.

So, by hypothesis, int(f_1 (f i) ) sf _1(int(f±)) for each ieF

and then f_1 (int (fi) ) J (x) ̂ p for all xeX with g(x)fcp'.

For yeY with v {g(x)} = f(g) (y)ap' , we have
xef-1(y)

f (x) =y for some xeX with g(x)ap' . So, -̂¡_gF int(f^)| (y) =

int(fi) (f(x)) = f-1 (int (f i) ) j (x) ̂ p for all yeY
with f(g) (y) ap'.

Hence, by theorem 10.2.1., f(g) is RS-compact.

.-i

When g=*A for some A£X, f 1 (y) does not need to be 

finite.

Proposition 10.3.6.

Let (X,?x) and (Y,9"Y) be L-fts's. Let 

f : (X, 3"x) -» (Y, 9"y) be a weakly continuous open mapping such 

that f 1(y) is finite for every yeY and let g be an 

RS-compact L-fuzzy set in (X,3"v). Then f (g) is an 

RS-compact L-fuzzy set in (Y,7Y).

Proof

By proposition 3.3.9., f is also almost continuous. 

So this follows from proposition 10.3.4. since f open 

mapping implies f almost open mapping (definition

3.3.1.(v)(vi)).

When <3=Xa  for some A£X, f_1(y) does not need to be 

finite.

Proposition 10.3.7.

Let (X,7X) and (Y,3"Y) be L-fts's. Let
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f : (X, J ) -> (Y, J ) be a semicontinuous (definition 3.3.1.

(ii) ) mapping such that f_1(y) is finite for every yeY 

and let g be an RS-compact L-fuzzy set in (X,^) . Then 

f(g) is almost compact in (Y,3"Y) (definition 8.1.1.).

Proof

Let pepr(L) and let (f^)^£j be a collection of open 

L-fuzzy sets with f_jJ (y)^p for all yeY with 

f(g)(y)^p'. Thus, by the semicontinuity of f,

(f 1(f^))^eJ is a family of semiopen L-fuzzy sets in

We also have f 1(fj_)| (x)^p for all xeX with

g(x)£p' because if g(x)ap' then f(g) (f(x))£p', so

(x , yx )

■ V  t  f ie J (x) = ■ V  t  f- ie J 1 (f(x))̂ p.

Thus, by the RS-compactness of g, there is a finite

subset F of J with int(cl(f 1(f^)))j (x) ̂ p for all xeX

with g(x)^p' .

For all yeY with v
xef-1(y)

have f(x)=y for some xeX with g(x)^p'. So,

{g (x) } = f (g) (y) ap' , we

isp cl(fi > ) - y F ci(f.) i (f (x)) = i ^ F  f"1(cl(fi))I( X )

* [ y F int(cl(f"1(cl(fi))))] (x)s[ivp int(cl(f"1(fi) ) )] (x)fp 

where the inequality * is due to the fact that since f is 

semicontinuous and cl(f^) is closed, f_1(cl(f^)) is 

semiclosed, so by remark 3.1.8.(i) we have 

int(cl(f"1(cl(fi) ) ) )^f_1 (cl (fj_) ) .

Hence f(g) is almost compact

When g=^A for some A£X, f 1 (y) does not need to be 

finite.
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Proposition 10.3.8.

Let (X,3"x) and (Y, 9̂ ) be L-fts's. Let 

f: (X,3'V)->(Y,3'V) be an irresolute mapping (definition

3.3.1. (viii)) such that f_1 (y) is finite for every yeY 

and let g be an RS-compact L-fuzzy set in (X,!7) . Then 

f (g) is S-closed in (Y,^).

Proof

Let pepr(L) and let (f^)^ be a collection of

semiopen L-fuzzy sets with f̂ j (y) =fp for all yeY with

f (g) (y)*p 7 •

Thus, by the irresoluteness of f, (f 1(f.)). T is a
1 16J

family of semiopen L-fuzzy sets in {X, ï ï  ) . As in the2\

proof of proposition 10.3.7., we have f.v T f *(f.) (x)ip(1€J 1 ) '

for all xeX with g(x)^p'. Now the proof follows exactly 

as in our proof of proposition 10.3.7. where here the 

justification of the inequality * is the fact that since

is
±

semiclosed, so by remark 3.1.8. (i) we have

f is irresolute and cl(f.) is semiclosed, f 1(cl(f.l ' l

int(cl(f"1(cl(fi) )) )if“1(cl(fi) ) . 

Hence f(g) is S-closed.

When g=*A for some A£X, f 1 (y) does not need to be 

finite.
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Chapter XI

S-compactness in L-fuzzy topological spaces

In ordinary topology strong compactness was 

discussed by Atia et al. [6]. A topological space (X,5)

is called strongly compact if and only if every pre-open 

cover of X has a finite subcover.

In [0,1]-fuzzy topological spaces, strong 

compactness has been introduced by Nanda [75]. His 

definition is based on Chang's compactness (remark

4.6.2.).

In this chapter a good definition of strong

compactness is introduced in L-fuzzy topological spaces.

To avoid confusion between this strong compactness and

the strong fuzzy compactness introduced by Lowen

(definition 4.1.2.), we shall call it here S-compactness,

in ordinary topology as well as in L-fuzzy topology. We

define S-compactness for arbitrary L-fuzzy sets and study 

its properties.

This chapter is divided in three sections.

In the first section we present our S-compactness 

and prove its goodness.

The second section contains other characterizations 

of S-compactness.

The third section is reserved for some properties.
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1. Proposed definition and its goodness

Definition 11.1.1.
V

Let (X, 3”) be an L-fts and let geL . The L-fuzzy set 

g is said to be S-compact if and only if for every prime

peL and every collection (f̂ ) ̂  of pre-open L-fuzzy sets

v
ie J f. (x)^p for all xeX(definition 3.1.7. (viii)) with 

with g(x)^p' , there exists a finite subset F of J with 

(x)^p for all xeX with g(x)sp' .

If g is the whole space, then we say that the L-fts 

(X,J) is S-compact.

Theorem 11.1.2. (The goodness of S-compactness)

Let (X,5) be a topological space. Then (X,<5) is 

S-compact if and only if the L-fts (X,u(5)) is S-compact.

Proof

Necessity:

Let pepr(L) and let (f^)^gJ be a family of pre-open 

L-fuzzy sets in (X,u>(«5)) with f̂ j (x) ̂ p for all xeX.

Thus, (f̂  ({teL; is a family of pre-open

sets in (X,5) that covers X. In fact, since for each xeX 

there exists iej with f^(x)^p, for each xeX there is iej 

with xef^1({teL; t^p}). Then fT^fteL; p^t})2X. We 

also have that, for each iej, fT^fteL; t^p}) is pre-open 

in (X, 5 ) because for every iej, f^int (cl (f . ) ) which 

implies f7x({teL; t^p})£(int(cl(fi)))_1({teL; t^p}).
y

Since int(g)sg and int(g)eu(5) for every geL and
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{teL; t^p}) is Scott open, we have, by proposition 

3.2.9., (int ( g) ) 1 ( {teL; t^p} ) e<5 , so (int (g) ) _1 ( {teL;pft} ) 

£ int(g-1({teL; t^p})). Therefore, by considering 

g=cl(f.), we have ^{teL/l t^p})£

(int(cl(fi)))_1 ({teL; t4p})£int|(cl(fi))_1({teL; tfp}) . 

From lemma 3.2.12. we obtain f 71 ( {teL; t^p} ) £ 

int(cl (fT1({teL;t^p}))) and then ^({teL; t^p}) is 

pre-open for every iej.

From the S-compactness of (X,ô), there is a finite 

subset F of J with f^1({teL; t^p})2X. So, for every

xeX there is ieF such that f^(x)^p, i.e., fjj (x)^p

for all xeX.

Hence (X,cj(<5)) is S-compact.

Sufficiency:

Let (A.). T be a pre-open cover of (X,S).

Thus, (*a ) is a family of pre-open L-fuzzy sets 
i iej

in (X,w(S)) with j  (x)=l^p for all xeX and for all
pepr(L). In fact, since is pre-open for every iej, 

A±£int(cl(A±)) and then *A .-*int(cl(A,)) • Since, by

corollary 3.2.14., ^j_nt (cl (A. ) ) = int <cl (*Ai ) ) » we have

*A ^int(cl(^A ), so xA is pre-open in (X,w(S)) for all 
i i i

iej. We also have that for all xeX there is iej such 

that xeA^. So, for all xeX there exists iej with

*A (x) =1 which implies that ^ j (x) =1 ^p for all xeX
i Ai'

and for all pepr(L).

From the S-compactness of (X,w(S)), there exists a
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finite subset F of J with (x)^p for all xeX and(ieF

for every pepr(L), thus j  (x) =1 for all xeX.
Therefore .u A . 2X.ìeF 1

Hence (X,5) is S-compact.
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2. Other characterizations

X

Proposition 11.2.1.

Let (X, 3”) be an L-fts. Then geL^ is S-compact if 

and only if for all aeM(L) and every collection (f^)^gJ 

of pre-closed L-fuzzy sets (definition 3.1.7. (viii)) 

with i-A , f .1 (x)ia for all xeX with g(x)^a, there exists a 

finite subset F of J with (x)^a for all xeX with

g (x) .

Proof

This immediately follows from the definition. 

Theorem 11.2.2.
v

Let (X,7) be an L-fts. Then geL is S-compact if 

and only if every constant a-net (Sm)mgD contained in g, 

has a pre-cluster point (definition 3.1.9.(vii))
y

x^eM(L ), with height a, contained in g, for each aeM(L). 

Proof

This is similar to the proof of theorem 4.4.2.
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3. Some properties

Proposition 11.3.1.

Let {X,ï ï ) be an L-fts. If h and g are S-compact 

L-fuzzy sets, then hvg is S-compact as well.

Proof

This is similar to the proof of proposition 4.1.10. 

Corollary 11.3.2.

Let (X,9") be an L-fts. Every L-fuzzy set g with 

finite support is S-compact.

Proof

This is similar to the proof of corollary 4.1.11. 

Proposition 11.3.3.

Let (X,3") be an L-fts. If g is an S-compact L-fuzzy 

set, then for each pre-closed L-fuzzy set h, hAg is 

S-compact.

Proof

This is similar to the proof of proposition 4.1.12. 

Proposition 11.3.4.

Let (X,2T) be an L-fts and J, as defined in 3.3.2.
<P

Then f is S-compact in (X,3") if and only if f is compact 

in (X,3^).
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Proof

Necessity:

Let pepr(L) and let (f.)ieJ be a collection of 

subbasic 3^-open L-fuzzy sets with fij(x)^p for all

xeX such that f(x)^p' .

Thus, each f^ is a pre-open L-fuzzy set in (X, 7) 

and, by the S-compactness of f, there is a finite subset 

F of J with fjj (x)^p for all xeX such that f(x)^p'.

Hence, by theorem 4.2.1., f is compact in {X, 3^) .

Sufficiency:

Let pepr(L) and let (f^)^gJ be a collection of 

pre-open L-fuzzy sets in (X,T) with f^ (x)^p for all

xeX with f (x) ̂p' .

Since every pre-open L-fuzzy set in ( X, 3) is an 3^,

by the compactness of f in ( X, 3^ ) , there exists a finite

subset F of J with i.v„ f.leF l (x)^p for all xeX such that

f (x)sp'.

Hence f is S-compact in (X,7).

Proposition 11.3.5.

Let ( X, 3) be an L-fts. If g is an S-compact L-fuzzy 

set in { X , 3 ) , then for each closed L-fuzzy set h in 

( X , 3^ ) , hAg is S-compact in (X,J).

Proof

By proposition 11.3.4. g is compact in {X, 3^) and 

since h is closed in (X,T^), from proposition 4.1.12., 

hAg is compact in ( X, 3^).
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Hence, by proposition 11.3.4., hAg is S-compact in

(x,y)  .

Proposition 11.3.6.

Let (X, 3”) and (Y, 3"*) be L-fts's and let

f : (X, 3") -> (Y, 3"*) be a <£'-continuous mapping (definition

3.3.2.) such that f-1(y) is finite for every yeY. Let g

be an S-compact L-fuzzy set in (X,3") . Then f (g) is
*

S-compact in (Y, S' ) .

Proof

Let pepr(L) and let (f^)^gJ be a collection of
*

pre-open L-fuzzy sets in (Y,3" ), that is, each f. is a

S^-subbasic open L-fuzzy set; with 

yeY such that f(g) (y)-p' .

■V t  f-îe J x (x) for all

Since, by definition 3.3.2., f : (X, J,) -» (Y, 3̂ ) is

continuous, each f 1 (f.)e3,. We also have that
i <p

f 1(f^)j(x)^p for all xeX such that g(x)ip' because if

g(x)ap' then f(g) (f(x)) = v {g(z)}ap', so
Z 6 f _ 1 ( f (x))

fi»)(x) - (iij £i) <f )fp-

By the S-compactness of g in (X,3"), from

■V t  fi s J

proposition 11.3.4., g is compact in (X,3"̂ )

Thus, there exists a finite subset F of J with 

1,JB ' (x)^p for all xeX such that g(x)2p>'. Then,iÏF f *<fi>(
(iÏf fi) {y ] &  for all yeY with f(g)(y)^p' because

f (f_1 (f i) ) | (y) }p for all yeY such that f(g)(y)>p'. 

Therefore, by proposition 4.2.1., f(g) is compact in

(Y, S’
<P' *
Hence, from proposition 11.3.4., f(g) is S-compact
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in (Y,y ) .

When g=*A for some A£X, f_1(y) does not need to be 

finite.

Proposition 11.3.7,

Let (X, 9”̂) and be L-fts's and let

f : (X, J ) -» (Y, 7 ) be an M-pre-continuous mapping
.A. X

(definition 3.3.1. (x)) such that f 1 (y) is finite for 

every yeY. If g is S-compact in (X,^), then f (g) is 

S-compact in (Y,^).

Proof

Since, by proposition 3.3.7., f is </»'-continuous; 

this follows from proposition 11.3.6.

When g=*A for some ASX, f 1 (y) does not need to be 

finite.
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Chapter XII

A comparison between the concepts introduced in chapters 

VIII, IX, X and XI and some related properties

This chapter is devoted to a comparison between 

S-compactness, compactness, almost compactness,

S-closedness, near compactness and RS-compactness, as 

well as, to some properties related to extremally 

disconnected L-fuzzy topological spaces.

This chapter is divided in two sections.

Section one contains a comparison between these 

compactness related concepts and a condition for almost, 

near, RS-compactness and S-closedness to be equivalent.

In section two we obtain some properties that follow 

from this comparison.

220



1. A comparison between compactness; almost, near, RS and

S-compactness and S-closedness

Theorem 12.1.1.
y

For an L-fuzzy topological space (X, ï ï ) and geL the 

following implications hold:

( ii )_
g nearly compact 

4(iv)
_ (vi)

(i) (iii) (vii)
g S-compact => g compact =» g almost compact <= g RS-compact

(v)

g S-closed

■¡̂ (viii)

Proof

(i) Let pepr(L) and let 

L-fuzzy sets such that

(f.)• T be a family of open 

f^ (x)^p for all xeX with

g(x)ap'.

Since each f^eJ, f^ is pre-open (definition 3.1.7. 

(vii)). So, by the S-compactness of g (definition

11.1.1.), there is a finite subset F of J such that 

fjj (x)^p for all xeX with g(x)ap'.

Hence g is compact (definition 4.1.4.).

(ii) and (iii) Let pepr(L) and let (f^^j be a family 

of open L-fuzzy sets such that f̂ j (x)^p for all xeX

with g(x)ap'.

By the compactness of g there is a finite subset F 

of J such that ^Vp f±j (x)^p for all xeX with g(x)ap'. So, 

cl (f^ J (x) :};p and y p int (cl (f i) ) J (x) ̂ p for all xeX 
with g ( x ) a p '  because intf^=f^sint(cl(f^))scl(f.) .

Hence g is nearly compact and almost compact
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(iv) Let pepr(L) and let (f^^j be a family as above.

By the near compactness of g there is a finite

subset F of J such that int(cl(fi))j (x)^p for all xeX

with g(x)2=p'. So cl(fi)j (x)^p for all xeX with

g(x)ap'.

Hence g is almost compact.

(v) Let pepr(L) and let (f^)^gJ be a family as above. 

Since each f̂ eJ, f is semiopen (definition 3.1.7.

(iii)) as well. So, by the S-closedness of g (definition

9.1.1.), there is a finite subset F of J such that 

^Vp cl(f^)j(x)^p for all xeX with g(x)ap'.

Hence g is almost compact.

(definitions 8.1.1., 8.1.2.).

(vi) and (vii) Let pepr(L) and let (f.). T be a family 

as above.

Since each f^eJ, f^ is semiopen as well. So, by the 

RS-compactness of g (definition 10.1.1.), there is a

v
ieF int(cl(f^)) ) (x)$p forfinite subset F of J such that 

all xeX with g(x)^p'.

Hence g is nearly compact and almost compact

(viii) Let pepr(L) and let (fi)igJ be a family of 

semiopen L-fuzzy sets such that f̂ j (x)^p for all xeX

with g(x)ap' .

By the RS-compactness of g

F of J such that (.v„ int (cl (f.)[leF x

there is a finite subset 

) (x)^p for all xeX with

g(x)^p'. so, cl(fi)

Hence g is S-closed.

(x)fp for all xeX with g(x)^p'.
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Remark 12.1.2,

The implications in theorem 12.1.1. are the only 

ones that are valid, since the others are not valid in 

ordinary topology [43,77] and all these concepts are good 

extensions.

Theorem 12.1.3.

For an extremally disconnected L-fts (X,J)

(definition 3.2.2.), the following are equivalent:

(i) (X, 9") is almost compact

(ii) (X,9") is nearly compact

(iii) (X,9") is S-closed

(iv) (X, ¡7) is RS-compact

Proof

Considering theorem 12.1.1., to prove these 

equivalences, it is sufficient to prove that (X,9") almost 

compact extremally disconnected L-fts implies that (X,9") 

is RS-compact.

Let (X,9") be an almost compact extremally 

disconnected L-fts. Let pepr(L) and let (f^)^eJ a 

family of semiopen L-fuzzy sets with f̂ j (x)^p for all

xeX.

Thus, for each iej there is g^eJ such that 

g ^ f iicl (gi) . Therefore LVj cl(gi) (x)^p for all xeX.

Since (X, 9”) is extremally disconnected, cl(g^)e9" for each 

ieJ. So, by the almost compactness of (X,9") there is a 

finite subset F of J with cl(gi)j (x)$p for all xeX.

Because cl(f^) = cl(g^) and cl(ĝ )e9', we have int(cl(f^)) 

= cl(gi). Then int (cl (fi) ) j (x) ̂ p for all xeX.

Hence (X,9") is RS-compact.
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2. Some properties

Proposition 12.2.1.

Let (X,ST) be an L-fts and let g be an L-fuzzy set 

with finite support. Then g is nearly and almost 

compact.

Proof

By corollary 4.1.11. g is compact. Thus, by theorem

12.1.1. this result follows.

Proposition 12.2.2.

Let (X,3"x) and ( Y, Jy) be L-fts's where (Y,^) is 

extremally disconnected. Let f : (X, 3"̂.) -> (Y, 3"Y) be an 

almost continuous mapping such that f 1 (y) is finite for 

every yeY and let g be an S-closed (nearly compact) 

[RS-compact] L-fuzzy set in (X,3"v) . Then f (g) is an 

S-closed (nearly compact) [RS-compact] L-fuzzy set in 

(Y,Jy).

Proof

Since g is an S-closed (nearly compact) [RS-compact] 

L-fuzzy set, by theorem 12.1.1., g is also almost 

compact. So, by proposition 8.3.4., f(g) is almost 

compact in (Y,3"Y) . Because (Y,7Y) is extremally 

disconnected, by theorem 12.1.3. f(g) is S-closed (nearly 

compact) [RS-compact] in (Y,?Y).

When g=XA for some A£X, f-1(y) does not need to be 

finite.
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Proposition 12.2.3.

Let (X,3"x) and (Y,7y) be L-fts's with (Y,Jy) 

extremally disconnected. Let f : (X, 9"x)(Y, Jy) be a weakly 

continuous mapping such that f 1 (y) is finite for every 

yeY and let g be an S-closed (nearly compact)

[RS-compact] L-fuzzy set in ( X, ^x ) . Then f(g) is an 

S-closed (nearly compact) [RS-compact] L-fuzzy set in 

( Y , J y ) .

Proof

Since f is weakly continuous and (Y,^) is 

extremally disconnected, f is almost continuous. In 

fact, if h is a regularly open L-fuzzy set in (Y,fTy) then 

h=int(cl(h)) and since (Y,?y) is extremally disconnected 

we have cl(h)6?y, thus h=cl(h). Then by the weak 

continuity of f, f 1(h)sint(f 1 (cl(h)))=int(f 1 (h)) .

Hence f 1(h)e9x and f is almost continuous.

Therefore we have our result from proposition

12.2 .2 .

When g=*A for some ASX, f 1 (y) does not need to be 

finite.

Proposition 12.2.4.

Let (X,JX) and (Y,!7y) be L-fts's with (Y,9"y)

extremally disconnected. Let f : (X, 9"v)-»(Y, 7V) be a
X i

semicontinuous mapping such that f-1(y) is finite for 

every yeY and let g be an RS-compact L-fuzzy set in 

(X, 3"x) . Then f (g) is RS-compact in (Y,Jy).
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When g=XA for some ASX, f 1 (y) does not need to be 

finite.

Proof

By proposition 10.3.7. f(g) is almost compact in 

(Yf7Y) . Since (Y,3"Y) is extremally disconnected, by 

theorem 12.1.3., f(g) is RS-compact.

Proposition 12.2.5.

Let (X,7X) and (Y,^) be L-fts's with (Y,3"Y) 

extremally disconnected. Let f : (X, 3" ) -» (Y, be an 

irresolute mapping such that f 1 (y) is finite for every 

yeY and let g be an RS-compact L-fuzzy set in (X,i7 ) . 

Then f (g) is RS-compact in (Y,^) .

Proof

By proposition 10.3.8. f (g) is S-closed in (Y,3"Y). 

Since (Y,7y) is extremally disconnected, by theorem 

12.1.3., f(g) is RS-compact.

When sr=XA for some ASX, f 1 (y) does not need to be 

finite.
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