2,507 research outputs found

    FLOWER - Fuzzy lower than-best effort transport protocol

    Get PDF
    We present a new delay-based transport protocol named FLOWER, that aims at providing a Lower-than-Best-Effort (LBE) service. The objective is to propose an alternative to the Low Extra Delay Background Transport (LEDBAT) widely deployed within the official BitTorrent client. Indeed, besides its intra-fairness problem, known as latecomer unfairness, LEDBAT can be too aggressive against TCP, making it ill suited for providing LBE services over certain networks such as constrained wireless networks. By using a fuzzy controller to modulate the sending rate, FLOWER aims to solve LEDBAT issues while fulfilling the role of a LBE protocol. Our simulation results show that FLOWER can carry LBE traffic in network scenarios where LEDBAT cannot while solving the latecomer unfairness problem. Finally, the presented algorithm is simple to implement and does not require complex computation that would prevent its deployment

    FLOWER, an Innovative Fuzzy Lower-than-Best-Effort Transport Protocol

    Get PDF
    We present a new delay-based transport protocol named FLOWER, that aims at providing a Lower-than-Best-Effort (LBE) service. The objective is to propose an alternative to the Low Extra Delay Background Transport (LEDBAT) widely deployed within the official BitTorrent client. Indeed, besides its intra-fairness problem, known as latecomer unfairness, LEDBAT can be too aggressive against TCP, making it ill suited for providing LBE services over certain networks such as constrained wireless networks. By using a fuzzy controller to modulate the sending rate, FLOWER aims to solve LEDBAT issues while fulfilling the role of a LBE protocol. FLOWER operates to a modification of the standard LEDBAT protocol implementation by replacing its proportional controller by a fuzzy controller. Thanks to this modification, our simulation results show that FLOWER can carry LBE traffic in network scenarios where LEDBAT cannot while solving the latecomer unfairness problem. The presented algorithm is simple to implement and does not require complex computation that would prevent its deployment. Finally, we show that FLOWER remains compliant when used over an AQM-based network and remains LBE while not increasing the bufferbloat

    Proposed Fuzzy Real-Time HaPticS Protocol Carrying Haptic Data and Multisensory Streams

    Get PDF
    Sensory and haptic data transfers to critical real-time applications over the Internet require better than best effort transport, strict timely and reliable ordered deliveries. Multi-sensory applications usually include video and audio streams with real-time control and sensory data, which aggravate and compress within real-time flows. Such real-time are vulnerable to synchronization to synchronization problems, if combined with poor Internet links. Apart from the use of differentiated QoS and MPLS services, several haptic transport protocols have been proposed to confront such issues, focusing on minimizing flows rate disruption while maintaining a steady transmission rate at the sender. Nevertheless, these protocols fail to cope with network variations and queuing delays posed by the Internet routers. This paper proposes a new haptic protocol that tries to alleviate such inadequacies using three different metrics: mean frame delay, jitter and frame loss calculated at the receiver end and propagated to the sender. In order to dynamically adjust flow rate in a fuzzy controlled manners, the proposed protocol includes a fuzzy controller to its protocol structure. The proposed FRTPS protocol (Fuzzy Real-Time haPticS protocol), utilizes crisp inputs into a fuzzification process followed by fuzzy control rules in order to calculate a crisp level output service class, denoted as Service Rate Level (SRL). The experimental results of FRTPS over RTP show that FRTPS outperforms RTP in cases of congestion incidents, out of order deliveries and goodput

    Growing Kiwiberries in New England: A Guide for Regional Producers

    Get PDF
    The kiwiberry (Actinidia arguta) has an extensive 140-year history of being grown in New England as an ornamental vine but has only recently been adopted as a commercial fruit crop. As regional and international acreage in commercial production continues to increase, the need for a comprehensive production guides and regionally-specific enterprise analyses has become evident. This thesis brings together the most recent findings of the Kiwiberry Development Program at the New Hampshire Agricultural Experiment Station, along with available commercial kiwiberry production information, to address this need. Specifically, this guide presents an overview of the species, current best production practices, regionally-relevant market information, and an enterprise analysis for this emerging fruit crop in the northeastern US

    Auctions and Electronic Markets

    Get PDF

    Evaluation and optimisation of Less-than-Best-Effort TCP congestion control mechanisms

    Get PDF
    Increasing use of online software installation, updates, and backup services, as well as the popularity of user-generated content, has increased the demand for band-width in recent years. Traffic generated by these applications — when receiving a ‘fair-share’ of the available bandwidth — can impact the responsiveness of delay-sensitive applications. Less-than-Best-Effort TCP congestion control mechanisms aim to allow lower-priority applications to utilise excess bandwidth with minimum impact to regular TCP carrying delay-sensitive traffic. However, no previous study has evaluated the performance of a large number of this class of congestion con-trol mechanisms. This thesis quantifies the performance of existing Less-than-Best-Effort TCP congestion control mechanisms, and proposes a new mechanism to im-prove the performance of these mechanisms with high path delay. This study first evaluated the performance of seven Less-than-Best-Effort conges-tion control mechanisms in realistic scenarios under a range of network conditions in a Linux testbed incorporating wired Ethernet and 802.11n wireless links. The seven mechanisms evaluated were: Apple LEDBAT, CAIA Delay-Gradient (CDG), RFC6817 LEDBAT, Low Priority, Nice, Westwood-LP, and Vegas. Of these mecha-nisms, only four had existing implementations for modern operating systems. The remaining three mechanisms — Apple LEDBAT, Nice, and Westwood-LP — were implemented based on published descriptions and available code fragments to fa-cilitate this evaluation. The results of the evaluation suggest that Less-than-Best-Effort congestion control mechanisms can be divided into two categories: regular TCP-like mechanisms, and low-impact mechanisms. Of the low-impact mechanisms, two mechanisms were identified as having desirable performance characteristics: Nice and CDG. Nice pro-vides background throughput comparable to regular TCP while maintaining low queuing delay in low path delay settings. CDG has the least impact on regular TCP traffic, at the expense of reduced throughput. In high path-delay settings, these reductions to throughput experienced by CDG are exacerbated, while Nice has a greater impact on regular TCP traffic. To address the very low throughput of existing Less-than-Best-Effort congestion control mechanisms in high path-delay settings, a new Less-than-Best-Effort TCP congestion control algorithm was developed and implemented: Yield TCP. Yield utilises elements of a Proportional-Integral controller to better interpret and re-spond to changes in queuing delay to achieve this goal while also reducing the impact on regular TCP traffic over TCP-like mechanisms. Source code for the im-plementation of Yield developed for this research has also been made available. The results of evaluating Yield indicate that it successfully addresses the low through-put of low-impact Less-than-Best-Effort mechanisms in high delay settings, while also reducing the impact on foreground traffic compared to regular TCP-like con-gestion control mechanisms. Yield also performs similarly to Nice in low delay settings, while also achieving greater intra-protocol fairness than Nice across all settings. These results indicate that Yield addresses the weaknesses of Nice and CDG, and is a promising alternative to existing Less-than-Best-Effort congestion control algorithms

    Implementing Efficient and Multi-Hop Image Acquisition In Remote Monitoring IoT systems using LoRa Technology

    Get PDF
    Remote sensing or monitoring through the deployment of wireless sensor networks (WSNs) is considered an economical and convenient manner in which to collect information without cumbersome human intervention. Unfortunately, due to challenging deployment conditions, such as large geographic area, and lack of electricity and network infrastructure, designing such wireless sensor networks for large-scale farms or forests is difficult and expensive. Many WSN-appropriate wireless technologies, such as Wi-Fi, Bluetooth, Zigbee and 6LoWPAN, have been widely adopted in remote sensing. The performance of these technologies, however, is not sufficient for use across large areas. Generally, as the geographical scope expands, more devices need to be employed to expand network coverage, so the number and cost of devices in wireless sensor networks will increase dramatically. Besides, this type of deployment usually not only has a high probability of failure and high transmission costs, but also imposes additional overhead on system management and maintenance. LoRa is an emerging physical layer standard for long range wireless communication. By utilizing chirp spread spectrum modulation, LoRa features a long communication range and broad signal coverage. At the same time, LoRa also has low power consumption. Thus, LoRa outperforms similar technologies in terms of hardware cost, power consumption and radio coverage. It is also considered to be one of the promising solutions for the future of the Internet of Things (IoT). As the research and development of LoRa are still in its early stages, it lacks sufficient support for multi-packet transport and complex deployment topologies. Therefore, LoRa is not able to further expand its network coverage and efficiently support big data transfers like other conventional technologies. Besides, due to the smaller payload and data rate in LoRa physical design, it is more challenging to implement these features in LoRa. These shortcomings limit the potential for LoRa to be used in more productive application scenarios. This thesis addresses the problem of multi-packet and multi-hop transmission using LoRa by proposing two novel protocols, namely Multi-Packet LoRa (MPLR) and Multi-Hop LoRa (MHLR). LoRa's ability to transmit large messages is first evaluated in this thesis, and then the protocols are well designed and implemented to enrich LoRa's possibilities in image transmission applications and multi-hop topologies. MPLR introduces a reliable transport mechanism for multi-packet sensory data, making its network not limited to the transmission of small sensor data only. In collaboration with a data channel reservation technique, MPLR is able to greatly mitigate data collisions caused by the increased transmission time in laboratory experiments. MHLR realizes efficient routing in LoRa multi-hop transmission by utilizing the power of machine learning. The results of both indoor and outdoor experiments show that the machine learning based routing is effective in wireless sensor networks

    The Italian Wage Curve. The Effects of the Recent Labour Market Reforms.

    Get PDF
    The Italian Wage Curve. The Effects of the Recent Labour Market Reforms The paper examines some effects of the recent reforms aimed at increasing flexibility in the Italian labour market. It shows their incapability to respond to the “inclusion” problem which still characterises the country. New temporary low-skill jobs were created but the reforms have neither enforced industrial competitiveness nor increased productivity. Far from solving the problems of a dual economy, de-regulation of Italian labour market has reinforced them and has concurrently eroded civil rights thereby making a departure form standards of health and morality. Excessive turnover of workers and firms is a major obstacle to human capital accumulation. A hostile territory produces social inequality, poverty and under- consumption that severely compromises growth. Key words: Labor and Demographic Economics; Wages, Compensation and Labor Costs; Wage Level and Structure; Wage Differentials JEL Classification: J, J3, J31 Final version received May 200

    Autonomous Sailboat Navigation

    Get PDF
    The purpose of this study was to investigate novel methods on an unmanned sailing boat, which enables it to sail fully autonomously, navigate safely, and perform long-term missions. The author used robotic sailing boat prototypes for field experiments as his main research method. Two robotic sailing boats have been developed especially for this purpose. A compact software model of a sailing boat's behaviour allowed for further evaluation of routing and obstacle avoidance methods in a computer simulation. The results of real-world experiments and computer simulations are validated against each other. It has been demonstrated that autonomous boat sailing is possible by the effective combination of appropriate new and novel techniques that will allow autonomous sailing boats to create appropriate routes, to react properly on obstacles and to carry out sailing manoeuvres by controlling rudder and sails. Novel methods for weather routing, collision avoidance, and autonomous manoeuvre execution have been proposed and successfully demonstrated. The combination of these techniques in a layered hybrid subsumption architecture make robotic sailing boats a promising tool for many applications, especially in ocean observation
    corecore