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Abstract

Increasing use of online software installation, updates, and backup services, as well

as the popularity of user-generated content, has increased the demand for band-

width in recent years. Traffic generated by these applications — when receiving a

‘fair-share’ of the available bandwidth — can impact the responsiveness of delay-

sensitive applications. Less-than-Best-Effort TCP congestion control mechanisms

aim to allow lower-priority applications to utilise excess bandwidth with minimum

impact to regular TCP carrying delay-sensitive traffic. However, no previous study

has evaluated the performance of a large number of this class of congestion con-

trol mechanisms. This thesis quantifies the performance of existing Less-than-Best-

Effort TCP congestion control mechanisms, and proposes a new mechanism to im-

prove the performance of these mechanisms with high path delay.

This study first evaluated the performance of seven Less-than-Best-Effort conges-

tion control mechanisms in realistic scenarios under a range of network conditions

in a Linux testbed incorporating wired Ethernet and 802.11n wireless links. The

seven mechanisms evaluated were: Apple LEDBAT, CAIA Delay-Gradient (CDG),

RFC6817 LEDBAT, Low Priority, Nice, Westwood-LP, and Vegas. Of these mecha-

nisms, only four had existing implementations for modern operating systems. The

remaining three mechanisms — Apple LEDBAT, Nice, and Westwood-LP — were

implemented based on published descriptions and available code fragments to fa-

cilitate this evaluation.

The results of the evaluation suggest that Less-than-Best-Effort congestion control

mechanisms can be divided into two categories: regular TCP-like mechanisms, and

low-impact mechanisms. Of the low-impact mechanisms, two mechanisms were

identified as having desirable performance characteristics: Nice and CDG. Nice pro-

vides background throughput comparable to regular TCP while maintaining low

queuing delay in low path delay settings. CDG has the least impact on regular TCP

traffic, at the expense of reduced throughput. In high path-delay settings, these

reductions to throughput experienced by CDG are exacerbated, while Nice has a

greater impact on regular TCP traffic.

To address the very low throughput of existing Less-than-Best-Effort congestion

control mechanisms in high path-delay settings, a new Less-than-Best-Effort TCP
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congestion control algorithm was developed and implemented: Yield TCP. Yield

utilises elements of a Proportional-Integral controller to better interpret and re-

spond to changes in queuing delay to achieve this goal while also reducing the

impact on regular TCP traffic over TCP-like mechanisms. Source code for the im-

plementation of Yield developed for this research has also been made available.

The results of evaluating Yield indicate that it successfully addresses the low through-

put of low-impact Less-than-Best-Effort mechanisms in high delay settings, while

also reducing the impact on foreground traffic compared to regular TCP-like con-

gestion control mechanisms. Yield also performs similarly to Nice in low delay

settings, while also achieving greater intra-protocol fairness than Nice across all

settings. These results indicate that Yield addresses the weaknesses of Nice and

CDG, and is a promising alternative to existing Less-than-Best-Effort congestion

control algorithms.
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Introduction 1
1.1 Overview

The volume of network traffic generated by remote file backups and software up-

dates can have negative impacts on the responsiveness of competing network-based

transactions. Historically, these activities were scheduled to occur at times of low

network usage. However, use of file synchronisation and sharing services, video

streaming, and the shift towards online software distribution cause large volumes

of network traffic to be generated during peak usage times [1].

Simultaneously, user-generated audio and video content has become increasingly

popular due to platforms such as YouTube, Twitch, and Ustream enabling users

to easily distribute content to large audiences [2]. The sharing of high-quality

photos to social networks has also become more prevalent. These applications have

resulted in increased competition for download and upload bandwidth [1], which

can also impact the responsiveness of web browsing and interactive applications.

Traffic generated by these non-critical applications may present a compelling use-

case for Less-than-Best-Effort (LBE) TCP congestion control mechanisms, which aim

to permit large transfers to take place without impacting interactive applications

by utilising excess network bandwidth [3], [4]. Several studies have proposed

different schemes for LBE congestion control [5]–[9].

Despite the existence of these proposed LBE congestion control schemes, only one

study has evaluated the performance of a wide range of mechanisms [4] to date. As

such, the performance of these mechanisms is not well understood and this study

seeks to address this issue.

The remainder of this chapter is structured as follows. Section 1.2 outlines the

purpose and basic operation of TCP. Section 1.3 describes the principles behind

the operation of TCP congestion control, while Section 1.4 briefly describes the

differences between LBE congestion control and regular TCP. Section 1.5 describes

gaps in knowledge in the domain of LBE congestion control. Section 1.6 presents

the objectives of this study, while Section 1.7 provides an outline of the research.

Finally, Section 1.8 describes the structure of this dissertation.
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1.2 Transmission Control Protocol

Transmission Control Protocol (TCP) specifies an end-to-end communications pro-

tocol designed to ensure the reliable and ordered delivery of data [10]. Due to this

reliability, TCP is employed in a wide range of applications such as web browsing,

email, file transfer, and remote management. TCP is used in a significant portion of

Internet-based transactions. TCP provides reliability through the use of acknowl-

edgements (ACKs) for all transmitted data.

Each byte transmitted using TCP is assigned a sequence number relative to the num-

ber of bytes transmitted since the session began [10], [11]. These sequence num-

bers are used by the sender to monitor the status of all transmitted data, and deter-

mine which bytes have been acknowledged. Any data not acknowledged within the

Retransmission Timeout (RTO) period must be retransmitted by the sender [11].

This process continues until an acknowledgement is received for these bytes (or the

maximum number of retransmission attempts is reached).

Extensions to the original version of TCP allow for the use of Duplicate Acknowl-

edgements (DUPACKs) to trigger the retransmission of a TCP segment through a

technique known as ‘fast retransmission’ [11]. DUPACKs can also be used in con-

junction with the Selective Acknowledgement (SACK) extension to request the im-

mediate retransmission of multiple missing segments.

1.3 TCP Congestion Control

Following the Internet congestion collapse in 1986, Jacobson [12] proposed an al-

gorithm to limit the rate at which TCP could transmit data over the network. This

algorithm was intended to serve two purposes: preventing TCP senders from in-

troducing congestion to the path, as well as alleviating the need to drop packets

in response to congestion. TCP congestion control fulfils these purposes by speci-

fying the number of bytes that can be transmitted before an acknowledgement is

required: this is referred to as the congestion window [11], [12].

Under TCP congestion control, a sender that reaches number of bytes specified by

the congestion window must cease transmission until another acknowledgement ar-

rives [11]. To ensure that the available bandwidth is fully utilised, TCP congestion

2 Chapter 1 Introduction



control adjusts the size of the congestion window during the lifetime of a connec-

tion [12]. The size of these adjustments is determined by one of two algorithms:

slow start, and congestion avoidance [11], [12].

The slow start algorithm is employed by TCP to quickly increase the transmission

rate to utilise the bandwidth available on the network [12]. In slow start, the

sender begins with a predetermined initial congestion window [11]. As the sender

begins transmitting data and receiving acknowledgements, the congestion window

is incremented until the first instance of packet loss is observed or the slow start

threshold is exceeded.

Once the congestion window size equals or exceeds the slow start threshold, TCP

enters a state known as congestion avoidance [11], [12]. In this state, TCP makes

smaller adjustments to the congestion window size based on changes to the avail-

able bandwidth.

Historically, TCP utilised packet loss as an indication of network congestion and

available bandwidth [12]. However, this approach only allows TCP to detect con-

gestion that has already occurred. More recently, congestion control mechanisms

have used estimation of queuing delay to proactively determine whether network

congestion is present [11].

1.4 Less-than-Best-Effort Congestion Control

LBE congestion control is a sub-category of congestion control mechanisms that

seek to minimise the impact of lower priority transactions on regular TCP trans-

fers [13]. These mechanisms should maximise the use of available bandwidth

while no competing foreground traffic is present, while quickly conceding band-

width to traffic managed by more aggressive TCP congestion control schemes such

as NewReno and CUBIC.

LBE mechanisms achieve this goal by more aggressively reducing the size of the

congestion window in the presence of this foreground traffic. The detection of

foreground traffic is based on an estimation of the current delay, utilising the same

techniques as delay-based TCP congestion control [3], [5].

Two LBE congestion control mechanisms have attracted research and practical in-

terest: TCP Low Priority (LP) [3], and Low Extra Delay Background Transport

(LEDBAT) [14], [15]. LEDBAT has been included in recent versions of Windows
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10 and Windows Server 2016 [16], as well as some versions of macOS [17]. Addi-

tional mechanisms have been proposed [5], [7]–[9], [18], [19], but few have been

implemented for — or integrated into — modern operating systems.

1.5 Research Problem

Results of user satisfaction and marketing studies have found that reduced page

loading times increase user engagement [20] and decrease the rate of cart aban-

donment for eCommerce websites [21]. Conversely, engagement decreases with

loading delays of as little as 100 ms [21], with satisfaction decreasing by up to

36.5% when page loading times increase by 2 seconds [20], [21].

Recommendations arising from these studies focus on improving website perfor-

mance through page and infrastructure optimisations [20], [21], but the results

of previous evaluations [5], [22] suggest that similar loading speed improvements

could be achieved through the use of LBE mechanisms.

Evaluations of LBE congestion control techniques have typically been carried out

as part of the proposal of new mechanisms, and have included a limited range of

other mechanisms [5], [7]–[9], [18], [19]. Only one prior study has examined the

performance of several existing LBE congestion control techniques but has focused

on simulated experiments [4]. As these simulated networks are not representative

of the performance of congestion control mechanisms in real-world use [23], [24],

the performance of these mechanisms in live hosts needs to be better understood.

1.6 Research Objectives

This research aims to address the limited understanding of LBE congestion control

performance by quantifying the performance of existing mechanisms on live hosts

under a range of scenarios. In addition to the performance of individual mecha-

nisms, the compromise between minimising disruption to foreground traffic and

acceptable throughput is also examined.

In addition, this research aims to develop a new LBE congestion control algorithm

informed by the results of evaluating existing LBE mechanisms. This understand-

ing is intended to provide a greater understanding of the limitations of existing

mechanisms, allowing areas of potential improvement to be identified.
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These aims will be achieved through the fulfilment of the following objectives:

1. Identify and implement a range of recent and promising LBE congestion con-

trol algorithms for the Linux kernel.

2. Carry out an evaluation of LBE congestion control mechanisms on emulated

networks.

3. Identify limitations in existing LBE congestion control algorithms.

4. Develop and evaluate a new LBE congestion control mechanism optimised to

address weaknesses in existing algorithms.

1.7 Research Approach

To achieve the aims of this research, two studies were carried out: an evaluation of

existing LBE congestion control algorithms, as well as the development and evalu-

ation of a new LBE algorithm.

The first study of this research evaluated the performance of seven LBE congestion

control mechanisms in different scenarios in a Linux testbed incorporating wired

Ethernet and 802.11n wireless links. To facilitate this evaluation, a number of

previously proposed LBE congestion control mechanisms were implemented for a

recent version of the Linux kernel.

The results of the evaluation were used to identify limitations of existing algorithms

that could be improved by future LBE congestion control algorithms. A new LBE

congestion control algorithm was then developed and implemented based on the

findings of the initial evaluation. This algorithm was also evaluated in comparison

to the most promising of the existing algorithms.
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1.8 Structure

The remainder of this thesis is structured as follows. Chapter 2 presents a re-

view of the existing literature relating to LBE congestion control mechanisms. This

chapter examines existing LBE congestion control mechanisms, the methodologies

employed to evaluate these mechanisms, and the results of any prior evaluations of

these mechanisms.

Chapter 3 describes the methodology developed for testing LBE congestion control

mechanisms, as well as providing additional detail regarding the evaluation carried

out in this study. Chapter 4 presents the results and a detailed analysis of the

performance of existing LBE congestion control mechanisms.

Chapter 5 describes Yield TCP, a new LBE congestion control mechanism developed

to address the poor throughput of LBE congestion control in high delay settings.

Chapter 5 also presents the results of the evaluation of Yield and compares its

performance to existing mechanisms.

Finally, Chapter 6 concludes with a summary of the study’s findings, its implications

for research and practice, and possible directions for future work.
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Literature Review 2
2.1 Overview

While the original TCP Congestion Control algorithm used packet loss as an indica-

tion of network congestion, this approach only allows TCP to detect congestion that

has already occurred. As such, LBE congestion control mechanisms typically utilise

the delay-based approach proposed by Jain [25] to proactively identify impending

congestion events.

LBE congestion control is a relatively new sub-category of TCP congestion control

mechanisms. However, a number of mechanisms have already been proposed in

the literature [5], [7]–[9], [18], [19]. These mechanisms are described in detail in

Section 2.2.

The remainder of this chapter is structured as follows. Section 2.2 describes the

operation of LBE congestion control and examines the mechanisms proposed in the

literature. Section 2.3 discusses methodologies used by prior studies evaluating

the performance of TCP congestion control mechanisms, while Section 2.4 makes

comparisons between existing mechanisms based on the findings of these studies.

Finally, Section 2.5 presents a summary of the literature examined in this chapter.

2.2 Less-than-Best-Effort Congestion Control

While LBE congestion control is a relatively new subcategory of congestion control

mechanisms, these algorithms share many similarities to delay-based congestion

control [3], [5], [25], [26]. Both classes of mechanisms detect increasing queu-

ing delay to indicate the presence of competing traffic or network congestion, and

respond proactively to these indications.

The delay-based approach is based on the estimation of queuing delay, either as

round trip time (RTT) or one-way delay (OWD) [3], [25], [26]. This approach is

in contrast to mechanisms based on the original TCP congestion control algorithm

which must wait until network congestion has occurred before reacting [12].
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Delay-based mechanisms have been shown to provide lower throughput than mech-

anisms that use packet loss as an indicator of network congestion [27], which led

to this approach not being favoured for regular TCP traffic where high throughput

has been desirable. However, this property is desirable for LBE congestion control

algorithms which aim to minimise their impact on regular TCP traffic.

LBE congestion control algorithms also incorporate more conservative rules regard-

ing the growth of the congestion window (cwnd), as well as more aggressive be-

haviours to reduce cwnd to minimise the impact on regular TCP transfers [28].

Table 2.1 presents a summary of key LBE congestion control algorithms. These

algorithms are described in greater detail in the subsections that follow.

2.2.1 Vegas

One of the first delay-based congestion control mechanisms, TCP Vegas, was pro-

posed by Brakmo et al. [26] in 1994. Although based on Reno, Vegas employs

a more proactive approach to congestion avoidance by attempting to predict im-

pending congestion events before they occur and reduce the congestion window

size accordingly. Vegas is able to predict congestion events by estimating the ex-

pected throughput for the TCP connection, and comparing the estimate against the

actual throughput. This approach is supported by three techniques: more proac-

tive responses to duplicate acknowledgements, predictive indications of congestion

events, and a more conservative slow start.

Upon receipt of a duplicate acknowledgement, Vegas checks the RTT for the seg-

ment for which the duplicate acknowledgement was received [26]. Should the cur-

rent RTT for the segment exceed the RTO, Vegas will immediately retransmit the

segment. Further, segment losses occurring within a single RTT will only trigger a

single window reduction. For duplicate acknowledgements where the segment RTT

has not exceeded the RTO, Vegas will respond in the same way as Reno.

To ensure that congestion events are detected as early as is feasible, Vegas compares

the expected throughput against the actual throughput during each RTT [26]. This

estimate is calculated based on the current cwnd and minimum of RTT measure-

ments (baseRTT ) using the formula:

e = cwnd

BaseRTT
(2.1)
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The difference between these estimates and measurements is used to determine

whether the network is in the process of becoming congested [26]. This approach

to congestion detection allows Vegas to proactively resize the congestion window,

rather than waiting for congestion to occur as with loss-based congestion control

mechanisms.

Vegas also includes a modification to the Reno slow start algorithm, under which

the congestion window is expanded every second RTT [26]. However, this modifi-

cation is omitted from current implementations.

TCP Vegas has been included as an alternate congestion control mechanism in the

Linux kernel since version 2.6.13, although it is not enabled by default [11]. How-

ever, the DD-WRT router firmware has utilised TCP Vegas as its default congestion

control mechanism since version 24 Service Pack 2.

2.2.2 Nice

One of the first proposed LBE congestion control mechanisms, Nice [5] is an exten-

sion of Vegas that adds a multiplicative decrease in response to increasing delay.

This extension results in cwnd being halved when the number of congestion events

detected by TCP exceeds a fraction of the current congestion window size (in TCP

segments) — set to 50% by default — in any given RTT.

Nice defines a congestion event to be any occurrence where the current RTT ex-

ceeds the value of (1 − threshold) · (rtt_min + threshold · rtt_max), where rtt_min

and rtt_max represent the minimum and maximum RTTs for a single per-RTT con-

gestion avoidance cycle [5]. The value of threshold specifies the level of tolerable

congestion and has a default value of 0.2.

In addition, Nice introduces the ability for TCP to reduce the effective size of the

congestion window below 1 [5]. This fractional congestion window is implemented

by permitting TCP to release new segments only every n RTTs, where n represents

the denominator of the congestion window.

2.2.3 Low Priority

Developed by Kuzmanovic and Knightly [3], LP is another early LBE mechanism.

LP evaluates the OWD — measured using TCP timestamp fields — experienced by

outbound traffic and rapidly reduces the size of cwnd in response to increasing

10 Chapter 2 Literature Review



delay. To facilitate these rapid size reductions of cwnd, LP implements two new

window reduction behaviours: a multiplicative decrease in response to increasing

delay, and a reduction of cwnd to a single segment.

The LP multiplicative decrease is similar to that of Nice, in that it is applied in

response to increasing delay [3]. However, application of this multiplicative de-

crease rule places LP in an inference state. The inference state is used to determine

whether the increased delay is a result of the presence of competing network traf-

fic. LP remains in the inference state for 3 · (time − prev_time), where time and

prev_time represent the current time and timestamp for the last segment transmit-

ted, respectively.

If a second delay-based congestion event is experienced while in the inference state,

LP will then reduce the cwnd to a single segment. LP makes no attempt to increase

the window size while in this state. If no additional congestion events are detected

before the expiry of the inference state, LP will apply an additive increase rule to

cwnd.

The original proposal of LP specified that this rule should increase cwnd by 1
cwnd

each RTT [3], while the current implementation of LP applies NewReno’s additive

increase rule when not in the inference state [29].

LP has been available as an alternate congestion control mechanism in the Linux

kernel since version 2.6.18.

2.2.4 Competitive and Considerate Congestion Control Protocol

Competitive and Considerate Congestion Control Protocol (4CP) differentiated it-

self from Nice and LP by being designed to ensure that background traffic is able

to retain some bandwidth in the presence of competing foreground traffic [30].

4CP decision-making is based on a moving average of cwnd size, as well as the

probability of packet loss occurring.

In operation, 4CP compares the current probability of a packet loss event (p) against

a target probability (tarp) [30]. The value of tarp can be a fixed target or calculated

dynamically during operation. When calculated automatically, tarp is based on the

difference between a historical average of cwnd and its current value, using the

formula:

tarp = tarp + α(f(tarp) − cwnd))/cwnd (2.2)
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where f(tarp) represents a moving average of the cwnd, while α is a smoothing

factor applied to historic average.

When multiple duplicate acknowledgements are received, a reduction is applied

to cwnd. While a virtual cwnd is used to control this change, the reduction can

be simplified as the lesser of mincwnd — a predetermined lower boundary for

mincwnd — and the following formula:

cwnd = max(cwnd − 1
tarp · cwnd

, mincwnd) (2.3)

When no cross traffic is detected, an additive increase of 1
cwnd is applied.

An implementation of 4CP was developed for Windows Vista [28], but has not been

made publicly available.

2.2.5 Westwood Low Priority

Westwood Low Priority (Westwood-LP) [6], [18] is an LBE congestion control

mechanism based on Westwood [31], which adds an Early Window Reduction

(EWR) mechanism to reduce the size of cwnd prior to packet loss occurring.

Westwood-LP determines when EWR should be triggered using a virtual queue

length, calculated using the formula below, where bw_est and rtt_min represent

the Westwood bandwidth estimate and minimum RTT, respectively [6], [18]:

q_len = cwnd − bw_est · rtt_min. (2.4)

When this queue length exceeds the EWR threshold, cwnd is reset to the value of

bw_est · rtt_min/MSS, where MSS is the maximum allowable segment size [18].

The threshold used to determine when cwnd should be reset is calculated dynam-

ically [6], [18]. Initially, the EWR threshold calculation was based on the for-

mula [18]:

ewr_thresh = M · (1 − delay_min

delay_avg
+ δ) (2.5)

where M represents the maximum allowable queue length (with a default value of

3), while delay_min and delay_avg are exponentially weighted moving averages
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of the minimum and average RTTs at the time EWR is applied, respectively [18].

Finally, δ is a smoothing factor described as being set to 3 · 10−6/(rtt − rtt_min)
where rtt represents the most recent delay estimate.

More recently, the EWR threshold has been described as [6]:

ewr_thresh = M · (1 − rtt

rtt_loss
) · (1 − delay_min

delay_max
). (2.6)

The notable additions to the revised formula are the use of rtt and rtt_loss, which

represent the current RTT and a moving average of RTT when packet loss events

occur [6]. This addition is used by Westwood-LP to estimate and consider when

packet loss may occur in applying EWR. Also notable is the change from delay_avg

to delay_max; a moving average of the maximum observed RTT between each

EWR.

2.2.6 Inline measurement TCP-Background

Inline measurement TCP-Background (ImTCP-bg) is an extension to the Inline mea-

surement TCP (ImTCP) proposal by Man, Hasegawa, and Murata [32] that aimed

to provide better link utilisation than Nice and LP [22].

Similar to Westwood, ImTCP-bg utilises an RTT-based bandwidth estimation ap-

proach to detect the presence of congestion and competing foreground traffic [22].

These bandwidth estimates are based on the amount of data transferred during

measurement intervals [32], [33]. ImTCP-bg groups transmission into packet streams

to facilitate these measurements.

ImTCP-bg uses an exponentially weighted moving average of the bandwidth aver-

ages, in addition to the minimum RTT observed for that connection, to determine

the maximum allowable size of cwnd [22]. The minimum RTT is also used to iden-

tify congestion events. Congestion events are defined as when rtt_avg
rtt_min exceeds a

specified threshold (δ) set to 1.2 by default. When congestion events are detected,

the cwnd is reduced by a factor of rtt_min
rtt_avg .

An implementation of ImTCP-bg is available for version 4.1 of FreeBSD [34].

2.2 Less-than-Best-Effort Congestion Control 13



2.2.7 Low Extra Delay Background Transport

LEDBAT, originally referred to as µTorrent Transfer Protocol, was first proposed as a

TCP-like congestion avoidance scheme over UDP for peer-to-peer file sharing using

BitTorrent [14]. This proposal was later translated into a TCP congestion control

mechanism and standardised as RFC6817 [15].

Similar to LP, LEDBAT measures OWD to determine the amount of queuing delay

experienced by transmitted segments [3], [15]. However, LEDBAT attempts to keep

queuing delay below a specified target value, typically set to 100 ms [15]. However,

earlier drafts specified a default delay target of 25 ms [35].

LEDBAT differs from existing LBE congestion control mechanisms in that the size of

cwnd is controlled based upon the deviation from the delay target [15]. Specifically,

cwnd is altered based on:

cwnd = cwnd + GAIN · off _target · newly_acked + ALLOWED · MSS

cwnd
(2.7)

where off _target represents the difference between the current delay and delay

target, while newly_acked is the number of segments that have just been acknowl-

edged. GAIN sets the rate at which LEDBAT responds to changes in queuing delay,

while ALLOWED specifies the maximum amount by which LEDBAT can increment

the cwnd. Both constants are set to 1 by default.

While LEDBAT was intended to concede bandwidth in the presence of competing

transfers [15], subsequent studies have found that it can be overly aggressive when

competing with regular TCP flows [4] as well as inducing additional queuing de-

lay [8]. These issues have led to the development of newer mechanisms such as

Eclipse [8] and FLOWER [9] in an attempt to address them.

LEDBAT has been included in Windows 10 as an experimental option since build

14393 and Windows Server 2016 [16]. An implementation of LEDBAT for recent

versions of Linux is also available [36], but has yet to be officially integrated into

the kernel.
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Apple LEDBAT

A further implementation of LEDBAT has been published as part of the Apple XNU

kernel [17], but differs from the algorithm specified in RFC6817. This derivative

of LEDBAT replaces the proportional increase and decrease algorithm specified in

RFC6817 with an additive increase and multiplicative decrease scheme [17].

The use of an additive increase multiplicative decrease scheme was also proposed

by Carofiglio et al. [37]. However, Apple’s implementation applies a 1
8 reduction to

cwnd when over target, rather than the 40% reduction to cwnd proposed in [37].

The default queuing delay target remains at 100 ms, while the maximum allowed

increase (ALLOWED) is increased from 1 to 8.

This implementation has been made available for the Apple XNU kernel, but is not

included in current versions of macOS.

2.2.8 CAIA Delay-Gradient

CAIA Delay-Gradient (CDG) [19] differs from other delay-based congestion control

algorithms by examining delay trends, rather than instantaneous queuing delay,

to detect congestion. While not originally designed as a LBE congestion control

mechanism, CDG has been found to be a viable congestion control mechanism for

LBE traffic [38].

To examine trends in delay, CDG considers the change in the minimum and maxi-

mum delays between the current and previous RTTs. These measurements are then

used to calculate moving averages of the minimum and maximum delays to reduce

the impact of short-term fluctuations on the performance of CDG.

The growth and reduction of cwnd is determined by a backoff probability, calcu-

lated based on the moving average of the delay gradient and a configurable scaling

factor [19]. When a randomly generated number, between 0 and 1, exceeds the

backoff probability CDG will halve cwnd. For RTTs where cwnd is not reduced, an

additive increase is applied and cwnd increases by 1.

In addition to using delay-gradients, CDG uses two techniques to allow traffic it

manages to obtain a fair share of bandwidth when competing with loss-based con-

gestion control [19]. The former, referred to as ineffective backoff detection, is used

to detect when multiple successive cwnd reductions have failed to reduce delay and

prevents CDG from initiating further reductions. Additionally, CDG tracks a second
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window variable — referred to as the shadow window — which is used to reverse

a gradient-based cwnd reduction following a loss-based congestion event.

The Linux implementation of CDG, developed by Jonassen [39], implemented two

notable changes from the original proposal (and FreeBSD implementation). This

implementation substitutes the traditional slow start growth behaviour for a mod-

ified version of Hybrid Slow Start [40], [41]. This modification results in CDG

exiting the slow start phase earlier than its FreeBSD counterpart [39], [41].

The Linux implementation also replaces the scaling factor used to influence the

probability that a cwnd reduction will be applied with the backoff factor. The

backoff factor serves as a modifier for the cwnd reduction probability, but provides

greater granularity [39]. However, this change otherwise has no impact on the

operation of the algorithm.

CDG has been included as an alternate congestion control mechanism in the FreeBSD

kernel since Revision 252951, as well as in the Linux kernel from version 4.2.

2.2.9 Eclipse

Eclipse was developed to address concerns regarding the aggressiveness of LEDBAT,

primarily by shifting from the static delay target used by LEDBAT to an adaptive

target [8]. Like LP and LEDBAT, Eclipse utilises estimates of OWD to measure

queuing delay [3], [8], [15].

The Eclipse adaptive delay target is a fraction of the average queuing delay ob-

served [8]. Specifically, this queuing delay target is calculated as:

target = β · (s_max − s_min) + s_min (2.8)

where s_min and s_max are moving averages of the minimum and maximum

queuing delays (which can be overwritten by values lower and higher than the

averages, respectively), while β represents the early congestion indication thresh-

old (effectively the percentage of average queuing delay that indicates network

congestion) [8].

The moving averages used in determining target replace the concepts of base delay

and current delay used by LEDBAT and are updated at regular intervals [8]. These

intervals are referred to as ‘adaptation intervals’ with the length of each adaptation
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interval calculated as the time difference between the observation of the minimum

and maximum delay values for the current interval.

The deviation from the queuing delay target is then used to determine the extent

to which cwnd should be adjusted based on the following calculation:

cwnd = cwnd + off _target · newly_acked · MSS

cwnd
. (2.9)

2.3 Evaluations of Less-than-Best-Effort Congestion
Control

Only one prior study has evaluated several existing LBE congestion control mecha-

nisms [4]. Other evaluations of LBE congestion control have been conducted, but

typically in support of a newly proposed algorithm [5], [7]–[9], [18], [19]. As

such, the scale of these evaluations has typically been limited, particularly in the

number of competing algorithms examined.

In addition, previous evaluations of LBE congestion control have relied primarily

on simulated experiments, and focused on the examination of congestion window

behaviours rather than broader performance implications such as impact on fore-

ground traffic and throughput.

Simulated experiments allow researchers to evaluate modifications to TCP conges-

tion control relatively quickly and under a wide range of scenarios that may not be

possible to easily reproduce using emulation or production testing [23]. However,

many aspects of the methodologies employed varied significantly — likely influ-

enced by the typical network infrastructure at the time. These variations introduce

significant challenges in comparing the findings of each study. These methodolo-

gies and their limitations of previous studies are examined in greater detail in the

subsections that follow.

2.3.1 Testing Environments

Evaluations of LBE congestion control have primarily utilised simulated networks

— using ns-2 — for data collection [3], [8], [37]. This approach allows researchers

to evaluate modifications to TCP congestion control in a highly controlled environ-

ment. Use of simulated networks also allows for testing under a wide range of
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scenarios that would be difficult to reproduce using emulation or real-world test-

ing [23]. As such, simulated experiments have often been favoured when testing a

newly developed algorithm [5], [8], [9], [18], [19].

However, the flexibility of network simulators requires a series of assumptions be

made with regards to the network topology, and the quantity and timing of network

traffic [23]. Each of these factors can lead to results that are not representative of

TCP performance over real-world networks such as the Internet [24].

Network simulators also requires separate implementations of the congestion con-

trol mechanism [23], [42]. The performance of these simulator-based implemen-

tations has previously been identified to differ from their Linux-based counter-

parts [42]. While TCP-Linux – an extension to ns-2 — can be used to load Linux-

based congestion control modules, performance differences remain between the

two platforms (albeit reduced) [42]. As such, the results of simulation-based stud-

ies should be considered indicative rather than authoritative [23].

Some previous studies have sought to address the limitations of simulated ex-

periments by evaluating LBE congestion control over the Internet [5], [6], [30].

Internet-based testing allows researchers to remove the possibility that assumptions

made in designing the network model will introduce biases into the results [23].

This approach also requires the use of live hosts and by extension, real-world imple-

mentations of congestion control mechanisms. However, results of Internet-based

testing are likely to be inconsistent and difficult to reproduce due to changes to the

routing and topology of the Internet [43].

As a result, large numbers of experiments are needed to demonstrate that results

of Internet-based experiments can be reproduced. Whether such results are rep-

resentative of performance over the broader Internet must also be considered. To

address this issue, large service providers run these experiments on live systems

generating millions of samples [44], [45].

Another alternative used in evaluating LBE congestion control algorithms are em-

ulated testbeds [19], [38]. Similar to simulated networks, these experimental

testbeds are used to model network topologies, including those which may be diffi-

cult to gain access to in the real-world [23].

While network testbeds carry a similar potential for unrepresentative network topolo-

gies as with simulation [23], the use of hosts with real-world operating systems en-

sures that congestion control modules respond to network conditions as they would

on live hosts. These testbeds also allow for greater control over cross-traffic than is

18 Chapter 2 Literature Review



possible in Internet-based testing, which leads to higher reproducibility of results

and allows for deeper analyses of congestion control algorithm behaviours.

2.3.2 Evaluation Metrics

While a range of metrics have been used in the evaluation of LBE congestion con-

trol, three have been more commonly used than the others. These common metrics

are the time required to download a file [3], [5], [6], [22], [30], throughput [3],

[5], [8], [18], [22], [30], and the behaviour of cwnd using the LBE mechanism [3],

[4], [8], [9], [30].

One of the most commonly used metrics in previous evaluations of LBE congestion

control has been transaction time for the foreground transfer: the time required

for a foreground transfer to complete [3], [6]. This metric has also been referred

to as response time [3], [5], [30]. Transaction time has been used to measure

the impact of competing LBE transfers on short foreground traffic, like web pages

and other small downloads [3], [18]. Through analysis of this impact, researchers

can infer how LBE congestion control will interact with regular TCP in scenarios

similar to real-world use. However, this metric has been omitted from more recent

evaluations of LBE congestion control in favour of others (such as cwnd) which

permit examination of algorithm micro-behaviours [8], [9].

Despite the primary goal of LBE congestion control being to reduce impact on fore-

ground traffic, these algorithms should permit the use of available throughput in

the absence of competing traffic [13]. Several studies have recorded the size of

cwnd to evaluate the ability of LBE algorithms to achieve this goal [3], [4], [8],

[9], [18], [46]. The size of cwnd is typically measured both while the LBE-managed

background traffic is transferring data in isolation, as well as while in competition

with foreground traffic. Carofiglio et al. [4] and Trang et al. [9] also consider the

queue length of the bottleneck link. Other studies have also used throughput of the

foreground and background traffic on a shorter timescale as a substitute for cwnd

to examine algorithm micro-behaviours [5], [8], [18], while Shimonishi et al. [6]

also used link utilisation — the proportion of available bandwidth utilised — for

the same purpose.

Throughput has also been used on a more macroscopic scale to examine the perfor-

mance impact of using LBE congestion control on background traffic [5], [8], [22].

In these cases, throughput for background traffic was averaged over the course of
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one or more experiments. Link utilisation has also been used to fulfil a similar

purpose [4], [5].

In addition to yielding bandwidth to foreground traffic, LBE congestion control

must still be able to fairly share bandwidth among multiple background transfers.

As with evaluations of regular TCP congestion control, this property has been mea-

sured using Jain’s Fairness Index [3], [4], [6]. The fairness index is a scale between

0 and 1.0, where 1.0 represents a totally fair sharing arrangement [47]. While

Fairness indices could also be used to measure the ability of LBE congestion control

to concede bandwidth to foreground traffic over the course of whole experiments,

this approach would be less informative than other metrics like transaction time or

throughput and does not appear to have been used in previous studies.

2.3.3 Evaluated Mechanisms

Despite the existence of numerous LBE congestion control mechanisms, only three

have been consistently included in previous performance evalations: LP [4], [18],

[22], LEDBAT [4], [8], [9], and Nice [4], [22] (albeit to a lesser degree).

Other mechanisms, such as ImTCP-bg, Westwood-LP, 4CP, and CDG do not appear

to have been included in any studies evaluating the performance of LBE congestion

control since the time of their initial proposals [6], [7], [19], [22]. The perfor-

mance of more recently proposed mechanisms, such as Eclipse, has also yet to be

extensively evaluated.

Additionally, Liu [7] and Armitage [38] only considered the performance of their

proposed mechanisms (4CP and CDG, respectively) to that of regular TCP conges-

tion control mechanisms such as Reno and CUBIC.

2.4 Less-than-Best-Effort Mechanism Performance

Performance comparisons between LBE congestion control mechanisms are chal-

lenging due to the limited number of comprehensive studies, as well as the differing

approaches to evaluating these mechanisms. However, some relative comparisons

can be made based on the results of the commonly evaluated LBE algorithms (LP,

LEDBAT, and Nice).
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In initial evaluations of LP, Kuzmanovic and Knightly [3] demonstrated that it had

a minimal effect (−2.7%) on the throughput of competing TCP Reno flows when

foreground transfers were active. This finding was partially supported by Tsug-

awa, Hasegawa, and Murata [22], who found that foreground transfers competing

against LP completed in a similar amount of time as in the case where no back-

ground traffic was present, although increased download completion times of ap-

proximately 20% were observed in some experiments.

The throughput achieved by LP while competing with foreground traffic has been

observed to vary, with Tsugawa, Hasegawa, and Murata [22] observing similar

throughput to Reno while Shimonishi et al. [6] found a decrease in throughput

for LP background traffic of approximately 30%. However, LP was able to utilise

greater throughput than Reno when excess bandwidth was available [3].

Kuzmanovic and Knightly [3] also found that LP was able to share throughput fairly

when competing over periods of greater than 1 second. However, Jain’s Fairness

dropped as low as approximately 0.85 when competing over shorter periods (0.1

seconds or below). These findings were supported by subsequent evaluations by

Callegari et al. [27] and Carofiglio et al. [4]. Specifically, Callegari et al. [27] found

similarly poor short-term fairness (0.84) although it improved over long-lived trans-

fers (0.95).

In the study by Kuzmanovic and Knightly [3], LP reduced the time required to

complete HTTP transactions by between 65% and 80% compared to that of Reno

depending on the size of the transfer. Similar reductions were observed by Tsug-

awa, Hasegawa, and Murata [22], who found that LP reduced the time required

to transfer web pages when compared to Reno, albeit to a lesser extent. However,

these benefits were diminished as the number of simultaneous foreground transfers

increased.

Like LP, initial testing of Nice demonstrated a negligible impact on competing fore-

ground traffic, with only a small increase in foreground transfer completion time

compared to the case where router-based prioritisation was used [5]. This limited

impact represented a significant improvement over the use of Reno for background

traffic, and was irrespective of the number of competing background transfers. Like-

wise, Tsugawa, Hasegawa, and Murata [22] found that foreground transfers com-

peting against Nice completed in similar times to when no competing background

traffic was present.

The throughput achieved by Nice was, however, found to be substantially lower

than when Reno was used for background transfers [5], [22]. In initial testing [5],
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this reduction of throughput was found to be approximately 50% regardless of the

number of competing background transfers. However, Tsugawa, Hasegawa, and

Murata [22] found that the throughput penalties incurred by Nice ranged from

30% to 90% depending on the amount of foreground traffic present.

Nice has also been observed to have difficulty in fairly sharing available bandwidth

among multiple concurrent transfers [4]. The evaluation by Carofiglio et al. [4]

indicated that Jain’s fairness indices reached as low as 0.8 in some scenarios.

In initial testing by Shimonishi et al. [6], Westwood-LP demonstrated reductions

in foreground transfer completion times of approximately 50% when compared to

Reno. However, this effect was found to be significantly diminished with short

foreground transfers. Westwood-LP has not been evaluated by any studies since.

Testing of ImTCP-bg indicated that it had a negligible impact on competing fore-

ground traffic, with foreground transfers completing in similar time as Nice [22].

However, ImTCP-bg achieved throughput more closely aligned with that achieved

by LP in the same experiments.

Rossi et al. [46] evaluated LEDBAT using a delay target of 25 ms — as specified by

early drafts of RFC6817 [35] — and found that it yielded bandwidth to Reno flows

relatively quickly. This finding is supported by similar experiments by Carofiglio et
al. [4]. Further testing using the RFC6817 delay target of 100 ms identified that

LEDBAT acted more aggressively to achieve inter-protocol fairness when competing

with foreground traffic.

The FreeBSD implementation of CDG has been found to reduce delay by approx-

imately 60% when used for background traffic as compared with NewReno [38].

Testing with the Linux implementation suggested slight improvements to through-

put over the FreeBSD variant [39].

While initial testing of Eclipse and FLOWER suggest that they both address the

aggressiveness of LEDBAT, thereby reducing the level of self-inflicted delay, limited

information is available on the degree to which these mechanisms improve the

completion time of foreground flows [8], [9].
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2.5 Summary

Although LBE congestion control is a relatively new sub-category of TCP conges-

tion control algorithms, a number of mechanisms have already been proposed in

the literature. Of these algorithms, three have been the most studied: LP, Nice,

and LEDBAT. Other algorithms have generally only been evaluated in preliminary

experiments at the time of their proposal.

Given the lack of research evaluating newer LBE algorithms, limited information is

available regarding their performance characteristics. Available performance infor-

mation often relies on simulated networks and implementations, which may pro-

duce different performance results compared to the performance achieved on live

hosts and networks. As such, further evaluation of existing algorithms is needed.

This research addresses this limited understanding of the performance of LBE con-

gestion control by evaluating real-world implementations of LBE congestion control

algorithms in an experimental testbed. The methodology used in this evaluation is

described in the following chapter.
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Evaluation Methodology 3
3.1 Overview

To examine the performance characteristics of LBE congestion control mechanisms,

as well as their impact on regular TCP traffic, a series of experiments was carried out

in an experimental testbed over wired and wireless links. This chapter describes the

experimental methodology that was developed and then utilised in the evaluation

of LBE congestion control mechanisms.

This evaluation addresses the limitations of prior studies, by evaluating seven LBE

congestion control mechanisms based on traffic and network profiles that typical

end-users would encounter. While four mechanisms were already available, three

previously proposed LBE congestion control mechanisms were implemented for a

recent version of the Linux kernel; the implementations of these algorithms is de-

scribed in Section 3.6.

The remainder of the chapter is structured as follows. Section 3.2 describes the

equipment and networks utilised in this study. Section 3.3 describes the three traf-

fic scenarios used to evaluate the congestion control mechanisms, while Section 3.4

characterises the test data used in these scenarios. Section 3.5 describes the metrics

by which the LBE congestion control mechanisms were evaluated. Section 3.6 iden-

tifies the congestion control mechanisms included in this evaluation, and describes

differences between the algorithms as originally proposed and the implementa-

tions of these mechanisms developed for this research. Section 3.7 describes the

TEACUP experiment automation tool used to automate the data collection for the

study, while Section 3.8 describes the tools and methodology used to analyse the

results of the experiment. Finally, Section 3.9 presents a summary of the method-

ology used.
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3.2 Experimental Setup

To examine the performance characteristics of LBE congestion control mechanisms,

as well as their impact on regular TCP traffic, a series of experiments was carried

out in an experimental testbed over wired and wireless links.

The topology for these experiments included three hosts, each running OpenSUSE

Leap 42.1 with kernel version 4.4.15. As shown in Figure 3.1, each host PC was

connected via a Gigabit Ethernet access link to its local switch. Unless specified,

default networking settings were not altered.

PC1

PC2

PC3
Linux

Figure 3.1.: The experimental wired network topology.

In experiments utilising wireless networks, PC1 was connected via 802.11n over

5GHz to an Ubiquiti Networks UniFi UAP AC Pro as shown in Figure 3.2. As in the

wired experiments, the other host PCs were connected via a Gigabit Ethernet access

link to the local switch.

The access point and PC1 were located in the same room, separated by a dis-

tance of approximately 5 m. During the experiments, PC1 recorded typical received

signal strength of between -66 dBm and -69 dBm with a negotiated data rate of

300 Mbps.

PC1

PC2

PC3
Linux

AP

Figure 3.2.: The experimental wireless network topology.

The host PCs operated interchangeably as TCP senders and receivers, dependent

on which of the three scenarios described in Section 3.3 was being considered.
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A Linux-based router, running OpenSUSE 13.2 with kernel 3.17.4, was used to

route packets between hosts. This router also used netem to emulate different

bottleneck link speeds and delay settings, as described in Section 3.2.1.

The data transferred between these hosts was generated using iPerf and httperf,

dependent on the desired type of TCP flow.

3.2.1 Bottleneck Link

To examine potential performance variations amongst LBE congestion control mech-

anisms, four bottleneck link speeds were chosen based on commonly used Internet

connection options: ADSL (G.992.1), ADSL2+ (G.992.5), Fibre, and 100 Mbps Eth-

ernet. To ensure that mechanism performance was not constrained by packet loss,

the bottleneck buffer for all link speeds was set to double the bandwidth delay

product (BDP) rounded up to the nearest five packets. BDP was calculated based

on the downlink speed.

Prior evaluations of LBE congestion control have considered OWD of between 20–

32 ms [6], [38]. For consistency with the settings used by Carofiglio et al. [4],

experiments were conducted with fixed-path OWD of 25 ms.

Further experiments were also conducted with OWD delay values of 50 ms, 100 ms,

and 175 ms. These experiments allow for the effect of higher path delay — as

might be experienced in inter-continental connections — on the performance of LBE

congestion control. The delay values used for these experiments were identified

based on latency expected for common inter-continental routes including US-to-

Europe, Asia-to-US, Asia-to-Europe [48].

Path delay for all experiments was symmetric, and is subsequently described using

the round trip propagation delay for the path (RTT). Table 3.1 lists all link speed,

fixed-path delay, and buffer size combinations considered in this study.

3.3 Testing Scenarios

To evaluate the performance characteristics of the LBE congestion control mecha-

nisms, three testing scenarios were defined based on existing literature. Each of

these scenarios is representative of real-world uses for LBE congestion control.
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Downlink Speed Uplink Speed Path Delay Buffer Size

(Mbps) (Mbps) (ms) (Packets)

8 1

50 70
100 135
200 270
350 470

24 1.5

50 200
100 400
200 800
350 1400

50 20

50 420
100 835
200 1670
350 2920

100 100

25 835
50 1670
100 3335
175 5835

Table 3.1.: Bottleneck link speeds and path delay values.

3.3.1 Competing Downloads

The first scenario examined a long-lived LBE transfer that competed against one or

more regular TCP flows. This scenario allows for the investigation of the impact of

LBE transfers on the bandwidth available to regular TCP connections, and was also

used by Liu [7], as well as Carofiglio et al. [4]. In this scenario, PC2 and PC3 acted

as TCP senders for the foreground and background traffic, respectively. PC1 was

the receiver for all connections.

3.3.2 Simultaneous Upload / Download

Given the increasing popularity of user-generated content and file synchronisation

services, the second scenario examines the impact of a large file upload compet-

ing against one or more HTTP transfers. This scenario was also considered by

Kuzmanovic and Knightly [3]. Similar to the previous scenario, PC2 was the TCP

sender for foreground traffic directed to PC1. However, PC1 acted as the sender for

the background traffic, which was received by PC3.
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3.3.3 Fairness

The final scenario examined the ability of LBE congestion control mechanisms to

fairly share available bandwidth without the presence of regular TCP flows. For

these experiments, PC2 and PC3 initiated long-lived background transfers to PC1.

The number of transfers was split evenly between the two senders.

3.4 Test Data

Given the differing objectives of LBE congestion control to those of regular TCP,

two different classes of traffic were generated for this experiment: foreground traf-

fic and background traffic. The data transferred between the testbed hosts was

generated using httperf and iPerf dependent on the type of traffic required.

3.4.1 Foreground Traffic

To effectively evaluate the behaviours of congestion control mechanisms, two forms

of foreground traffic were used in this evaluation. Prior studies evaluating LBE con-

gestion control have typically used small transfers to emulate web traffic [6], [7].

As such, transfers of 2469 KiB were used to emulate foreground traffic. This vol-

ume of data corresponded to the mean data transferred by websites as of November

2016 [49]. These transfers were initiated using httperf.

Additionally, longer foreground transfers were used in a second set of experiments

to evaluate the ability of LBE congestion control to share bandwidth with fore-

ground traffic over a longer period of time. This traffic was generated using iPerf

for the duration of each experiment. Similar long-lived foreground traffic has also

been used in previous evaluations of LBE congestion control [9], [18], [19].

To examine the impact of using multiple transfers, the foreground traffic was split

over 1, 4, and 8 TCP connections. For short foreground transfers, the total transfer

was split equally across all connections. All foreground transfers were initiated

simultaneously.
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3.4.2 Background Traffic

As the expected use of LBE congestion control is for large file transfers, it was deter-

mined that a finite size for background file transfers was unnecessary. Background

traffic was generated using iPerf for the duration of each experiment.

For all tests where foreground traffic was present, only a single background transfer

was initiated. Intra-protocol fairness was examined using 2, 4, and 8 concurrent

background transfers with no competing foreground traffic.

3.5 Metrics

While previous research evaluating the effectiveness of TCP congestion control

mechanisms has utilised a wide range of performance metrics, four primary metrics

were selected for this study: foreground transaction time, background throughput,

latency, and intra-protocol fairness. These metrics are described in the following

sections.

Values were calculated using a Python script developed which utilises the Wireshark

packet dissection engine. The data analysis for this study is described further in

Section 3.8.

3.5.1 Foreground Transaction Time

The impact of competing LBE transfers on foreground traffic was measured based

on the time required for the foreground transfer to be completed. This metric

has been used in previous studies, referred to as ‘transaction time’ [3], ‘response

time’ [5], [7], or ‘completion time’ [5], [18]. This metric is referred to as ‘fore-

ground transaction time’ in this thesis to avoid confusion with background trans-

fers.

Foreground transaction times were calculated based on the times the first and last

packets of TCP connections were received by the TCP receiver.

30 Chapter 3 Evaluation Methodology



3.5.2 Throughput

Throughput describes the rate at which a network device is able to send data end-

to-end over a computer network [50]. Prior studies evaluating congestion control

mechanisms used throughput as a means for comparison between mechanisms [9],

[27], [33].

Throughput was calculated based on the total size of all IP packets received by

the TCP receiver divided by the duration of the transfer. Due to the brevity of the

foreground TCP connections, throughput is only reported for the background LBE

transfers.

3.5.3 Latency

Like throughput, latency or delay can be quantified through multiple units of mea-

surement [51]. Most commonly, delay is measured as a function of RTT [19], or

queue length [9].

For this study, latency is calculated based on the Wireshark RTTs for TCP segments

from the sender-side packet traces. These RTTs are based on the time difference

between the transmission of the original packet and the time at which the acknowl-

edgement was received. Any RTTs calculated for retransmitted segments were ex-

cluded.

3.5.4 Fairness

Intra-protocol fairness (sometimes referred to as ‘flow rate fairness’, or ‘RTT fair-

ness’) describes the impact of a TCP transfer on the transmission capacity of other

TCP transfers operating over the same communications medium [23], [52]. A stan-

dard measure of fairness is Jain’s Fairness Index [37].

The calculation of Jain’s Fairness Index results in a value between 0 and 1, where

1 represents a totally fair sharing arrangement [47]. Jain’s Fairness Index is calcu-

lated using the formula:

fairness = (
󰁓

Ti/O)2

n ·
󰁓

(Ti/O)2 (3.1)
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where Ti refers to the calculated throughput (in KiB/s) for each TCP connection,

while O is the portion of the available bandwidth that should be achieved by the

TCP connection in a fair scenario. This share is based on the assumption that each

TCP connection should receive an equal share of the overall throughput.

3.6 Congestion Control Mechanisms

Seven LBE congestion control mechanisms were selected from existing literature

to be included in this study: Vegas, LP, RFC6817 LEDBAT, Nice, Westwood-LP, Ap-

ple LEDBAT, and CDG. Of these mechanisms, Nice, Westwood-LP and Apple LED-

BAT were implemented for this research. These implementations are available on

Github [53].

The selected mechanisms had been implemented for the Linux kernel or were de-

termined to be feasible to implement based on existing descriptions, code snippets,

and other existing TCP congestion control mechanisms. Mechanisms that would

have required extensive implementation (eg. 4CP, Eclipse and FLOWER) were ex-

cluded.

The default congestion control mechanisms for Linux and FreeBSD — CUBIC and

NewReno — were also included in this study, both to provide a comparison against

regular TCP as well as for foreground traffic.

Where mechanisms had already been integrated into the Linux kernel — including

Vegas, LP, and CDG — the existing kernel modules were loaded as needed. The

implementation of RFC6817 LEDBAT developed by [36] was compiled and used

in a similar manner. The following sections describe the implementations of Nice,

Westwood-LP, and Apple LEDBAT developed as part of this research, noting any

differences with the original mechanism proposals described in Section 2.2.

3.6.1 Nice

Given that the original Nice proposal was based on the Vegas specification [5],

Nice was implemented for this study based on the Vegas implementation included

with version 4.4 of the Linux kernel. As such, any deviations from the original

Vegas specification remain present in this implementation of Nice. The most notable

change is that current versions of Vegas do not adhere to the original proposal that

increases cwnd every second RTT during slow start [54].
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This new implementation assumes that the trigger value for the multiplicative win-

dow reduction should reset every RTT, while the rules for incrementing and decre-

menting the fractional cwnd (for cwnd values below 1) should have an equivalent

effect to changes applied when cwnd is at or above 1.

This implementation also uses the minimum RTT estimate observed (baseRTT )

to estimate propagation delay, rather than the minimum estimate for the current

congestion avoidance cycle (minRTT ) for the purpose of identifying delay-based

congestion events.

3.6.2 Westwood+LP

While Westwood was based on the original proposal by Mascolo et al. [31], this

algorithm has been superseded by Westwood+ in the Linux kernel [55]. As such,

the implementation of Westwood-LP developed for this study is based on West-

wood+.

Although Westwood+ itself made only minor modifications to the bandwidth es-

timation algorithm over the original, this implementation is referred to as West-

wood+LP to distinguish it from the version based on the original algorithm.

This implementation sets initial values for the moving averages of minimum and

maximum delay — delay_min and delay_max — on the first RTT, and assumes

that the first EWR event will be triggered based on the instantaneous delay values,

rather than weighted averages. The moving average of RTT when packet loss events

occur (delay_loss) is only updated when packet loss events occur.

This implementation also assumes that EWR should not be invoked while TCP is in

slow start.

3.6.3 Apple LEDBAT

The implementation of Apple LEDBAT developed for this study is based on the

implementation of LEDBAT for Linux as described in RFC6817. As such, it uses

OWD rather than RTT to estimate delay.

The regular congestion avoidance behaviour for the RFC6817 implementation of

LEDBAT was replaced with an additive increase when delay is under target, while

subtracting 1
8 from cwnd when over the delay target.
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3.7 Data Collection

Each combination of bottleneck link speed, number of foreground and background

TCP connections constitutes a single experiment. For each experiment, 10 runs

were carried out per congestion control mechanism. Packet traces of all traffic sent

and received by the testbed hosts were captured over a 60 second period for each

run.

The data collection process was automated using TEACUP 1.0 [56], which per-

formed the necessary variation of bottleneck link speeds, path-delays, LBE conges-

tion control modules, as well as initiating file transfers and collecting necessary files

— such as packet traces — from the testbed hosts.

For experiments utilising 802.11 wireless networks, channel statistics — including

the received signal strength indicator (RSSI) and channel — were logged using a

Python script that polled the iwconfig utility every 0.5 seconds.

3.8 Data Analysis

The resulting packet captures were automatically processed by a custom-developed

Python script, with the results stored using a SQLite database. This Python script

utilises the Wireshark packet analysis engine via the tshark command-line inter-

face.

The Python script reads from the packet traces generated by each testbed host

(PC1–3) and reconciles the sender and receiver traces for each TCP connection

based on unique IP address and port number mappings. These reconciled traces

are then used to calculate throughput, latency, and fairness as described in Sec-

tion 3.5. The results of these calculations are written to an SQLite database for

further analysis and graphing.

Calculations of summary statistics for latency excluded retransmissions, which were

identified based on the Wireshark flags:

• tcp.analysis.retransmission

• tcp.analysis.fast_retransmission

• tcp.analysis.out_of_order
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3.9 Summary

This chapter has described the methodology used in the evaluation of LBE conges-

tion control mechanisms for this study. The methodology ensured that LBE con-

gestion control mechanisms were evaluated based on traffic and network profiles

typical end-users would encounter.

The evaluation was carried out using an experimental testbed that included Ether-

net and 802.11n wireless links. The testbed network included three hosts running

OpenSUSE Linux that acted as TCP senders or receivers depending on the scenario

being considered.

The LBE congestion control mechanisms were evaluated based on foreground trans-

action time, background throughput, latency, and intra-protocol fairness. A total of

seven LBE congestion control mechanisms were included in the evaluation: Vegas,

LP, Nice, Westwood+LP, LEDBAT, Apple LEDBAT, and CDG. Nice, Westwood+LP,

and Apple LEDBAT were implemented for this study.

Chapter 4 presents the results from this evaluation. The methodology described in

this chapter is also used in the evaluation of Yield, described in Chapter 5.
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Evaluation Results 4
4.1 Overview

This chapter presents and discusses the results of an evaluation of existing LBE

congestion control mechanisms. This evaluation was conducted to comprehensively

examine the performance characteristics of existing mechanisms, and identify areas

where further investigation and improvement could be made.

Seven existing LBE congestion control mechanisms were included in this evalu-

ation: Vegas, LP, Nice, Westwood+LP, LEDBAT, Apple LEDBAT, and CDG. The

methodology for this evaluation was described in Chapter 3. The results of this

evaluation are grouped by the metrics described in Section 3.5.

Each combination of bottleneck link speed, number of foreground and background

TCP connections constitutes a single experiment. For each experiment, 10 runs

were carried out per congestion control mechanism. Packet traces of all traffic sent

and received by the testbed hosts were captured over a 60 second period for each

run.

The data collection process was automated using TEACUP 1.0 [56], which per-

formed the variation of bottleneck link speeds, path-delays, LBE congestion control

modules, as well as initiating file transfers and collecting necessary files — such as

packet traces — from the testbed hosts.

For experiments utilising 802.11 wireless networks, channel statistics — including

the received signal strength indicator (RSSI) and channel number — were logged

using a Python script that polled the iwconfig utility every 0.5 seconds.

The remainder of the chapter is structured as follows. Section 4.2 examines the im-

pact of background traffic on foreground transaction time and background through-

put. Section 4.3 considers the throughput achieved by foreground traffic. Sec-

tion 4.4 examines the impact of LBE congestion control on queuing delay. Sec-

tion 4.5 presents the intra-protocol fairness of each of the LBE congestion control

mechanisms. Section 4.6 identifies the key findings of this evaluation and discusses

their significance. Finally, Section 4.7 presents a summary of the findings.
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4.2 Foreground Traffic Impact

The first set of experiments was carried out to examine the efficacy of LBE conges-

tion control in reducing the impact of background traffic on competing foreground

transfers managed by NewReno and CUBIC. In this scenario, heterogeneous traf-

fic was downloaded by a single receiver to emulate the expected traffic profile for

web traffic. These experiments also considered the case where the direction of the

background traffic was reversed. These scenarios are described in greater detail in

Section 3.3.

These experiments were used to determine the impact of LBE transfers on the band-

width available to regular TCP connections, which was measured based on the

foreground transaction time — the time required for foreground HTTP transfers to

complete — and the background throughput.

4.2.1 NewReno Foreground Traffic

As the default congestion control mechanism for FreeBSD and some versions of

Windows, the impact of the LBE mechanisms was first examined in relation to

NewReno. Figure 4.1 plots the time required for a single foreground HTTP transfer

using NewReno to complete against the throughput achieved by the background

TCP transfer over a 60 second period. The bottleneck link for this experiment was

8 Mbps/1 Mbps with 50 ms of fixed-path delay.

LP and LEDBAT provided similar throughput to NewReno background traffic, with

each mechanism achieving median throughputs of 923 KiB/s in this experiment.

However, both mechanisms increased the median foreground transaction time to

9.2 seconds and 8.7 seconds respectively, as compared with 8.4 seconds for NewReno.

CDG and Vegas achieved the lowest median foreground transaction times of 3.3 sec-

onds. However, CDG also had the lowest throughput of the mechanisms evaluated;

9.4% lower than NewReno. In contrast, Vegas substantially reduced the impact to

foreground TCP traffic while providing throughput comparable to NewReno. Nice

slightly increased median foreground transaction times (3.5 seconds) compared to

CDG and Vegas, while providing a large throughput increase over CDG.

The implementation of Apple LEDBAT developed for this research experienced a

similar trade-off to that of CDG, with a relatively low median foreground transac-

tion time (4 seconds) but also a slight improvement to the throughput provided
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Figure 4.1.: Throughput and foreground transaction time for a download over
8Mbps/1Mbps bottleneck link subject to 50 ms fixed-path delay with a single
foreground TCP transfer using NewReno.

by CDG (848 KiB/s). Similarly, Westwood+LP moderately reduced throughput and

foreground transaction times compared to NewReno.

The performance trends observed when the LBE congestion control mechanisms

competed against a single HTTP transfer were similar when the same traffic was

split across four foreground TCP connections, as shown in Figure 4.2, which plots

the mean time required for the four foreground transfers to complete in a given run

against the throughput achieved by the background TCP transfer.

As with the previous experiment, LP and LEDBAT performed similarly to NewReno,

while Nice and CDG had relatively small impacts on foreground traffic. Consistent

with the previous experiment, CDG and Nice demonstrated significant reductions

to foreground transaction times with similar reductions in throughput.

However, the relative differences in foreground transaction times between the eval-

uated mechanisms became smaller as the total data transferred was split across

multiple TCP connections. This was most evident in the differences between CDG
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Figure 4.2.: Throughput and mean foreground transaction time for a download over
8Mbps/1Mbps bottleneck link subject to 50 ms fixed-path delay with four fore-
ground TCP transfers using NewReno.

and NewReno, which were reduced from 60.5% to 26.7% for one and four connec-

tions, respectively.

Also notable was the performance of Apple LEDBAT, which improved as the number

of competing TCP connections was increased. Reductions in background through-

put compared to NewReno decreased from 8.2% to 4.5% when competing against

one and four foreground transfers, respectively.

These relative performance trends remained consistent when foreground traffic was

divided amongst eight TCP connections, although the foreground transaction times

for NewReno, LP, and LEDBAT converged on those of Westwood+LP.
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Figure 4.3.: Throughput and foreground transaction time for a download over
8Mbps/1Mbps bottleneck link subject to 100 ms fixed-path delay with a single
foreground TCP transfer using NewReno.

4.2.2 Increasing Path Delay

While the performance impact of LBE mechanisms with 50 ms path delay was eval-

uated to provide consistency with previous experiments, these mechanisms would

encounter a much wider range of path delays if used in production networks. As

such, experiments were carried out that examined the impact of increasing path

delay on the LBE mechanisms.

Fixed-path delay was first increased to 100 ms. Vegas, Nice, LEDBAT, and West-

wood+LP performed similarly in this higher delay setting, as shown in Figure 4.3,

with throughput and foreground transaction times remaining largely unchanged.

However, changes are evident in the performance of LP and Apple LEDBAT.

In the increased delay setting, LP demonstrated a large (46%) reduction in fore-

ground transaction time over NewReno. However, this reduced impact on fore-

ground traffic was accompanied by a 10% reduction in throughput compared to
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Figure 4.4.: Throughput and foreground transaction time (95% confidence region) for a
download over 8 Mbps/1 Mbps bottleneck link subject to 50 ms and 350 ms
fixed-path delay with a single foreground TCP transfer using NewReno.

NewReno (previously equivalent). LP also provided the least consistent through-

put of the mechanisms evaluated, with a coefficient of variation (CV) — the ratio

of standard deviation and mean — almost double that of the next least consistent

mechanism, CDG (CV = 0.06 compared to CV = 0.032).

Apple LEDBAT had similarly reduced impact on foreground traffic, with foreground

transaction times lower than CDG (3.3 seconds compared to 3.7 seconds) with

a small reduction in throughput. The throughput achieved by Apple LEDBAT and

CDG also decreased relative to NewReno, with decreases of 19.1% and 18.4% (com-

pared to 8.2% and 9.4% with 50 ms fixed-path delay), respectively.

Performance trends remained similar when fixed-path delay was further increased

(to 200 ms and 350 ms), with the full extent of changes in performance between the

low and high delay cases evident in Figure 4.4 which plots the medians and ellipse-

like 95% confidence regions for the foreground transaction time and throughput of

the LBE congestion control mechanisms for 50 ms and 350 ms fixed-path delay.

The throughput penalties to Apple LEDBAT and CDG were exacerbated in the pres-

ence of very high fixed-path delay, with reductions of 72.3% and 81.5%, respec-
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tively. Westwood+LP also suffered from substantial throughput reductions at high

delays: 26.1% and 47.6% for 200 ms and 350 ms, respectively.

As in the low delay cases, LEDBAT, Vegas, and Nice all demonstrated similar through-

put to that of NewReno. However, Vegas and Nice also had an increased impact on

foreground traffic, similar to that induced by LEDBAT.

4.2.3 Increasing Bottleneck Link Speed

In addition to a range of path delays, LBE mechanisms would likely be used over

a range of link speeds. As such, further experiments were conducted to examine

the performance of these mechanisms over high speed links as described in Sec-

tion 3.2.1.

Most LBE congestion control mechanisms reduced the impact of background traf-

fic on foreground TCP transfers when the bottleneck link speed was increased to

24 Mbps, as shown in Figure 4.5. However, reductions were significantly smaller

than at lower speeds with CDG only reducing median foreground transaction time

by 0.6 seconds, or 29.3% (compared to 5.1 seconds, or 60.5% over the slower

8 Mbps bottleneck link). The exception to this was LEDBAT, which doubled the

median foreground transaction time observed for NewReno for 24 Mbps links.

These reduced differences between mechanisms persisted with increasing link speed

(up to 100 Mbps). At these high speeds, the length of the foreground flow used was

insufficient to identify performance differences between the LBE congestion control

mechanisms. As seen in the results of experiments in which the mechanisms com-

pete against a single foreground flow over a 100 Mbps link, shown in Figure 4.6,

only CDG is distinguishable from the other mechanisms evaluated. In these ex-

periments, CDG reduced median foreground transaction time by 29.2%, but also

reduced median throughput by 32.2% compared to other mechanisms.

The compression in the differences between LBE mechanisms was due to the brevity

of the foreground transfers. As such, additional experiments were conducted in

which the size of foreground transfers were scaled up proportional to the link

speed. Specifically, these experiments were run with a 100 Mbps bottleneck link

and foreground transfers of 30862 KiB.

The results for an experiment conducted under these settings with a single fore-

ground transfer are shown in Figure 4.7. In this experiment, the performance

trends for the LBE mechanisms were similar to those observed when using lower
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Figure 4.5.: Throughput and foreground transaction time for an 24 Mbps/1.5 Mbps bot-
tleneck link subject to 50 ms fixed-path delay with a single foreground TCP
transfer using NewReno.

bottleneck link speeds. However, foreground transaction times were higher than

over slower bottleneck links.

In particular, the relative decreases in median foreground transaction time for Nice

and Vegas — compared to NewReno — were observed to be approximately one half

that demonstrated in experiments using an 8 Mbps link (reductions of 24.3% and

24.1%, compared to 58.8% and 60.5% for Nice and Vegas, respectively). Similarly,

Apple LEDBAT only achieved a 13.9% reduction in median foreground transaction

time (compared to 52.5% over an 8 Mbps bottleneck link).

While CDG provided a similar improvement to foreground transaction time (im-

provement of 51.3%, compared to 60.5%), the reduction in background through-

put was similar to previous experiments — including that shown in Figure 4.6 —

over the high speed link. This 32.3% reduction to background throughput suggests

that CDG has difficulty utilising the available bandwidth as link speeds increase.

LP and LEDBAT both achieve decreases in median foreground transaction time —

11.3% and 21%, respectively — instead of the increases observed over the low
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Figure 4.6.: Throughput and foreground transaction time for an 100 Mbps/100 Mbps bot-
tleneck link subject to 50 ms fixed-path delay with a single foreground TCP
transfer using NewReno.

speed link. As with slower bottleneck links, LEDBAT achieved this decrease without

any impact to background throughput. However, median background throughput

was reduced by 11.3% for LP. Westwood+LP also achieved a larger decrease in

foreground transaction time (36.7%, compared with 25.5% with an 8 Mbps bottle-

neck link), but this was accompanied by a 6.6% decrease in median background

throughput.

4.2.4 CUBIC Foreground Traffic

CUBIC has replaced NewReno as the default TCP congestion control mechanism

used by Linux and recent versions of macOS. As such, LBE mechanisms used over

production networks must be able to maintain similarly low impact on CUBIC fore-

ground traffic as when competing against NewReno. To evaluate the impact of the

LBE mechanisms on CUBIC-managed foreground traffic, the experiments described

in the previous sections were replicated using CUBIC for foreground transfers.
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Figure 4.7.: Throughput and foreground transaction time for an 100 Mbps/100 Mbps bot-
tleneck link subject to 50 ms fixed-path delay with a single foreground TCP
transfer of 30862 KiB using NewReno.

The seven LBE mechanisms performed similarly when competing with CUBIC for

bandwidth, as depicted in Figure 4.8, with LP, LEDBAT, Nice, and Vegas all achiev-

ing throughput comparable to that of CUBIC. However, LP and LEDBAT reduced

foreground transaction times when competing against CUBIC (by 15% and 18.5%,

respectively).

As when competing against NewReno, CDG, Vegas, Nice, and Apple LEDBAT pro-

vided large reductions in foreground transaction time, with reductions of 69.1%,

64.7%, 61.8%, and 60% over CUBIC, respectively. However, CDG and Apple LED-

BAT achieved the lowest throughput of the mechanisms.

The performance of the LBE mechanisms was also similar when competing against

additional CUBIC-managed foreground connections. Figure 4.9 shows the results

from an experiment in which four foreground transfers were used.

As with experiments using NewReno foreground traffic, the differences between

the LBE mechanisms became compressed when the number of concurrent fore-

ground transfers was increased. Notably, Apple LEDBAT, CDG, Nice, and Vegas all
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Figure 4.8.: Throughput and foreground transaction time for a download over
8 Mbps/1 Mbps bottleneck link subject to 50 ms fixed-path delay with a sin-
gle foreground TCP transfer using CUBIC.

demonstrated very similar foreground transaction times and background through-

puts. Performance for LEDBAT was also consistent with competition against a single

foreground transfer.

The exception to this homogeneity was LP, which demonstrated a 32.5% reduction

to foreground transaction time compared to CUBIC (compared with 15.1% with a

single foreground transfer). These relative performance trends remained consistent

when foreground traffic was divided amongst eight TCP connections, although the

differences between mechanisms was further reduced.

4.2.5 LBE Upload

To examine the potential impact of using LBE mechanisms in scenarios such as file

synchronisation and uploading of user-generated content, experiments were con-

ducted in which the direction of the background traffic was reversed. In these
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Figure 4.9.: Throughput and mean foreground transaction time for a download over
8Mbps/1Mbps bottleneck link subject to 50 ms fixed-path delay with four fore-
ground TCP transfers using CUBIC.

experiments, a large file upload was managed by LBE congestion control and com-

peted against one or more HTTP downloads.

Due to the very low uplink speeds, all mechanisms achieved similar throughput over

the 8 Mbps/1 Mbps and 24 Mbps/1.5 Mbps bottleneck links. However, Figure 4.10

shows that LP and Westwood+LP had the greatest impact on regular TCP traffic.

LEDBAT notably has far lower impact on foreground traffic in this scenario, with

similar performance to Apple LEDBAT.

As with the competing downloads scenario, performance trends were consistent as

path delay increased. The exception to this trend was LEDBAT, which caused larger

increases in median foreground transaction times than in previous experiments.

Differences in the performance of the LBE congestion control mechanisms were

more apparent when the transfers occurred over higher link speeds, such as with

the 50 Mbps bottleneck link, as shown in Figure 4.11. However, the results of

these experiments closely resemble those from the competing downloads scenario

using a 24 Mbps downlink (due to similarities in link speed for the background
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Figure 4.10.: Throughput and foreground transaction time for an upload over a
8 Mbps/1 Mbps bottleneck link subject to 50 ms fixed-path delay with a single
foreground TCP transfer using NewReno.

transfers). Consistent with the competing downloads scenario, CDG, Vegas, and

Nice provided the lowest foreground transaction times (medians of 0.8, 0.8, and

0.9 seconds compared to 2.1 seconds for NewReno).

Relative throughput for CDG, Vegas, and Nice was also similar to that observed

in the competing downloads scenario. LEDBAT achieved background throughput

equivalent to that of NewReno, but also had a greater impact on foreground traffic,

increasing median foreground transaction time by 10.2%.

As shown in Figure 4.12, all of the mechanisms provided a noticeable improvement

to median foreground transaction time compared to CUBIC, from a reduction of

22.8% for LEDBAT to 74.2% for CDG. As in other scenarios, LP was able to achieve

these reductions without compromising background throughput, while Nice and

LEDBAT demonstrated negligible decreases in background throughput.

As in the competing downloads scenario, all mechanisms except CDG performed

very similarly in tests over a 100 Mbps bottleneck link. Performance trends also re-
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Figure 4.11.: Throughput and foreground transaction time for an upload over a
50 Mbps/20 Mbps bottleneck link subject to 50 ms fixed-path delay with a
single foreground TCP transfer using NewReno.

mained consistent when foreground traffic was split across multiple HTTP transfers,

as well as when the LBE mechanisms competed with CUBIC.

4.2.6 Wireless Networks

Given the proliferation of WiFi networks, the performance of LBE congestion con-

trol mechanisms over an 802.11n wireless link was also investigated. As seen in

Figure 4.13, which shows results for experiments in which a single foreground

transfer was introduced against a long running background transfer, the perfor-

mance trends observed in the wireless experiments was largely consistent with the

equivalent experiments over wired links (shown in Figure 4.1).

However, some additional variability was observed in the results of experiments

that included a wireless link. This observation was evident in comparing the CV val-

ues for wired and wireless links. These values were calculated on a per-mechanism
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Figure 4.12.: Throughput and foreground transaction time for an upload over a
50 Mbps/20 Mbps bottleneck link subject to 50 ms fixed-path delay with a
single foreground TCP transfer using CUBIC.

basis for each experiment, and are shown in Figure 4.14. While the results indi-

cate some additional variability in experiments over wireless networks (CV = 0.08,

compared to CV = 0.05 over Ethernet), the differences are relatively small.

Another small increase in variability was observed in throughput readings, as shown

in Figure 4.15, where the mean CV for wireless networks was found to be 0.08
(compared with CV = 0.05 over Ethernet). However, the minimal impact of wire-

less links could primarily be attributed to the ideal channel conditions in the testbed

network.

4.3 Foreground Throughput

The experiments described in the previous sections made use of short foreground

transfers to emulate the loading of a webpage. However, LBE mechanisms would

be expected to encounter scenarios in which regular TCP congestion control was
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Figure 4.13.: Throughput and foreground transaction time for a download over
8Mbps/1Mbps bottleneck link with a single 802.11n wireless link sub-
ject to 50 ms fixed-path delay with a single foreground TCP transfer using
NewReno.

(a) Over an Ethernet network. (b) Over an 802.11n wireless network.

Figure 4.14.: Histogram of CV values for foreground transaction time.

employed for larger downloads. As such, an additional set of experiments in which

the LBE mechanisms competed against a long-lived foreground TCP transfer was

carried out.
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(a) Over an Ethernet network. (b) Over an 802.11n wireless network.

Figure 4.15.: Histogram of CV values for background throughput.

In these experiments, long-lived foreground and background traffic competed for

bandwidth over the same bottleneck link. These experiments were also carried

out with the direction of the background transfer inverted. The impact of the LBE

mechanisms on foreground traffic was measured based on the median throughput

achieved in the course of each run.

4.3.1 NewReno Foreground Traffic

The performance of the LBE mechanisms when competing against long-lived fore-

ground traffic was consistent with experiments with short foreground transfers.

Figure 4.16 plots the throughput of the NewReno foreground transfers when com-

peting against a single LBE download over an 8 Mbps bottleneck link. LEDBAT

remained the most aggressive of the LBE mechanisms, with foreground traffic ob-

served to achieve median throughput of 540 KiB/s. However, LEDBAT provided

foreground traffic with a greater share of available bandwidth than when using

NewReno for background transfers (median throughput of 480 KiB/s).

As in experiments with shorter foreground transfers, CDG, Nice, and Vegas re-

mained the most friendly of the seven mechanisms evaluated. As in previous experi-

ments, NewReno foreground traffic was able to achieve similar median throughput

when competing against Nice and Vegas (877 KiB/s and 886 KiB/s, respectively).

However, NewReno foreground traffic achieved slightly less throughput when com-

peting against CDG (median foreground throughput of 846 KiB/s). Apple LEDBAT

and Westwood+LP also achieved results consistent with those from experiments

4.3 Foreground Throughput 53



Figure 4.16.: Throughput for one, four, and eight foreground transfers using NewReno
competing against a single LBE download over an 8 Mbps/1 Mbps bottleneck
link with 50 ms fixed-path delay.

with short foreground transfers (median foreground throughput of 793 KiB/s and

680 KiB/s, respectively).

Interestingly, LP became noticeably friendlier when competing with long foreground

flows (median foreground throughput of 829 KiB/s). However, LP was also the

least consistent of the LBE mechanisms evaluated, with throughput ranging from

745 KiB/s to 920 KiB/s (CV = 0.072).

As observed in experiments with short foreground transfers, such as that shown

in Figure 4.2, the differences between the LBE mechanisms were diminished as

additional foreground transfers were introduced. When competing with four con-

current NewReno transfers, the median per-connection foreground throughput for

the mechanisms ranged from 207 KiB/s to 225 KiB/s (for LEDBAT and Nice, re-

spectively). This trend continued when the number of foreground transfers was

again increased (to eight), where the median per-connection foreground through-

put ranged from 112 KiB/s to 117 KiB/s (for Apple LEDBAT and Nice, respectively).
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4.3.2 Increasing Path Delay

The consistency in results with experiments utilising short foreground transfers was

also present at higher delay settings, as shown for 350 ms fixed-path delay using

an 8 Mbps link in Figure 4.17. Apple LEDBAT, CDG, LP, and Westwood+LP —

which achieved low foreground transaction times in previous experiments — con-

ceded the greatest share of available bandwidth to the foreground traffic. NewReno

foreground traffic was also able to achieve median throughput of 906 KiB/s and

902 KiB/s when competing against Apple LEDBAT and CDG, respectively (repre-

senting increases in foreground throughput of 61.3% and 60.6% compared to use

of NewReno for background transfers).

LEDBAT and Nice were noticeably more aggressive than NewReno in high delay

settings, with NewReno foreground traffic achieving 53.8% and 44.3% of the fore-

ground throughput achieved by NewReno background transfers when competing

against these mechanisms, respectively. Vegas was also slightly more aggressive

than NewReno, with a reduction to foreground throughput of 11.6%.

Differences between the LBE mechanisms were also diminished in this high delay

setting as the number of concurrent foreground transfers was increased to four and

eight, although some differences between the mechanisms could still be observed.

LBE mechanisms that allowed foreground traffic to achieve higher throughput (Ap-

ple LEDBAT, CDG, LP, and Westwood+LP) all did so as the number of foreground

connections was increased. These mechanisms demonstrated improvements over

NewReno of between 49% (for Apple LEDBAT) and 54.6% (for Westwood+LP)

when competing against four concurrent transfers, with improvements of 33.4%

(for Westwood+LP) to 42.5% (for Apple LEDBAT and LP) for experiments with

eight foreground transfers.

Notably, Nice and Vegas became less aggressive when competing with multiple fore-

ground transfers, allowing NewReno foreground transfers to achieve throughput

equivalent to that when NewReno was used for background traffic. However, LED-

BAT remained the most aggressive of the mechanisms evaluated with reductions in

foreground throughput of 28.7% and 15.2% observed when competing against four

and eight concurrent foreground transfers, respectively.
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Figure 4.17.: Throughput for one, four, and eight foreground transfers using NewReno
competing against a single LBE download over an 8 Mbps/1 Mbps bottleneck
link subject to 350 ms fixed-path delay.

4.3.3 Increasing Bottleneck Link Speed

Performance trends remained fairly consistent as bottleneck link speed was in-

creased, although some changes were evident at 50 Mbps and 100 Mbps. Results of

experiments over a 100 Mbps bottleneck link, shown in Figure 4.18, indicate that

Apple LEDBAT, Nice, and Vegas all became more aggressive than LEDBAT in this

setting.

With a 100 Mbps bottleneck link, NewReno foreground traffic achieved median

throughput of 7407 KiB/s when competing against LEDBAT. By contrast, foreground

transfers competing against Apple LEDBAT, Nice, and Vegas achieved median through-

put of 6990 KiB/s, 6890 KiB/s, and 7201 KiB/s (reductions of 5.6%, 6.9%, and 2.7%

compared to LEDBAT), respectively. All three mechanisms were still able to con-

cede more bandwidth to foreground transfers than NewReno, with increases in

foreground throughput of 26.2%, 24.3%, and 30% over NewReno, respectively.
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Figure 4.18.: Throughput for one, four, and eight foreground transfers using NewReno
competing against a single LBE download over an 100 Mbps/100 Mbps bot-
tleneck link with 50 ms fixed-path delay.

This aggressive behaviour was not evident as additional foreground transfers and

path delay were introduced. In these experiments, performance of the LBE mecha-

nisms was similar to that of other experiments with LEDBAT once again being the

most aggressive of the LBE mechanisms.

4.3.4 CUBIC Foreground Traffic

The trends observed for NewReno foreground traffic were also apparent when the

LBE mechanisms competed against CUBIC foreground traffic, as shown in Fig-

ure 4.19. When competing against CUBIC foreground traffic, all mechanisms were

able to concede a greater portion of the available bandwidth to CUBIC foreground

traffic than was observed when competing against NewReno.

LEDBAT was again observed to be the most aggressive of the LBE mechanisms pro-

viding a 31.7% increase in median foreground throughput over CUBIC, with LP

allowing foreground traffic to achieve the greatest throughput (2.5x improvement
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Figure 4.19.: Throughput for one, four, and eight foreground transfers using CUBIC com-
peting against a single LBE download over an 8 Mbps/1 Mbps bottleneck link
with 50 ms fixed-path delay.

over CUBIC). The performance of LP was also noticeably more consistent than when

competing against NewReno foreground traffic (with CV = 0.009 compared with

CV = 0.072 when competing with NewReno).

The performance of the LBE mechanisms when the number of concurrent fore-

ground transfers, and fixed-path delay, was increased also remained consistent with

results of experiments described in the previous sections. Performance was also ob-

served to be consistent when competing against CUBIC over high speed links.

4.3.5 LBE Upload

As when the LBE mechanisms competed against short foreground transfers, and as

shown in Figure 4.20, some differences in performance could be observed when

the direction of the background transfer was reversed over the 8 Mbps bottleneck

link. Westwood+LP, Nice, CDG, and Vegas allowed NewReno foreground traffic to
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achieve similar throughput as in the competing downloads scenario. LEDBAT be-

came significantly less aggressive in this scenario, with a median increase in fore-

ground throughput of 95.6% over when NewReno was used for background traffic

(compared to 12.5% when competing for downstream bandwidth).

LP had a noticeably higher impact on foreground transfer throughput, with only a

9.2% median increase in throughput compared to when NewReno was used for the

upload (compared to a 72.7% increase when used for an LBE download). However,

this change is consistent with the performance of LP in the short foreground transfer

experiments described in Section 4.2.5.

Apple LEDBAT was also somewhat less friendly in absolute terms when the direc-

tion of the background transfer wass reversed, with median foreground throughput

of 665 KiB/s. However, it still demonstrated a comparable improvement to fore-

ground throughput as in experiments for the competing downloads scenario (me-

dian increase of 64.8%, compared to 65.2%). As in previous experiments, these

results were reflected when LBE mechanisms competed with CUBIC, and to a lesser

degree in performance when competiting against a larger number of foreground

transfers.

The results in high delay settings were also consistent with experiments using

short foreground transfers, as shown in Figure 4.21. In these experiments, CDG

allowed NewReno foreground traffic to achieve the greatest median throughput

(917 KiB/s). Nice and Vegas performed similarly, with the next highest median

foreground throughputs of 710 KiB/s and 666 KiB/s, respectively. Apple LEDBAT

and Westwood+LP were also largely indistinguishable, with median foreground

throughputs of 474 KiB/s and 475 KiB/s. LP provided very low foreground through-

put equal to that when NewReno was used for background traffic.

These performance trends remained consistent until the LBE mechanisms competed

for bandwidth over a 100 Mbps symmetrical bottleneck link, the results of which are

shown in Figure 4.22. When competing over the high speed bottleneck link, differ-

ences in the performance of the LBE mechanisms could still be observed but were

further diminished (even with only a single foreground download). Apple LED-

BAT, CDG, and LEDBAT allowed NewReno foreground traffic to achieve the greatest

throughput in these experiments. LP, Nice, Vegas, and Westwood+LP were more

aggressive, but only marginally; foreground throughput for all LBE mechanisms

was over 11 MiB/s. This performance was also mirrored with CUBIC foreground

traffic, with differences further diminished between the mechanisms.
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Figure 4.20.: Throughput for one, four, and eight foreground transfers using NewReno
competing against a single LBE upload over an 8 Mbps/1 Mbps bottleneck
link with 50 ms fixed-path delay.

4.4 Queuing Delay

The effect of LBE congestion control mechanisms on the queuing delay experienced

by foreground and background traffic was also investigated. In particular, any in-

creases in the delay experienced by foreground traffic would likely have an effect

on the usability of interactive applications, as well as streaming video.

For these experiments, delay was calculated by Wireshark based on the time dif-

ference between the transmission of the original packet and the time at which the

acknowledgement was received. The impact of LBE mechanisms on delay was only

examined in the scenarios where longer foreground transfers were initiated, as well

as in the fairness scenario described in Section 3.3.
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Figure 4.21.: Throughput for one, four, and eight foreground transfers using NewReno
competing against a single LBE upload over an 8 Mbps/1 Mbps bottleneck
link with 350 ms fixed-path delay.

4.4.1 NewReno Foreground Traffic

In evaluating the impact of the LBE mechanisms on delay, the results of the LBE

mechanisms competing with NewReno foreground traffic were first considered. Ta-

ble 4.1 lists the mean and standard deviation of latency for experiments where a

single LBE download competed against one, four, or eight concurrent foreground

TCP transfers using NewReno.

For experiments using lower delay settings (≤ 200 ms) LP was the only mechanism

to consistently reduce queuing delay compared to NewReno. However, these re-

ductions were only observed with a single foreground transfer. With four or eight

concurrent foreground transfers, the LBE mechanisms demonstrated very limited

change in delay, likely due to the foreground traffic ensuring that the queue re-

mains full.

LP more consistently reduced queuing delay when path delay was increased to

350 ms, with a mean reduction of 14.4% compared to NewReno. However, both

4.4 Queuing Delay 61



Figure 4.22.: Throughput for one, four, and eight foreground transfers using NewReno
competing against a single LBE upload over an 100 Mbps/100 Mbps bottle-
neck link with 50 ms fixed-path delay.

LEDBAT and Apple LEDBAT demonstrated greater reductions to queuing delay (mean

reductions of 21.1% and 17.4%, respectively). In particular, these reductions were

much greater when the number of concurrent foreground transfers was increased

(24.4%, 14%, and 4.4% for LEDBAT, Apple LEDBAT, and LP with four foreground

transfers, respectively).

While Vegas achieved a mean reduction of 8.2% to queuing delay in very high delay

settings, Nice was observed to increase delay by 9.6% when competing against a

single foreground transfer. CDG and Westwood+LP had little effect on queuing

delay in any delay setting (mean reductions of 0.3% and 1.1%, respectively).
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FgConn 1 4 8

Delay Mechanism Mean Stdev Mean Stdev Mean Stdev

50 ms

NewReno 125 24.0 135 22.8 144 27.4
LP 112 27.0 132 25.1 141 27.7

LEDBAT 132 18.2 135 20.6 142 24.0
Nice 126 23.7 135 24.0 142 27.2

Westwood+LP 114 27.6 133 22.4 143 26.0
Apple LEDBAT 135 25.5 138 23.4 144 27.1

CDG 126 23.7 136 25.4 144 27.4
Vegas 127 24.4 137 23.3 143 27.0

100 ms

NewReno 244 51.1 256 43.9 269 45.2
LP 206 64.7 252 60.3 256 56.0

LEDBAT 261 34.5 257 39.1 266 42.0
Nice 250 53.0 261 49.7 267 48.6

Westwood+LP 234 65.9 261 53.7 269 51.3
Apple LEDBAT 241 41.7 256 44.6 266 55.4

CDG 241 58.5 264 54.8 270 51.8
Vegas 249 50.7 260 49.5 270 48.6

200 ms

NewReno 508 143.6 511 115.0 516 111.8
LP 396 123.7 503 153.9 518 147.1

LEDBAT 373 82.2 518 79.5 505 95.2
Nice 483 119.0 516 113.4 522 109.5

Westwood+LP 479 164.6 512 153.6 525 136.8
Apple LEDBAT 417 146.9 501 154.5 510 145.6

CDG 498 164.2 507 146.6 529 134.9
Vegas 441 110.2 523 114.0 518 108.6

350 ms

NewReno 900 268.0 922 265.9 905 232.5
LP 584 174.4 882 341.9 871 331.7

LEDBAT 624 248.6 697 169.2 830 154.5
Nice 987 329.1 872 226.2 871 204.2

Westwood+LP 894 261.2 948 326.8 919 284.3
Apple LEDBAT 600 144.2 793 338.8 861 333.8

CDG 869 252.6 882 341.7 906 314.1
Vegas 779 266.2 858 214.4 866 240.0

Table 4.1.: Median of mean and standard deviation for RTTs (in ms) for a LBE download
competing against one, four, and eight concurrent foreground TCP transfers
using NewReno for a 8 Mbps/1 Mbps bottleneck link.
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4.4.2 CUBIC Foreground Traffic

Trends in queuing delay were generally consistent when competing against CUBIC

foreground traffic, with similar performance in lower delay settings. In contrast

with throughput and queuing delay, the LBE mechanisms presented smaller reduc-

tions to queuing delay when competing against CUBIC foreground traffic compared

to when in competition with NewReno. Table 4.2 lists the mean and standard de-

viation of latency for experiments where a single LBE download competed against

one, four, and either concurrent foreground TCP transfers using CUBIC.

As with previous experiments using NewReno, LP and Apple LEDBAT demonstrated

the greatest reductions to queuing delay in experiments with 350 ms queuing delay

(mean reductions of 14.5% and 11.2%, respectively). However, LEDBAT presented

smaller improvements (mean reduction of 6.4%, compared to 21.1% when com-

peting against NewReno).

CDG and Westwood+LP provided small reductions in queuing delay with mean re-

ductions of 5.2% and 5.1%, respectively. Both Vegas and Nice also demonstrated

very small — and highly similar — improvements to queuing delay (mean reduc-

tions of 2.7% and 3%, respectively).

4.4.3 Self-Induced Delay

The impact of each LBE mechanism when competing against itself was examined.

Table 4.3 lists the mean delay and standard deviation for each of the LBE mecha-

nisms where two, four, and eight LBE transfers competed over the same bottleneck

link.

CDG was the only mechanism to keep delay close to the propagation delay in most

experiments. CDG also produced the most consistent delay results, with the lowest

standard deviation of delay across all experimental settings. The exception to this

consistency were where eight concurrent CDG transfers were running with 50 ms

path delay. However, CDG still achieved the second lowest mean delay of the LBE

mechanisms in these experiments.

While Vegas and Nice were similarly able to keep delay relatively close to propa-

gation delay in experiments with 50 ms path delay, both mechanisms were unable

to do so in high delay settings. The two mechanisms also continued to perform

similarly, with mean reductions compared to NewReno of 38% and 33.5%, respec-

tively.
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FgConn 1 4 8

Delay Mechanism Mean Stdev Mean Stdev Mean Stdev

50 ms

CUBIC 142 13.7 147 17.6 152 23.1
LP 125 22.2 141 21.6 150 21.7

LEDBAT 136 16.5 145 15.5 150 16.8
Nice 137 12.6 145 16.9 151 20.3

Westwood+LP 125 21.2 144 15.7 151 20.0
Apple LEDBAT 139 15.0 145 15.6 151 21.2

CDG 134 15.9 145 16.4 152 21.7
Vegas 138 13.7 146 15.6 151 20.3

100 ms

CUBIC 270 25.4 282 35.5 288 39.7
LP 247 45.4 264 44.4 274 51.0

LEDBAT 257 36.5 271 34.4 284 38.8
Nice 257 27.8 274 32.7 285 39.8

Westwood+LP 248 35.2 271 30.8 286 38.9
Apple LEDBAT 250 41.6 275 31.7 286 35.5

CDG 251 39.8 275 31.8 283 39.4
Vegas 258 29.2 274 33.3 284 39.6

200 ms

CUBIC 539 76.0 555 81.3 561 100.6
LP 468 104.7 514 103.2 539 93.3

LEDBAT 498 91.6 526 101.8 544 98.7
Nice 511 94.9 531 83.8 550 96.7

Westwood+LP 517 79.2 523 92.0 551 87.0
Apple LEDBAT 491 94.9 516 99.8 535 93.9

CDG 495 84.4 518 98.4 545 89.4
Vegas 515 88.3 536 87.0 554 89.4

350 ms

CUBIC 952 199.5 973 215.4 991 221.2
LP 746 219.6 858 256.7 893 253.3

LEDBAT 891 206.1 898 264.3 941 234.3
Nice 912 199.7 930 205.4 967 232.6

Westwood+LP 872 208.3 898 255.0 926 268.6
Apple LEDBAT 778 215.1 899 244.9 916 264.4

CDG 838 227.7 901 246.4 923 257.0
Vegas 914 183.3 947 195.2 946 221.4

Table 4.2.: Median of mean and standard deviation for RTTs (in ms) for a LBE download
competing against one, four, and eight concurrent foreground TCP transfers
using CUBIC for a 8 Mbps/1 Mbps bottleneck link.
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LP kept delay consistent to that inflicted by NewReno in the lowest path delay set-

ting (50 ms), but demonstrated moderate reductions as delay increased. In experi-

ments with path delay of 200 ms or higher, LP achieved a mean reduction of 29.9%.

However, LP was also consistently observed to have high standard deviation in the

delay experienced by the transfers and a mean CV of 0.44.

Westwood+LP also demonstrated similarly poor consistency in the delay experi-

enced by LBE transfers, with a mean CV of 0.5. However, Westwood+LP consis-

tently achieved greater reductions to the delay experienced than LP (mean reduc-

tion of 26.6% compared to NewReno across all experiments).

Apple LEDBAT kept delay consistent with that inflicted by NewReno in experiments

with 50 ms path delay. Consistent with the results when LBE mechanisms competed

against foreground traffic, Apple LEDBAT demonstrated larger delay decreases in

experiments with high path delay (≥ 200 ms).

LEDBAT slightly increased the queuing delay in experiments with low path delay

(50 ms), but reduced delay in higher delay settings. However, LEDBAT still consis-

tently inflicted the greatest amount of delay on LBE transfers across all experimental

settings.

4.5 Intra-Protocol Fairness

Finally, the ability of LBE mechanisms to fairly share bandwidth amongst multiple

homogenous transfers was examined. To do so, experiments were carried out with

two, four, and eight concurrent LBE transfers. These experiments are described in

Section 3.3.

Figure 4.23 plots the Jain’s fairness indices for LBE transfers where the mechanisms

were subjected to 50 ms of fixed-path delay grouped by the number of concurrent

LBE transfers. CDG and Westwood+LP shared available bandwidth fairly across

the same bottleneck link. LEDBAT also shared bandwidth relatively fairly.

Interestingly, LP appeared unable to fairly share bandwidth between multiple LP

flows. This relatively poor fairness appeared to be the result of the latecomer flows

being starved of bandwidth. Apple LEDBAT, Nice, and Vegas also demonstrated

poor intra-protocol fairness.
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BgConn 2 4 8

Delay Mechanism Mean Stdev Mean Stdev Mean Stdev

50 ms

NewReno 124 26.3 132 25.7 141 28.6
LP 121 30.1 126 28.9 135 34.4

LEDBAT 150 15.8 144 19.3 145 21.0
Nice 64 13.4 86 19.4 129 18.9

Westwood+LP 102 39.4 102 39.4 103 40.9
Apple LEDBAT 127 30.2 135 23.8 142 26.3

CDG 61 9.0 85 15.4 125 22.4
Vegas 63 9.3 88 15.8 132 21.8

100 ms

NewReno 242 58.3 251 55.9 264 53.9
LP 171 108.4 169 83.2 222 77.2

LEDBAT 220 48.1 221 50.4 241 62.1
Nice 144 42.4 144 46.3 193 46.2

Westwood+LP 201 81.2 197 82.4 190 82.0
Apple LEDBAT 172 56.3 189 63.3 229 62.4

CDG 105 7.1 111 11.0 133 19.9
Vegas 125 37.7 144 31.4 185 42.7

200 ms

NewReno 467 144.1 496 138.2 509 130.8
LP 344 170.9 320 206.0 327 184.4

LEDBAT 397 150.9 371 151.6 365 147.6
Nice 342 86.3 276 72.9 350 100.7

Westwood+LP 362 172.8 373 185.3 357 181.0
Apple LEDBAT 282 152.5 297 156.9 329 148.4

CDG 203 6.4 206 10.3 211 15.1
Vegas 322 106.4 255 43.4 315 75.5

350 ms

NewReno 725 287.9 894 288.3 878 284.0

LP 561 189.9 574 274.6 571 336.0
LEDBAT 750 315.8 643 341.0 606 326.2

Nice 526 104.1 600 103.1 557 99.6
Westwood+LP 485 384.1 533 368.4 573 358.1
Apple LEDBAT 494 395.5 495 358.8 501 338.7

CDG 353 5.6 354 8.7 358 15.0
Vegas 465 133.5 485 116.7 466 86.7

Table 4.3.: Median of mean and standard deviation for RTTs (in ms) for two, four, and
eight concurrent LBE transfers for a 8 Mbps/1 Mbps bottleneck link with 50 ms
and 100 ms of fixed-path delay.
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Figure 4.23.: Jain’s fairness indices for LBE transfers subjected to 50 ms fixed-path delay
grouped by number of concurrent transfers.

Similar results were observed regardless of the number of TCP connections, al-

though all mechanisms became less able to fairly share bandwidth as the number

of concurrent LBE transfers increased.

However, with the exception of LP and Vegas, the relative fairness of the LBE mech-

anisms remained largely unchanged regardless of the number of concurrent connec-

tions. The LP latecomer unfairness issue was exacerbated by the increased number

of concurrent transfers, leading to poorer fairness than was observed with other

mechanisms.

While these performance trends were further exaggerated at higher link speeds,

as shown in Figure 4.24, the relative fairness of the LBE mechanisms was un-

changed by variation in bottleneck link speed. However, Apple LEDBAT was ob-

served to more fairly share bandwidth, relative to the other LBE mechanisms, over

a 100 Mbps bottleneck link.

The impact of fixed-path delay on intra-protocol fairness was also examined. The

results, shown in Figure 4.25, indicate that intra-protocol fairness for the LBE mech-

68 Chapter 4 Evaluation Results



Figure 4.24.: Jain’s fairness indices for LBE transfers subjected to 50 ms fixed-path delay
grouped by bottleneck link speed.

anisms is reduced as additional delay is introduced. For experiments with 50 ms and

100 ms fixed-path delay, the performance of the mechanisms remained consistent

relative to one another. However, CDG became less fair than LEDBAT at 350 ms of

fixed-path delay.

4.6 Discussion

The results of this evaluation suggest two primary groupings of LBE mechanism

behaviours: regular TCP-like mechanisms, and low-impact mechanisms. The first

group includes LP and LEDBAT, while the remaining mechanisms — Nice, West-

wood+LP, Apple LEDBAT, CDG, and Vegas — were classed as low-impact. Two

sub-groups of low-impact mechanisms were also identified, and are discussed later

in this section.

Regular TCP-like mechanisms behave similarly to regular TCP congestion control

and provide similar throughput to NewReno and CUBIC. These mechanisms demon-
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Figure 4.25.: Jain’s fairness indices for LBE transfers grouped by fixed-path delay values.

strate no benefit to foreground transaction times when competing against NewReno,

with LEDBAT frequently increasing the time required for foreground transfers to

complete. Small reductions to foreground transaction times were observed when

mechanisms in this group compete against CUBIC. Performance of mechanisms in

this first group diverges in high delay settings.

Improvements in foreground transaction time for LP in this study were typically

greater than those observed by Tsugawa, Hasegawa, and Murata [22]. However,

the impact of LP on foreground traffic was observed to be highly variable. This

variation was particularly evident in the results shown in Figure 4.1, where the

foreground transaction time for LP ranged from 5.6 seconds to 11.1 seconds. These

variations appear to be the result of LP only partially reducing the size of cwnd in

response to the foreground transfers; a response more consistent with NewReno.

Although LP demonstrated reductions to the latency for a single foreground trans-

fer, these reductions were not evident as the number of concurrent foreground

transfers increased. The impact of LP on latency for background traffic was also

relatively small compared to using NewReno.
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LP had a reduced impact on foreground traffic in experiments with 350 ms path

delay over an 8 Mbps bottleneck link, with mean reduction in foreground transac-

tion time of 37% compared to NewReno. However, these improvements were not

evident over high-speed bottleneck links where LP experienced a 40% reduction of

mean background throughput.

LEDBAT increased the delay experienced by both foreground and background traf-

fic in many of the experiments conducted. These increases in delay corresponded

with the 100 ms delay target used by LEDBAT. This finding, along with the lim-

ited reduction in impact to foreground traffic when competing with NewReno and

CUBIC, is consistent with previous studies on the impact of LEDBAT on competing

TCP flows [13], [37]. Eclipse [8] and FLOWER [9] have attempted to address the

aggression of LEDBAT, but are yet to be implemented for the Linux kernel.

The performance of LEDBAT was similar to that of NewReno in high delay settings

(≥ 200 ms). However, LEDBAT reduced foreground and background delay when

competing against NewReno in the highest delay setting (350 ms).

The low-impact group of LBE mechanisms consistently allowed foreground trans-

fers to complete substantially faster than regular TCP and regular TCP-like LBE

mechanisms. This group can be further sub-divided into mechanisms that achieve

throughput similar to that of regular TCP (Nice and Vegas) and those that experi-

ence noticeable throughput reductions (Westwood+LP, Apple LEDBAT, and CDG).

Figure 4.26 summarises these categorisations.

The performance of the low-impact LBE mechanisms further diverges in high de-

lay settings, with the throughput reductions of the latter sub-group (comprised of

Westwood+LP, Apple LEDBAT, and CDG) exacerbated as path delay increases while

Vegas and Nice become more closely aligned with the more aggressive LBE mecha-

nisms. These changes are summarised in Figure 4.27.

Of the low-impact mechanisms, CDG appears to have the least impact on regular

TCP transfers, reducing foreground transaction time at 50 ms path delay by an

average of 35.2% and 49.6% compared to NewReno and CUBIC. Consistent with

findings by Armitage and Khademi [38], CDG avoided excessive queuing delay with

median delay for background traffic remaining close to the fixed propagation delay

used in the testbed. Foreground traffic competing against CDG-managed transfers

generally experienced similar delay to when only regular TCP congestion control

was used.
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Figure 4.26.: Categorisation of LBE congestion control mechanisms at 50 ms path delay.

CDG’s reduced impact on foreground traffic and delay was accompanied by a mean

reduction in throughput of 16.1% when competing with foreground traffic for

downlink bandwidth. This reduction was observed to increase substantially at

very high delay settings, with mean reductions of 77.5% and 67.2% compared

to NewReno and CUBIC, respectively. CDG also had a tendency to under-utilise

bandwidth when there was no competing traffic and when used over high speed

links.

Based on its performance, CDG may be suitable for use in applications where the

impact of background traffic must be minimised, propagation delay is expected to

be relatively low, and reduced throughput can be tolerated. However, CDG consis-

tently demonstrated some variation in both foreground transaction time and back-

ground throughput. This variation was exacerbated by the use of high speed links,
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Figure 4.27.: Approximate categorisation of LBE congestion control mechanisms at 350 ms
path delay.

and may be attributed to the probabilistic element used to determine whether to

reduce cwnd and may warrant further investigation.)

The presence of Apple LEDBAT in the low-impact group suggests that the fixed 1
8

reduction to cwnd when the delay target is exceeded at least partially addresses the

aggression observed with RFC6817 LEDBAT. This modification allowed Apple LED-

BAT to apply larger reductions to cwnd than RFC6817 LEDBAT, which was evident

in the 9.3% reduction to mean foreground transaction time when competing with

NewReno. Apple LEDBAT also achieved a 21% reduction when competing with

foreground traffic using CUBIC. These reductions were accompanied by a small

(3.52%) reduction in throughput. Apple LEDBAT also slightly reduced the delay

experienced by background traffic when competing against NewReno and CUBIC.
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Westwood+LP appears to have a moderate impact on foreground traffic while pro-

viding slightly lower throughput than Apple LEDBAT in most scenarios. Despite

the small mean reduction in foreground transaction time relative to other mech-

anisms, Westwood+LP still managed to provide reductions over NewReno (up to

38%) and CUBIC (up to 40.8%). The NewReno reduction is broadly consistent with

the results presented in the proposal for Westwood-LP [6]. Westwood+LP also re-

duced background delay when competing against CUBIC (mean reduction of 25%),

although it provided no appreciable benefits over NewReno.

As shown in Figure 4.26, Vegas and Nice had similarly low impact on foreground

traffic to CDG without the reduction in background throughput associated with

other low-impact LBE mechanisms. The performance of these two mechanisms

was highly similar, with foreground transaction time and throughput slightly lower

for Vegas. This similarity was expected, given that Nice is based on the Vegas

algorithm.

In achieving low foreground transaction time, the results for Nice were also par-

tially consistent with prior testing [5], [22]. However, the throughput penalties

observed for Nice in previous studies was not evident. This difference may be a re-

sult of changes in the underlying Vegas implementation for Linux used as the basis

for this version of Nice, discussed in Section 3.6.

Like CDG, Vegas and Nice were able to keep median background delay close to the

fixed propagation delay for experiments with 50 ms path delay. However, additional

queuing delay was observed for both mechanisms in higher delay settings.

Both Vegas and Nice more closely aligned with the performance of LEDBAT in high

delay settings, although both mechanisms still demonstrated reductions in fore-

ground transaction time (albeit significantly smaller than in low delay settings).

Nice and Vegas consistently displayed low median fairness scores (< 0.9) across

all experimental settings. Similar fairness issues with Nice were also observed by

Carofiglio et al. [4], who found that Nice exhibits fairness indices as low as 0.8.

The increased background throughput in low delay settings, along with the rela-

tively small throughput penalty in very high delay settings make either mechanism

viable options when a small increase in impact to foreground traffic (relative to

CDG) could be tolerated despite the poor fairness results.
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4.6.1 Limitations of the Study

For experiments using short foreground transfers (described in Section 4.2) the to-

tal transfer size was fixed throughout all experiments. This fixed size resulted in

compression in the performance differences between LBE mechanisms over high

speed links due to the increased throughput available, introducing challenges in

differentiating between the mechanisms. However, the results of additional ex-

periments with foreground transfers scaled up proportional to the link speed were

largely consistent with those at lower link speeds. Given the consistency in results,

as well as that foreground transfer file size (2469 KiB) was selected based on the

average data transferred from websites, further experiments with larger foreground

transfers were not conducted.

In this evaluation, module parameters for LBE mechanisms were based on default

values either from the existing Linux kernel modules, or from original proposals.

This approach resulted in undesirable performance for LEDBAT, which was ob-

served to behave like a regular TCP congestion control at least partially due to

the high default delay target. However, it was considered likely that default param-

eters would be unchanged if LBE congestion control mechanisms were deployed in

production systems. As such, default parameters were used.

The results showed some additional variation within the results of each experi-

ment when using 802.11n networks compared to experiments over wired networks.

However, this variation was relatively small due to the stable channel conditions

and limited contention from nearby devices. While more realistic channel con-

ditions were considered, it was infeasible to implement them using the testbed

network. As such, testing with more realistic channel conditions could instead be

carried out alongside Internet-based testing using existing wireless networks.

4.6.2 Recommendations

The findings of this evaluation suggest that Nice, Vegas, and CDG are all strong

candidates for use in low priority applications, such as file synchronisation and

sharing or uploading of user-generated content. Given that Vegas and Nice provide

background throughput comparable to regular TCP, while maintaining low queuing

delay, they could be considered for applications where minimising impact on other

traffic is desirable but not vital. Conversely, CDG may be more suitable for appli-

cations where the impact of background traffic must be minimised and reduced

background throughput can be tolerated.
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Aside from Nice and Vegas, all low-impact LBE mechanisms suffer significant through-

put penalties in high delay settings. Nice and Vegas provide small improvements

over NewReno at high delays, but only if the number of foreground traffic flows

is low. However, the performance of all LBE mechanisms in high delay settings is

suboptimal.

4.7 Summary

This chapter has presented and discussed the results of the evaluation of seven LBE

congestion control mechanisms in an emulated network. Of these mechanisms,

three — Nice, Westwood-LP, and Apple LEDBAT — were implemented for the Linux

kernel to facilitate this evaluation. All mechanisms were evaluated in three realistic

scenarios to determine their impact on, and performance relative to, regular TCP

congestion control mechanisms such as NewReno and CUBIC.

The findings of this evaluation identified two groups of LBE congestion control

mechanism behaviours. LP and LEDBAT typically performed similarly to NewReno

and CUBIC, and were classified as regular TCP-like mechanisms. The remaining

mechanisms — Nice, Westwood+LP, Apple LEDBAT, CDG, and Vegas — had a lower

impact on foreground traffic. The findings further suggest that Nice, Vegas, and

CDG are strong candidates for use in low priority applications, such as file synchro-

nisation and sharing or uploading of user-generated content. However, the reduced

throughput of CDG may not be acceptable in some scenarios.

Given the significant throughput penalties observed for most low-impact LBE mech-

anisms, as well as the limited improvements offered by Nice and Vegas, the remain-

der of this study will focus on the development of a new LBE congestion control

mechanism designed to improve the throughput achieved by low-impact LBE con-

gestion control mechanisms in high delay settings.
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Yield TCP 5
5.1 Overview

The results of the evaluation described in Chapter 4 identified three promising LBE

congestion control mechanisms: CDG, Nice, and Vegas. However, these mecha-

nisms demonstrated limitations in some scenarios. Nice and Vegas had a low impact

on foreground traffic with no appreciable decrease to throughput in low-delay set-

tings, but increased foreground transaction time significantly when additional path

delay was introduced. CDG demonstrated the lowest throughput of the evaluated

mechanisms at low delay, and this was exacerbated in high-delay settings.

This chapter describes the development of a new LBE congestion control algorithm

designed to address these limitations: Yield TCP. Yield was designed to fulfil the

second aim of this research by addressing the throughput penalties associated with

low-impact LBE mechanisms in high fixed-path delay scenarios while reducing the

impact on foreground traffic over TCP-like mechanisms.

The remainder of this chapter is structured as follows. Section 5.2 describes the

motivation and design goals for Yield. Section 5.3 describes the design of Yield,

while also detailing how this algorithm addressed the stated goals. Section 5.4

describes the operation of Yield, as well as the implementation of Yield for Linux.

Section 5.5 outlines the methodology used to evaluate Yield. Section 5.6 presents

the results of the evaluation. Section 5.7 discusses the performance of Yield in

relation to existing mechanisms and the stated design goals, as well as potential

avenues through which Yield could be improved in future work. Finally, Section 5.8

presents a summary of Yield and its performance.
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5.2 Yield TCP Motivation

The results of the LBE congestion control evaluation — described in Chapter 4 —

identified that existing mechanisms such as Nice and CDG can provide significant

improvements in low-delay settings. In high-delay settings, these mechanisms can

be divided into two performance profiles:

1. Low impact on foreground traffic with very low throughput (CDG, Apple LED-

BAT, Westwood+LP)

2. Similar impact on foreground traffic and throughput to regular TCP (LEDBAT,

LP, Vegas, Nice1)

Given the lack of clear improvements to foreground transaction times provided by

Nice at high delay settings, as well as the poor intra-protocol fairness, an opportu-

nity was identified to develop a new LBE congestion control mechanism that would

provide a better balance between these performance metrics.

Yield TCP was therefore designed to improve the throughput achieved by low-

impact LBE congestion control mechanisms, while reducing the impact on fore-

ground traffic compared to Nice in high delay settings. The intention was to achieve

these improvements without significant performance regression in low-delay set-

tings (when compared with Vegas, Nice, and CDG). Improved fairness was also

considered desirable, but not an explicit design goal. However, fairness should not

regress when compared to Nice.

5.3 Yield TCP Design

Yield utilises elements of control theory, specifically the Proportional-Integral (PI)

controller, to better interpret and respond to changes in queuing delay. This PI

controller uses two properties — proportional and integral — to adjust its re-

sponse to increasing queuing delay [57]. This approach has previously been utilised

by the Proportional-Integral Controller Enhanced (PIE) active queue management

scheme [58].

1Nice and Vegas slightly reduce impact on foreground traffic. However, these reductions were suffi-
ciently small that these mechanisms should be considered part of the regular TCP-like mechanisms.
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The basic operation of Yield utilises a binary decision-making process, similar to

that of Apple LEDBAT, based on a delay target and an estimation of queuing de-

lay. Yield applies an additive increase to cwnd when under the delay target, while

utilising a multiplicative decrease when over target. This multiplicative decrease is

based on the proportional characteristic of the PI controller, as the size of decreases

will be scaled based on the target and current queuing delay.

Unlike existing algorithms that utilise a fixed multiplicative decrease, such as Apple

LEDBAT, Yield uses changes in delay estimates over time to modify the extent to

which cwnd is reduced when the delay target is exceeded. In considering changes

in delay estimates over time, Dynamic Trend-Based Reduction satisfies the integral

characteristic of the PI controller. The technique used to track and consider these

changes is described further in Section 5.3.1.

As with other recent LBE congestion control algorithms [8], [9], [15], Yield utilises

OWD for delay estimation. Use of OWD estimates prevents Yield from erroneously

responding to cross-traffic in the reverse direction [3].

In total, Yield implements three components to achieve the design goals identified

in Section 5.2:

1. Dynamic Trend-Based Reduction

2. Adaptive Delay Targeting

3. Cross-Traffic Detection

Each of these components are described in the subsections below.

5.3.1 Dynamic Trend-Based Reduction

The primary point of differentiation between Yield and existing LBE congestion

control mechanisms is the use of delay signals to adjust the size of the multiplicative

decrease applied when the queuing delay exceeds the delay target. Specifically,

Yield considers the change in queuing delay estimates to determine whether to

increase or decrease the size of the next cwnd reduction to be applied.

The size of this decrease is controlled by a reduction factor to control the size of

the next cwnd adjustment. The reduction factor (r) is similar to that used by Apple

LEDBAT and is used to reduce the size of cwnd by:
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cwnd = cwnd − 1
2r

· cwnd (5.1)

The values of r are bounded between 0 and 5 to prevent negative or small inef-

fectual cwnd reductions from being applied. This action is implemented using a

right-shift bit operation on the current cwnd, represented by:

cwnd = cwnd − (cwnd ≫ r) (5.2)

To ensure that an appropriate reduction is applied, Yield updates the reduction

factor upon the receipt of every new acknowledgement. This mechanism is partly

based on the principles of the PI controller, and uses the change in delay estimates

over previous acknowledgements to increase or decrease the reduction factor.

Yield calculates the change in delay on receipt of each new acknowledgement as:

δ = current_delay − prev_delay (5.3)

where current_delay represents the most recent OWD estimate, while prev_delay

is the previous delay estimate. The previous delay estimate can be averaged over

multiple historical readings to filter random noise. Use of delay smoothing is dis-

cussed further in Section 5.4.2.

A positive δ indicates that delay is increasing, and Yield therefore increases the size

of the next reduction to be applied (by decreasing the reduction factor). Conversely,

a negative δ indicates queuing delay is reducing and Yield decreases the size of the

next reduction.

This multiplicative decrease is applied when current queuing delay exceeds the de-

lay target. Upon application of the multiplicative decrease, the reduction factor

is incremented to ensure that Yield does not over-react in the presence of conges-

tion.
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5.3.2 Dynamic Delay Targeting

In the evaluation of existing LBE congestion control algorithms, described in Chap-

ter 4, LEDBAT was identified as performing similarly to regular TCP congestion

control mechanisms. This behaviour was subsequently identified to be caused by

the use of a fixed queuing delay target of 100 ms.

The use of a fixed queuing delay target was also previously identified as a design

flaw in LEDBAT by Adhari et al. [8], and was addressed in the design of Eclipse

through the implementation of a dynamic queuing delay target. Yield utilises a

dynamic delay target, based on a modified version of the Eclipse formula. As in

Eclipse, the queuing delay target is calculated as:

target = β · (s_max − s_min) + s_min (5.4)

where s_min represents a moving average of the minimum queuing delay, which

can be overwritten by values lower than the current s_min. β is the early con-

gestion indication threshold. However, in Yield s_max represents the absolute

maximum of queuing delay estimates observed by Yield (rather than the moving

average of maximum queuing delay [8]). The delay target effectively represents a

percentage of the maximum queuing delay observed, as specified by β.

This change to s_max was made during preliminary testing of Yield, in which the

value of s_max was observed to converge with that of s_min when competing

foreground flows were introduced. This convergence resulted in a decrease to the

queuing delay target, permitting Yield to compete for a fairer share of the avail-

able bandwidth (counter to the performance expectations of LBE congestion con-

trol mechanisms). The values of s_min and s_max are updated when new OWD

estimates are calculated on receipt of a new acknowledgement.

5.3.3 Cross-Traffic Detection

In testing early versions of Yield, it was observed that Yield would fail to fully utilise

the available bandwidth following the end of a foreground TCP transfer. This issue

was partly caused by applications of overly aggressive reductions to cwnd and led to

a small difference in throughput once Yield attempted to recover following a fore-

ground TCP transfer. Such a throughput penalty was considered to be detrimental

to the design goal to avoid performance regression compared to Nice.
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To address this issue, Yield was modified to infer the presence of cross-traffic based

on changes in the delay trend. This mechanism infers whether increases in queuing

delay are self-induced or the result of competing traffic and adjusts Yield’s response

accordingly.

Specifically, Yield compares the change in delay over recent history, as described in

Section 5.3.1, to a long-term moving average of historic delay trend readings. To

ensure responsiveness, particularly in high delay settings, this average is updated

upon the receipt of each new acknowledgement.

Yield identifies the presence of cross-traffic by applying a multiplier (referred to as

ct_thresh) to the historic delay trend average, based on:

trend > ct_thresh · delay_trend (5.5)

where trend represents the change in queuing delay for the most recent acknowl-

edgement, and delay_trend represents the historic trend average. When the trend

exceeds this cross-traffic threshold, Yield permits more aggressive reductions to

cwnd by modifying the lower boundary of the reduction factor.

As a result of this mechanism, two lower boundaries are applied to the Yield reduc-

tion factor depending on whether cross-traffic has been detected in the current RTT

(referred to as maxc_reduction and max_reduction with and without cross-traffic,

respectively). Yield applies these lower boundary checks when reducing the reduc-

tion factor, with maximum reduction factor (with cross traffic) only applied when

cross-traffic detection has been triggered.

Once cross-traffic is detected, the lower reduction factor boundary persists until the

end of the current RTT.

5.4 Yield TCP Operation

When a new acknowledgement is received, Yield updates many of the internal vari-

ables that control the next cwnd reduction to be applied. A full listing of these

actions is presented in Algorithm 1.

Yield first updates the OWD estimate using the TCP timestamps included in the

packet headers. This estimate is then used to update the values of s_min and
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s_max as described in Section 5.3.2, as well as to calculate the change in delay

since the previous acknowledgement was received.

As described in Section 5.3.3, Yield then infers whether it is currently competing

with cross-traffic based on the change in delay trend and determines the upper

size limit on the next cwnd reduction. The current trend is also used to increase

or decrease the size of the reduction factor, as described in Section 5.3.1. Finally,

Yield updates the delay history using the current delay estimate.

Algorithm 1 Yield per-acknowledgement operation

current_delay ← time − remote_time {update delay estimate based on TCP
timestamps}
if current_delay < delay_smin then

delay_smin ← current_delay {overwrite the smoothed minimum}
else

delay_smin ← update_delay(current_delay) {update smoothed minimum}
end if
if current_delay > delay_smax then

delay_smax ← current_delay {overwrite the smoothed maximum}
end if
trend ← current_delay − prev_delay {determine whether delay is increasing or
decreasing}
if trend > trend_hist ∗ ct_thresh then

cross_traffic ← 1 {identify potential cross-traffic}
end if
if trend > 1 then

reduction_factor ← reduction_factor − 1 {delay is increasing so a bigger de-
crease will be needed}

else
if trend < 1 then

reduction_factor ← reduction_factor + 1 {delay is decreasing so a smaller
decrease will be needed}

end if
end if
prev_delay ← (prev_delay + current_delay)/2 {current delay reading becomes
last seen}
delay_trend ← trend {update delay trend history using current}

Algorithm 2 presents the per-RTT operation of Yield. During each RTT, Yield re-

calculates the delay target using the equation described in Section 5.3.2 and de-

termines whether the current queuing delay has exceeded the target. The cwnd is

then increased — using the NewReno additive increase — or decreased as per the

process described in Section 5.3.1, as appropriate.
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Algorithm 2 Yield per-RTT operation

target ← beta · delay_smax − delay_smin {update delay target}
off _target ← target − qdelay {calculate deviation from delay target}
if off _target ≥ 0 then

cwnd ← cwnd + 1 {under target, increase cwnd}
else

decrement ← cwnd ≫ reduction_factor
cwnd ← cwnd − decrement {over target, decrease cwnd}
reduction_factor ← reduction_factor + 1

end if

5.4.1 Yield TCP Implementation

To enable the evaluation of Yield in comparison to existing LBE congestion control

mechanisms, a prototype was developed for version 4.4.15 of the Linux kernel.

This prototype was implemented using the standard TCP congestion control module

interface available in the Linux kernel. Source code for this prototype is listed in

Appendix B.

The Yield prototype uses elements of existing congestion control modules where

possible. The OWD estimation was incorporated from the RFC6817 LEDBAT im-

plementation from [36], while the core congestion avoidance behaviour utilises a

modified version of the Apple LEDBAT implementation developed for the evalua-

tion described in Chapter 4. The implementation of Apple LEDBAT was described

in Section 3.6.3.

The dynamic delay target was implemented based on the proposal by Adhari et
al. [8] and adapted as described in Section 5.3.2. The calculation of the delay

target accepts β values in increments of 1%.

5.4.2 Module Parameters

Given the experimental nature of Yield, many of the key decision points are imple-

mented as module parameters which can be modified after the module has been

loaded (without the need to re-compile the kernel module). Table 5.1 lists the

available module parameters, with more complete descriptions below.

In many cases, the optimal default value was determined through a preliminary

series of experiments using the simultaneous downloads scenario, described in Sec-

tion 3.3, with 25 ms and 175 ms fixed path delay. In these experiments, 10 runs
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were carried out with each setting. The results for these experiments are presented

in the subsections below.

Beta

Beta (β) represents the percentage of maximum queuing delay to be used in the

calculation of the delay target. Consistent with the setting used by Eclipse [8], and

based on the recommendation by Kuzmanovic and Knightly [59], a default value of

15% is used. Beta can be set in increments of 1%.

Minimum Reduction Factor

The minimum reduction factor specifies the smallest reduction that can be applied

to cwnd as a number of bits to be right-shifted. This bounding prevents Yield from

applying an ineffectually small reduction. By default, the minimum reduction is set

to 5, representing a reduction of 1
32 .

Maximum Reduction Factor (without Cross-Traffic)

The maximum reduction factor specifies the largest reduction that can be applied to

cwnd when no cross-traffic has been detected as a number of bits to be right-shifted.

This upper boundary prevents Yield from making excessive cwnd reductions when

no cross-traffic is present.

Preliminary testing using different maximum reduction factors, results for which

are shown in Table 5.2, indicated that the maximum reduction factor had limited

impact on throughput and foreground transaction time at low delay settings. How-

ever, a default value of 3 was selected due to the noticeable decrease in foreground

transaction time in high delay settings. This setting represents a cwnd reduction of
1
8 , consistent with that used by Apple LEDBAT, when no cross traffic is detected.
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Delay 50 ms 350 ms

MaxRed FTT BgTput FTT BgTput
0 4.1 902 9.3 816
1 4.1 919 9.5 820
2 4.1 905 11.1 834
3 4.2 904 6.9 742

Table 5.2.: Median throughput (in KiB/s) and foreground transaction time (in seconds)
for a download over 8 Mbps/1 Mbps bottleneck link with a single foreground
TCP transfer using NewReno with different maximum reduction factors.

Delay 50,ms 350,ms

ct_threshold FTT BgTput FTT BgTput
1 3.5 902 7.7 724
2 4.2 904 6.9 742
3 4.0 901 7.7 729

Table 5.3.: Median throughput (in KiB/s) and foreground transaction time (in seconds)
for a download over 8 Mbps/1 Mbps bottleneck link with a single foreground
TCP transfer using NewReno with different cross-traffic detection thresholds.

Maximum Reduction Factor (with Cross-Traffic)

The maximum reduction factor specifies the largest reduction that can be applied to

cwnd when Yield has detected the presence of cross-traffic as a number of bits to be

right-shifted. The maximum reduction with cross-traffic is 0 by default, represent-

ing a complete collapse of cwnd (to 0). However, cwnd will be reset to 2 segments

before the end of the RTT.

Cross-Traffic Threshold

As described in Section 5.3.3, the cross-traffic threshold is used by Yield to infer

the presence of competing traffic. This multiplier is applied to the change in delay

trend. Based on the results of preliminary testing, shown in Table 5.3, the default

multiplier is 2, requiring the current change in delay to be double the historic delay

trend before Yield acknowledges the presence of cross traffic.
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Delay 50 ms 350 ms

HistFactor FTT BgTput FTT BgTput
0 3.9 866 7.5 782
1 4.2 892 6.9 699
2 4.2 904 6.9 742
3 3.8 864 7.4 623

Table 5.4.: Median throughput (in KiB/s) and foreground transaction time (in seconds)
for a download over 8 Mbps/1 Mbps bottleneck link with a single foreground
TCP transfer using NewReno with different smoothing factors for delay history.

Delay History Factor

The delay history factor is the averaging factor applied to the exponentially weighted

moving average of previous delay readings, as a number of bits to be right-shifted.

Smaller values represent shorter delay history, making Yield more sensitive to changes

in delay. A larger averaging factor ensures that older delay estimates are consid-

ered, but results in Yield being slower to respond to competing traffic. This moving

average is applied as:

avg =
󰀕

1 − 1
2f

󰀖
· avg + 1

2f
· delay (5.6)

where f represents the averaging factor, while delay is the current delay estimate

and avg is the previous average. The results of preliminary testing, shown in Ta-

ble 5.4, indicates that use of no delay smoothing (HistFactor = 0) resulted in lower

foreground transaction time, at the expense of throughput in the low delay case.

Foreground transaction time was also increased when no historical averaging was

used in the high delay setting. As such, the default averaging factor for Yield is 2,

representing a 1
4 exponentially weighted moving average.

Delay Trend Factor

The delay trend factor is the averaging factor applied to the exponentially weighted

moving average of previous delay readings, as the denominator of the factor to be

applied. Smaller values represent shorter delay history, making Yield more sensitive

to changes in delay. A larger averaging factor ensures that older delay estimates are

considered, but results in Yield being slower to respond to competing traffic. This

moving average is applied as:
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Delay 50ms 350ms

HistFactor TrendFactor FTT BgTput FTT BgTput

0

8 3.5 850 6.7 659
64 3.7 844 7.4 619
128 3.9 866 7.5 782
256 3.8 846 7.5 789

2

8 4.0 900 6.9 630
64 3.4 832 7.5 785
128 4.2 904 6.9 742
256 3.4 825 7.5 701

Table 5.5.: Median throughput (in KiB/s) and foreground transaction time (in seconds)
for a download over 8 Mbps/1 Mbps bottleneck link with a single foreground
TCP transfer using NewReno with different smoothing factors for delay trend.

avg =
󰀕

1 − 1
f

󰀖
· avg + 1

f
· delay (5.7)

where f represents the averaging factor, while delay is the current delay estimate

and avg is the previous average. In preliminary testing, the results for which are

shown in Table 5.5, use of short-term trend averaging led to good foreground trans-

action time and throughput in low delay settings. However, these results were at

the expense of throughput in high delay experiments. As improvement in high de-

lay settings was one of the stated goals of Yield, a default trend averaging factor of

128 was selected, representing a 1
128 moving average.

Increase Threshold

The increase threshold specifies the smallest delay increase (in milliseconds) re-

quired to trigger an increase of the size of the next cwnd reduction (by decreasing

the reduction factor). The default value is set to 1 ms.

Decrease Threshold

The decrease threshold specifies the smallest delay decrease (in milliseconds) re-

quired to trigger an increase of the size of the next cwnd reduction (by decreasing

the reduction factor). The default value is set to -1 ms.
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5.5 Evaluation Methodology

To examine the performance characteristics of Yield relative to existing LBE conges-

tion control mechanisms, a series of experiments was carried out in an experimental

testbed over wired and wireless links. The methodology for these experiments was

heavily based on that used in the evaluation of existing LBE congestion control,

but only the 8 Mbps and 50 Mbps bottleneck link speeds were included due to the

limited differences observed with different speeds.

A summary of the methodology is presented in the subsections below, with full

descriptions in Chapter 3.

5.5.1 Experimental Setup

The topology for these experiments included three hosts, each running OpenSUSE

Leap 42.1 with kernel version 4.4.15. Each host PC was connected via a Gigabit

Ethernet access link to its local switch. This topology is shown in Figure 5.1.

PC1

PC2

PC3
Linux

Figure 5.1.: The experimental wired network topology.

In experiments utilising wireless networks, PC1 was connected via 802.11n to an

Ubiquiti Networks UniFi UAP AC Pro as shown in Figure 5.2. As in the wired

experiments, the other host PCs were connected via a Gigabit Ethernet access link

to the local switch. The wireless channel conditions described in Section 3.2 were

also used in this evaluation.

A Linux-based router, running OpenSUSE 13.2 with kernel 3.17.4, was used to

route packets between hosts and emulate different bottleneck link speeds and delay

settings. The host PCs operated interchangeably as TCP senders and receivers,

dependent on which of the three scenarios described in Section 5.5.3 was being

considered.
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PC1

PC2

PC3
Linux

AP

Figure 5.2.: The experimental wireless network topology.

Downlink Speed Uplink Speed Path Delay Buffer Size

(Mbps) (Mbps) (ms) (Packets)

8 1

50 70
100 135
200 270
350 470

50 20

50 420
100 835
200 1670
350 2920

Table 5.6.: Bottleneck link speeds and path delay values.

5.5.2 Bottleneck Link

Due to the limited differences in performance observed when bottleneck link speeds

were varied described in the evaluation in Chapter 4, particularly when the amount

of foreground data was increased, the evaluation of Yield only included two bot-

tleneck link speeds: 8 Mbps/1 Mbps and 50 Mbps/20 Mbps. The bottleneck buffer

was set to double the BDP and was calculated based on the downlink speed.

As with previous experiments, OWD delay values of 25 ms, 50 ms, 100 ms, and

175 ms were used to examine the effect of high fixed-path delay on LBE conges-

tion control. Path delay for all experiments was symmetric, and is subsequently

described using the total propagation delay for the path (RTT). Table 5.6 lists all

link speed, fixed-path delay, and buffer size combinations considered.
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5.5.3 Testing Scenarios

Consistent with the previous evaluation, three testing scenarios were included in

this evaluation:

Competing Downloads: a long-lived LBE transfer that competed against one or

more regular TCP flows. PC2 and PC3 acted as TCP senders for the fore-

ground traffic and the long LBE transfer, respectively. PC1 was the receiver

for all connections.

Simultaneous Upload / Download: a large file upload competing against one or

more HTTP transfers. PC2 was the TCP sender for foreground traffic directed

to PC1. However, PC1 acted as the sender for the LBE traffic, which was

received by PC3.

Fairness: PC2 and PC3 initiated long-lived background transfers to PC1. The

number of transfers was split evenly between the two senders.

The former two scenarios were run with both short and long-lived background

transfers. These scenarios are described in greater detail in Section 3.3.

5.5.4 Test Data

The data transferred between the testbed hosts was split into two categories: fore-

ground traffic and background traffic.

Foreground traffic was generated using httperf, with transfers of 2469 KiB. Addi-

tional experiments were also conducted with long-lived foreground transfers gen-

erated using iPerf for the duration of each experiment. These transfers were split

equally over 1, 4, and 8 TCP connections.

Background traffic was generated using iPerf for the duration of each experiment.

Intra-protocol fairness was examined using 2, 4, and 8 concurrent background

transfers with no competing foreground traffic.

92 Chapter 5 Yield TCP



5.5.5 Metrics

Consistent with the broader evaluation of LBE congestion control, described in

Chapters 3 and 4, Yield was evaluated based on four primary metrics:

Foreground Transaction Time: The time required for the foreground transfer to

be completed.

Background Throughput: The average rate at which a network device is able to

send data end-to-end over the network over the duration of the transfer. Only

reported for the background LBE transfers.

Latency: Time between transmission of a packet and receipt of the associated ac-

knowledgement. Retransmitted segments were excluded from these calcula-

tions.

Fairness: Impact of a TCP stream on the transmission capacity of other TCP streams

operating over the same communications medium, reported using Jain’s Fair-

ness Index [47].

All metrics were calculated using a Python script developed which utilises the Wire-

shark packet dissection engine. The data analysis approach is described further in

Section 3.8.

5.5.6 Included Congestion Control Mechanisms

Of the seven LBE congestion control mechanisms considered in the evaluation de-

scribed in Chapters 3 and 4, the mechanisms that demonstrated the best perfor-

mance were selected for comparison with Yield: Nice2, and CDG.

The default congestion control mechanisms for Linux and FreeBSD — CUBIC and

NewReno — were also included, both to provide a comparison against regular TCP

as well as for foreground traffic.

2Given the similar results observed for Nice and Vegas, only Nice was selected as it was designed
specifically as a LBE mechanism.

5.5 Evaluation Methodology 93



5.5.7 Data Collection

Each combination of bottleneck link speed, number of foreground and background

TCP connections constitutes a single experiment. For each experiment, 10 runs

were carried out per congestion control mechanism. Packet traces of all traffic sent

and received by the testbed hosts were captured over a 60 second period for each

run. The data collection process was automated using TEACUP 1.0 [56].

5.5.8 Data Analysis

The resulting packet captures were automatically processed by a Python script using

the Wireshark packet analysis engine. Both sender and receiver-side packet traces

are reconciled before being used to calculate throughput, latency, and fairness as

described in Section 3.5. Calculations of statistics for latency excluded retransmis-

sions.

5.6 Evaluation Results

Sections 5.6.1 and 5.6.2 examine the impact of Yield on foreground transaction

time and throughput, respectively. Section 5.6.3 considers the effect of Yield on

delay experienced, both by foreground traffic and when competing against itself.

Section 5.6.4 examines the intra-protocol fairness properties of Yield compared to

existing LBE mechanisms.

5.6.1 Foreground Traffic Impact

To evaluate Yield’s impact on NewReno and CUBIC foreground traffic, this evalua-

tion first examined its relative performance in the scenario where both foreground

and background traffic was downloaded by a single receiver using short foreground

transfers. Figure 5.3 plots the time required for a single foreground HTTP transfer

using NewReno to complete against the throughput achieved by the background

TCP transfer over a 60 second period. The bottleneck link for this experiment was

8 Mbps/1 Mbps with 50 ms of fixed-path delay.
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Figure 5.3.: Throughput and foreground transaction time for a download over
8 Mbps/1 Mbps bottleneck link subject to 50 ms fixed-path delay with a sin-
gle foreground TCP transfer using NewReno.

As in the previous evaluation, described in Chapter 4, CDG and Nice achieve very

low foreground transaction times (medians of 3.3 seconds and 3.5 seconds, respec-

tively) with CDG also achieving relatively low throughput.

Yield appears to be slightly more aggressive than Nice, with a median foreground

transaction time of 4 seconds. However, this result represents a reduction of 53%

when compared to NewReno. Yield also achieved similar throughput to Nice (me-

dian throughput of 903 KiB/s compared with 915 KiB/s, respectively).

The results were similar when foreground traffic was split across four and eight TCP

connections, the former of which is shown in Figure 5.4. However, Yield had a lower

impact on foreground traffic — equivalent to that of CDG — in these experiments

than in the single connection experiment.

Despite this decreased impact on foreground traffic, Yield achieved small improve-

ments to throughput compared to CDG (8.2% and 5.4% for four and eight TCP

connections, respectively).
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Figure 5.4.: Throughput and mean foreground transaction time for a download over
8 Mbps/1 Mbps bottleneck link subject to 50 ms fixed-path delay with four
foreground TCP transfers using NewReno.

Increasing Path Delay

Next, the fixed-path delay was increased to examine the effect of higher delay on

the performance of Yield. In higher delay settings, Yield performed similarly to

Nice. As shown in Figure 5.5, Yield achieved a slightly lower median foreground

transaction time than Nice (4.3 seconds, compared with 4.4 seconds). While this

result was still worse than CDG (3.6 seconds), Yield continued to achieved greater

throughput (17.8% improvement).

The impact of Yield on foreground traffic continued to improve as fixed-path delay

was further increased (to 200 ms and 350 ms). As shown in Figure 5.6, performance

trends for CDG and Nice remained consistent with findings of the previous evalua-

tion (see Section 4.2.2), with CDG having minimal impact but very low throughput

and Nice becoming regular TCP-like.

In high delay settings, Yield demonstrated higher foreground transaction times than

CDG (5.2 seconds compared to 4.3 seconds at 200 ms, and 7.7 seconds compared

to 5.2 seconds at 350 ms). However, the throughput penalty experienced by Yield
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Figure 5.5.: Throughput and foreground transaction time for a download over
8 Mbps/1 Mbps bottleneck link subject to 100 ms fixed-path delay with a single
foreground TCP transfer using NewReno.

when compared to NewReno was much smaller than the reduction experienced

by CDG (4.4% compared to 48.7% at 200 ms, and 15.7% compared to 82.1% at

350 ms).

Increasing Bottleneck Link Speed

In addition to operating in high delay settings, the performance of Yield (relative

to other LBE mechanisms) over high speed links was evaluated with a 50 Mbps

bottleneck link.

As shown in Figure 5.7, and consistent with the results in Section 4.2.3, the differ-

ences between LBE mechanisms were diminished when bottleneck link speed was

increased without increasing the of the foreground transfer.

At higher link speeds, Yield demonstrated similar impact on foreground traffic to

CDG (median foreground transaction time of 1 second, compared with 0.9 sec-

onds). Yield also experienced a smaller decrease in median throughput than CDG,
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Figure 5.6.: Throughput and foreground transaction time for a download over
8 Mbps/1 Mbps bottleneck link subject to 350 ms fixed-path delay with a single
foreground TCP transfer using NewReno.

with of 8.8% compared to NewReno (down from 18.7% for CDG). A more signifi-

cant throughput reduction was observed for Yield in one test, which is discussed in

Section 5.7.

The performance trends reported in the previous subsections remained similar

when the number of foreground TCP connections and fixed-path delay were in-

creased. As shown in Table 5.7, there were no differences in median foreground

transaction time for the four mechanisms in the presence of 350 ms fixed-path de-

lay. While Yield performed consistently with NewReno and Nice in this high delay

setting, CDG demonstrated comparatively low throughput without any associated

benefit in foreground transaction time.

CUBIC Foreground Traffic

Given that CUBIC has replaced NewReno as the default congestion control mech-

anism in Linux and recent versions of macOS, Yield’s ability to co-exist with CU-

BIC foreground traffic was examined. To evaluate the impact of Yield on CUBIC-
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Figure 5.7.: Throughput and foreground transaction time for a download over
50 Mbps/20 Mbps bottleneck link subject to 50 ms fixed-path delay with a sin-
gle foreground TCP transfer using NewReno.

managed foreground traffic, the experiments described in Section 5.5.3 were re-

peated using CUBIC for foreground transfers.

The LBE mechanisms, including Yield, performed consistently with previous exper-

iments when competing against foreground traffic managed by CUBIC (as shown in

Figure 5.8). Yield was the least friendly of the LBE mechanisms with median fore-

ground transaction time of 5 seconds. However, it typically suffers no additional

throughput penalty when compared to Nice. Relative to the other mechanisms,

Yield’s performance is unchanged when fixed-path delay is increased to 100 ms.

Consistent with experiments using NewReno foreground traffic, Yield had a lower

impact on foreground traffic than Nice at higher delay settings (Figure 5.9 shows

the results for 350 ms). This improvement was greater than when Yield com-

peted against NewReno, with reductions in median foreground transaction times

of 50.7% and 51% for 200 ms and 350 ms, respectively.

The relative reductions in foreground transaction time were smaller when com-

pared to Nice, which conceded bandwidth more readily when competing against
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FgConn 1 4 8
Delay Mechanisms FTT BgTput FTT BgTput FTT BgTput

50 ms

NewReno 2.0 5981 1.8 5981 1.5 5981
Nice 1.8 5981 2.1 5977 1.4 5980
CDG 0.9 4860 0.8 4885 0.8 4918
Yield 1.0 5456 0.9 5656 0.8 5832

100 ms

NewReno 2.0 5947 1.5 5947 1.4 5947
Nice 2.0 5905 1.6 5905 1.4 4905
CDG 1.3 3019 1.0 3005 0.9 2686
Yield 2.0 5946 1.5 5946 1.4 5946

200 ms

NewReno 2.3 4591 1.9 4597 1.7 4595
Nice 2.3 4597 1.9 4597 1.7 4597
CDG 2.1 988 1.7 877 1.5 1449
Yield 2.3 4598 1.9 4597 1.7 4441

350 ms

NewReno 3.6 2606 2.9 2606 2.5 2605
Nice 3.6 2608 2.9 2607 2.5 2608
CDG 3.6 883 2.9 306 2.5 1627
Yield 3.6 2615 2.9 2614 2.5 2613

Table 5.7.: Throughput (in KiB/s) and foreground transaction time (in seconds) for a
download over a 50 Mbps/20 Mbps bottleneck link with one, four, and eight
foreground TCP transfers using NewReno.

CUBIC. In experiments with 200 ms and 350 ms of path delay, Yield provided 4.6%

and 10.1% improvements in foreground transaction time over Nice, respectively.

The LBE mechanisms provided smaller improvements compared to CUBIC when

foreground traffic was divided amongst four and eight TCP connections. However,

the performance of Yield — as well as the other LBE mechanisms — remained

consistent with experiments using a single foreground transfer.

Yield also performed well when competing against CUBIC at higher speeds, as

shown in Figure 5.10. Yield was noticeably less aggressive than Nice, with a median

foreground transaction time of 1.3 seconds (compared to 1.9 seconds for Nice) but

slightly more aggressive than CDG (1.1 seconds). However, Yield again demon-

strated substantially higher throughput compared to CDG (reductions relative to

CUBIC of 3.3% compared to 18% for CDG).
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Figure 5.8.: Throughput and foreground transaction time for a download over
8 Mbps/1 Mbps bottleneck link subject to 50 ms fixed-path delay with a sin-
gle foreground TCP transfer using CUBIC.

LBE Upload

Experiments were also carried out examining the impact of an LBE upload on fore-

ground HTTP downloads. In these experiments, all LBE mechanisms achieved sim-

ilar throughput when a background upload competed against a foreground down-

load over an 8 Mbps bottleneck link. However, Figure 5.11 shows that Yield had

greater impact on foreground traffic compared to Nice and CDG.

In this scenario, Yield achieved a median foreground transaction time of 6.8 sec-

onds, compared with 3.1 seconds and 3.3 seconds for CDG and Nice, respectively.

However, this result still represents a 25.3% improvement compared to NewReno.

This trend remained consistent when the number of foreground TCP connections

was increased. However, Yield no longer demonstrated any improvement over —

but still performed equivalently to — NewReno as fixed-path delay was increased.

Performance when the LBE mechanisms competed against CUBIC remained rela-

tively consistent, although Yield achieved a mean reduction in foreground transac-

tion time of 43.1% and 26.4% with 100 ms and 200 ms fixed-path delay.
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Figure 5.9.: Throughput and foreground transaction time for a download over
8 Mbps/1 Mbps bottleneck link subject to 350 ms fixed-path delay with a single
foreground TCP transfer using CUBIC.

The differences between LBE mechanisms were diminished but broadly consistent

when competing against NewReno over a 50 Mbps bottleneck link, as shown in Fig-

ure 5.12. Yield achieved a mean reduction in foreground transaction time of 23.2%

with 50 ms of fixed-path delay but demonstrated no clear decrease in throughput

as delay was increased. Performance for Yield was also consistent when competing

against additional foreground transfers.

Wireless Networks

Consistent with the findings of the evaluation of existing LBE congestion control

mechanisms (described in Section 4.2.6), the performance of Yield over a 802.11n

wireless network was consistent with results over a wired network. Figure 5.13

shows the CV (ratio between standard deviation and mean) for the foreground

transaction time over wired and wireless links calculated on a per-mechanism basis

for each experiment. While the results indicate some additional variability in exper-

iments over wireless networks (CV = 0.07, compared to CV = 0.05 over Ethernet),

the differences are relatively small.
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Figure 5.10.: Throughput and foreground transaction time for a download over
50 Mbps/20 Mbps bottleneck link subject to 50 ms fixed-path delay with a
single foreground TCP transfer using CUBIC.

A small increase in variability was also observed in throughput readings, as shown

in Figure 5.14, where mean CV for wireless networks was found to be 0.08 (com-

pared with CV = 0.03 over Ethernet). However, the minimal impact of wireless

links could primarily be attributed to the ideal channel conditions in the testbed

network.

5.6.2 Foreground Throughput

To evaluate Yield’s impact on foreground traffic when competing against larger fore-

ground downloads, an additional set of experiments in which the LBE mechanisms

competed against a long-lived foreground TCP transfer was carried out.

In these experiments, long-lived foreground and background traffic competed for

bandwidth over the same bottleneck link. These experiments were also carried

out with the direction of the background transfer inverted. The impact of the LBE

mechanisms on foreground traffic was measured based on the median throughput

achieved over the course of a run.
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Figure 5.11.: Throughput and foreground transaction time for an upload over a
8 Mbps/1 Mbps bottleneck link subject to 50 ms fixed-path delay with a single
foreground TCP transfer using NewReno.

NewReno Foreground Traffic

The performance of Yield when competing against long-lived foreground traffic

was consistent with experiments with short foreground transfers. As shown in Fig-

ure 5.15, which plots the throughput of the NewReno foreground transfers when

competing against a single LBE download over an 8 Mbps bottleneck link, Yield is

the least friendly of the LBE mechanisms with median foreground throughput of

640 KiB/s (compared to 767 KiB/s and 735 KiB/s for CDG and Nice, respectively).

However, differences between Yield and the other LBE mechanisms became mini-

mal when competing with additional foreground transfers. Median throughput for

Yield was 204 KiB/s for each transfer when in competition with four concurrent

NewReno transfers (compared to 209 KiB/s for CDG and 203 KiB/s for Nice).
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Figure 5.12.: Throughput and foreground transaction time for an upload over a
50 Mbps/20 Mbps bottleneck link subject to 50 ms fixed-path delay with a
single foreground TCP transfer using NewReno.

(a) Ethernet network. (b) 802.11n wireless network.

Figure 5.13.: Distribution of CV values for foreground transaction time.

Increasing Path Delay

This consistency with experiments utilising short foreground transfers was also

present at higher delay settings, as shown for 350 ms fixed-path delay in Figure 5.16.

When competing with a single foreground transfer, Yield allows the competing
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(a) Ethernet network. (b) 802.11n wireless network.

Figure 5.14.: Distribution of CV values for background throughput.

Figure 5.15.: Throughput for one, four, and eight foreground transfers using NewReno
competing against a single LBE download over an 8 Mbps/1 Mbps bottleneck
link with 50 ms fixed-path delay.

NewReno connection to utilise a greater portion of available throughput than Nice

(median foreground throughput of 332 KiB/s, compared to 256 KiB/s). However,

the differences were again diminished as additional foreground transfers were in-

troduced.
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Figure 5.16.: Throughput for one, four, and eight foreground transfers using NewReno
competing against a single LBE download over an 8 Mbps/1 Mbps bottleneck
link subject to 350 ms fixed-path delay.

Increasing Bottleneck Link Speed

Experiments were also carried out where Yield competed against long-lived fore-

ground transfers over a 50 Mbps bottleneck link. Results for these experiments

are shown in Figure 5.17. In these experiments, throughput improvements for

NewReno foreground traffic competing with Yield were generally consistent with

experiments over the slower bottleneck link. These improvements were consistently

smaller than those achieved by CDG, but notably resulted in Yield no longer being

the most aggressive of the LBE mechanisms tested as Nice became less friendly.

Yield became more aggressive as path delay was increased to 100 ms and above.

With path delay increased, Yield was still able to provide mean improvements in

foreground delay of 18.7% and 6.1% for 100 ms and 350 ms, respectively. However,

Yield demonstrated limited improvement in experiments with 200 ms path delay

with only a 6.2% improvement when competing against four concurrent foreground

transfers and a decrease in foreground throughput of 12.7% with eight concurrent

foreground transfers.
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Figure 5.17.: Throughput for one, four, and eight foreground transfers using NewReno
competing against a single LBE download over an 50 Mbps/20 Mbps bottle-
neck link with 50 ms fixed-path delay.

CUBIC Foreground Traffic

Yield’s performance when competing against CUBIC foreground traffic was also

consistent with experiments using short foreground transfers, as well as those

where NewReno was used. As shown in Figure 5.18, Yield was also the least

friendly of the LBE mechanisms while competing against a single foreground trans-

fer. However, Yield was still far less aggressive than CUBIC and increased fore-

ground throughput by 105% compared to when CUBIC was used for background

traffic. As with experiments using NewReno foreground traffic, differences between

Yield and the other mechanisms were minimal with four and eight concurrent fore-

ground transfers.

When competing against CUBIC foreground traffic in high delay settings, Yield per-

formed similarly to experiments where NewReno foreground traffic was used. Fore-

ground throughput for Yield increased by 241.2% compared to CUBIC. Nice and

CDG achieved increases of 171.6% and 375.8% compared to CUBIC, respectively.
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Figure 5.18.: Throughput for one, four, and eight foreground transfers using CUBIC com-
peting against a single LBE download over an 8 Mbps/1 Mbps bottleneck link
with 50 ms fixed-path delay.

LBE Upload

The performance of LBE uploads when competing against long-lived foreground

transfers was also consistent with that when competing against short foreground

transfers. When competing against a single foreground download, Yield demon-

strated a 11% improvement in foreground throughput compared to when NewReno

was used for the upload. However, this improvement was substantially smaller than

those observed for CDG and Nice which demonstrated a twofold increase in fore-

ground throughput.

Yield’s performance was similarly consistent when competing against CUBIC fore-

ground traffic, with no appreciable change in foreground throughput compared to

when CUBIC was used for background traffic. By contrast, CDG and Nice achieved

much larger improvements of 61% and 76%, respectively.
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As with previous experiments, the differences between the mechanisms were less

evident when additional foreground transfers were introduced. Similar perfor-

mance trends were also observed in settings with high bottleneck link speeds.

5.6.3 Queuing Delay

The effect of Yield on the delay experienced by foreground and background traffic

was also investigated. In particular, any increases in the delay experienced by fore-

ground traffic would likely have an effect on the usability of interactive applications

such as streaming video.

For this study, delay was calculated by Wireshark based on the time difference

between the transmission of the original packet and the time at which the acknowl-

edgement was received.

Due to the brevity of foreground transfers in the previous scenarios, the impact

of LBE mechanisms on delay was only examined in the scenarios where longer

foreground transfers were initiated, as well as in the fairness scenario described in

Section 3.3.

NewReno Foreground Traffic

Table 5.8 lists the mean and standard deviation of queuing delay for experiments

where a single LBE download competed against one, four, and eight concurrent

foreground TCP transfers using NewReno. As with Nice and CDG, Yield demon-

strated no discernible change to queuing delay when operating in low to medium

path delay settings.

With very high fixed-path delay, Yield was observed to provide mean reductions

of 13.1% to queuing delay compared to NewReno. This reduction represents the

largest of the LBE mechanisms, with Nice achieving a mean reduction of 6.9% and

CDG increasing delay by 5% in these experiments.

Yield performed similarly to NewReno in experiments where an LBE upload com-

peted against one or more foreground downloads. This was in contrast to mean

reductions of 34.8% and 28.9% for Nice and CDG, respectively.

Exceptions to this performance were observed when Yield competed against a single

foreground download in low delay settings (≤ 100 ms), where a mean reduction

of 22% to mean queuing delay was observed. Yield reduced queuing delay by 28%
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FgConn 1 4 8

Delay Mechanism Mean Stdev Mean Stdev Mean Stdev

50 ms

NewReno 125 24.1 135 23.0 143 27.1
Nice 126 23.6 135 23.2 142 27.2
CDG 126 23.0 137 24.6 144 27.4
Yield 126 22.1 135 22.8 144 26.9

100 ms

NewReno 249 49.8 257 44.2 266 45.6
Nice 249 52.7 262 48.4 268 47.9
CDG 239 56.8 262 53.7 271 52.2
Yield 249 49.0 257 48.5 267 43.1

200 ms

NewReno 507 139.8 513 120.6 514 114.8
Nice 483 111.9 510 119.4 514 115.8
CDG 462 157.6 509 144.8 526 135.1
Yield 507 103.1 520 126.2 522 123.0

350 ms

NewReno 900 267.7 916 269.7 905 233.9
Nice 796 275.6 875 242.2 864 220.3
CDG 909 245.0 857 343.0 890 322.4
Yield 833 179.2 771 234.3 761 203.6

Table 5.8.: Median of mean and standard deviation for RTTs (in ms) for a LBE download
competing against one, four, and eight concurrent foreground TCP transfers
using NewReno for a 8 Mbps/1 Mbps bottleneck link.
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while competing against four concurrent downloads with 350 ms path delay, but an

increase of 25% was observed when the number of simultaneous downloads was

further increased to eight compared to NewReno.

CUBIC Foreground Traffic

When competing against CUBIC foreground traffic, Yield more consistently reduced

queuing delay than when competing with NewReno in all delay settings. This result

is reflected in Table 5.9, which lists the mean and standard deviation of delay for ex-

periments where a single LBE download competed against one, four, and eight con-

current foreground TCP transfers using CUBIC. In these experiments, Yield reduced

mean delay by 4.4% compared to CUBIC. This was in contrast to mean reductions

of 2.9% and 5.2% for Nice and CDG.

Yield also achieved small decreases in delay when used for upload traffic with low

fixed-path delay, with a mean decrease of 3.5%. However, an increase in queu-

ing delay was observed when Yield shared the bottleneck link with four foreground

FgConn 1 4 8

Delay Mechanism Mean Stdev Mean Stdev Mean Stdev

50 ms

CUBIC 143 13.9 147 16.84 152 22.6
Nice 136 13.0 145 17.36 151 20.5
CDG 135 16.2 145 17.12 152 21.2
Yield 137 12.6 146 16.08 151 20.4

100 ms

CUBIC 270 26.1 282 33.49 290 40.9
Nice 263 28.8 273 32.13 286 39.8
CDG 253 38.6 274 30.87 284 37.8
Yield 247 38.1 275 38.13 284 36.7

200 ms

CUBIC 538 77.1 553 81.93 563 98.9
Nice 510 96.6 533 82.54 560 91.1
CDG 489 89.3 515 97.60 547 89.6
Yield 508 91.2 521 95.64 548 81.2

350 ms

CUBIC 948 181.1 968 212.00 987 230.6
Nice 897 210.0 927 203.84 964 227.4
CDG 836 228.8 896 247.92 921 263.5
Yield 881 208.8 893 124.22 927 225.4

Table 5.9.: Median of mean and standard deviation for RTTs (in ms) for a LBE download
competing against one, four, and eight concurrent foreground TCP transfers
using CUBIC for a 8 Mbps/1 Mbps bottleneck link.
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downloads in the presence of 100 ms path delay. By contrast, Nice and CDG demon-

strated larger decreases in queuing delay (26.3% and 26.6%, respectively). Yield

demonstrated larger decreases in queuing delay when path delay was increased to

200 ms and 350 ms (mean decrease of 27%), although these improvements were

still not as substantial as those for Nice or CDG.

Self-Induced Delay

As with experiments where LBE mechanisms competed against NewReno and CU-

BIC foreground traffic, Yield consistently demonstrated reductions to self-induced

latency over NewReno. Table 5.10 lists mean and standard deviation of latency

experienced by competing LBE transfers for each of the mechanisms evaluated.

Yield reduced mean delay by between 4.4% and 33.2% (with the exception of ex-

periments with two competing Yield transfers and 350 ms fixed-path delay where

latency increased by 18%).

BgConn 2 4 8
Delay Mechanism Mean Stdev Mean Stdev Mean Stdev

50 ms

NewReno 124 26.2 133 25.4 142 28.3
Nice 64 13.3 87 18.2 128 19.8
CDG 61 9.0 85 15.4 125 22.6
Yield 83 20.5 99 20.9 144 20.5

100 ms

NewReno 242 58.1 253 55.8 265 53.4
Nice 144 44.3 144 45.4 193 42.9
CDG 105 7.2 110 11.0 131 19.4
Yield 167 52.0 188 52.4 217 48.1

200 ms

NewReno 468 143.9 496 138.8 516 129.3
Nice 425 75.0 279 71.6 341 96.2
CDG 204 7.1 207 12.2 211 14.8
Yield 447 124.7 420 129.6 429 132.2

350 ms

NewReno 725 287.7 896 288.5 872 280.1
Nice 523 108.7 573 105.1 516 87.2
CDG 352 5.0 354 8.9 360 18.8
Yield 856 289.7 705 306.9 797 287.6

Table 5.10.: Median of mean and standard deviation for RTTs (in ms) for two, four, and
eight concurrent LBE transfers for a 8 Mbps/1 Mbps bottleneck link.
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5.6.4 Intra-Protocol Fairness

Finally the ability of Yield to fairly share available bandwidth amongst multiple

concurrent flows was examined. Figure 5.19 plots the Jain’s fairness indices for LBE

transfers grouped by the number of concurrent LBE transfers for experiments where

the mechanisms were subjected to 50 ms of fixed-path delay. While not exceeding

the fairness of CDG, Yield demonstrated greater fairness between flows than Nice.

This difference was particularly noticeable when eight concurrent LBE transfers

were active, where Yield achieved a median fairness index of 0.97 (compared with

0.82 for Nice). Like CDG, Yield also demonstrated consistent fairness regardless of

the number of concurrent LBE transfers.

Like Nice, Yield achieved lower fairness indices at higher bottleneck link speeds, as

shown in Figure 5.20. However, this reduced fairness remained substantially higher

than that achieved by Nice.

Lastly, the impact of fixed-path delay on intra-protocol fairness was examined. Con-

sistent with the observations made in Section 4.5, the results shown in Figure 5.21

Figure 5.19.: Jain’s Fairness indices for LBE transfers subjected to 50 ms fixed-path delay
grouped by number of concurrent connections.
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Figure 5.20.: Jain’s fairness indices for LBE transfers subjected to 50 ms fixed-path delay
grouped by bottleneck link speed (in Mbps).

indicate that intra-protocol fairness for CDG and Nice was reduced as additional

delay increased. Yield remained relatively consistent, with median fairness indices

increasing slightly at 200 ms and 350 ms (fairness indices of 0.96, 0.92, 0.94, and

0.95 for each of the fixed-path delay settings considered, respectively).

5.7 Discussion

Yield was primarily designed to improve the performance of LBE congestion con-

trol mechanisms in high fixed-path delay settings, without significant performance

regression in low-delay settings. Improvements to fairness were also considered

desirable. The evaluation of Yield indicates that it was largely successful in meeting

these design goals.

In low delay settings, Yield typically had a lower impact on NewReno and CUBIC

foreground TCP transfers compared to that of Nice when foreground and back-

ground traffic traversed the same direction over the bottleneck link. In this sce-
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Figure 5.21.: Jain’s fairness indices for LBE transfers grouped by fixed-path delay values
(in ms).

nario, Yield achieved mean improvements in foreground transaction time of 39.2%

and 46.4% relative to NewReno and CUBIC, respectively (compared to 26.7% and

35.9% for Nice). While these reductions were not as large as those demonstrated

by CDG, Yield was able to achieve similar improvements in medium delay settings

when used for downloads. These improvements to foreground transaction time

were achieved while providing throughput similar to Nice.

The results of testing Yield with high fixed-path delay also indicate moderate im-

provements when competing against NewReno and CUBIC foreground traffic, with

mean reductions in foreground transaction times of 13.2% and 32.2%. These im-

provements were substantially larger than those achieved by Nice, which typically

increased foreground transaction time in high delay settings. While Yield achieved

lower throughput than Nice in high delay settings, these reductions were much

smaller than the penalties experienced by CDG.

The results suggest that Yield was successful in achieving the primary design goal of

improving performance in high delay settings, without compromising performance

with low path delay. Based on these findings, Yield belongs in the low-impact – high
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Figure 5.22.: Approximate categorisation of LBE congestion control mechanisms at 50 ms
fixed-path delay.

throughput category of LBE congestion control mechanisms in low delay settings

(identified in Chapter 4). Figure 5.22 shows an updated matrix of categorisations,

including all mechanisms considered in the initial evaluation of LBE congestion

control mechanisms described in Chapter 4.

Yield moves to the border of the low-impact – high throughput category and the

regular TCP-like mechanisms when subjected to high fixed-path delay, as shown in

Figure 5.23, which depicts the approximate categorisations of the LBE congestion

control mechanisms in high delay settings.

While not exceeding the fairness of CDG, Yield was also successful in the secondary

goal: to improve intra-protocol fairness over Nice. This improvement was evident
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Figure 5.23.: Approximate categorisation of LBE congestion control mechanisms at 350 ms
fixed-path delay.

across all experimental settings, with a mean improvement in fairness of 0.15 (and

a maximum of 0.69).

However, Yield was not universally successful in demonstrating improvements over

existing LBE mechanisms. When Yield uploads competed against foreground traffic,

Yield reduced foreground transaction time compared to regular TCP and TCP-like

mechanisms (mean reductions of 6% and 23% compared to NewReno and CUBIC,

respectively), but was more aggressive than Nice and CDG. The performance of

Yield in this scenario was similar to that of Westwood+LP (described in Chapter 4)

and could likely be attributed to the use of OWD estimates, rather than the RTT

estimates used by CDG and Nice. The use of OWD estimates would, in the upload

scenario, likely prevent Yield from detecting and responding to competing traffic
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as only the acknowledgements from the foreground transfers would traverse the

bottleneck link in the direction being measured.

Additionally, Yield achieved substantially lower throughput than normal in a lim-

ited number of cases. One example of this issue was seen in Figure 5.7, where a

single Yield test achieved background throughput of 3253 KiB/s compared to the

median background throughput for this experiment of 5456 KiB/s. This perfor-

mance issue was caused by Yield being unable to properly increase the size of cwnd

once the foreground transfer has completed, due to regular (and sizeable) spikes

in the OWD estimate. Based on available information from the testbed, these delay

spikes are erroneous estimates produced by the OWD estimation mechanism rather

than actual delay increases caused by competing traffic.

While the precise issue with the OWD estimates has not been identified, Kuh-

lewind and Fisches [36] have previously identified issues with the remote HZ esti-

mation used in the calculation of the OWD estimate. Unlike previous mechanisms

using OWD estimates implemented for Linux, Yield also uses these estimates to in-

form multiple aspects of its operation including modifying the reduction factor in

addition to determining whether cwnd should be increased or decreased. This in-

creased reliance on the OWD estimates in Yield, combined with the typically lower

delay target, may have exacerbated the impact of any inaccuracy in the OWD esti-

mates.

A future variant of Yield could investigate the performance impact of using RTT es-

timates in place of OWD as a possible solution to this issue. The estimation of RTT is

integrated into the TCP implementation of Linux, and used by existing delay-based

and LBE congestion control mechanisms (such as Vegas, Nice, and CDG). While use

of RTT was initially discounted due to the possibility for cross-traffic in the reverse

direction to cause erroneous cwnd reductions, such a modification could also im-

prove Yield’s ability to detect this cross-traffic and reduce foreground transaction

times in the simultaneous upload/download scenario. Use of the RTT estimation

integrated into the TCP stack for Linux would also simplify the implementation of

Yield.

Future improvements to Yield, or other LBE congestion control mechanisms, should

further refine the use of the adaptive delay target. While the adaptive delay target

utilised by Yield showed promising results, particularly when compared to the high

fixed target of LEDBAT, the modifications made to the Eclipse delay target formula

limit the adaptability of the target. The modification of s_max to represent the

absolute maximum of queuing delay estimates results in an inability to reduce this
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value, even when estimates of maximum queuing delay have been below this value

over a long period of time. As a result, the calculated delay target could be inap-

propriately high in some scenarios, presenting an opportunity to further refine this

mechanism.

A further extension to Yield could also consider the trajectory of queuing delay in

order to predict and preempt impending changes in queuing delay before they oc-

cur, similar to the approach used by the derivative component of a Proportional-in-

tegral-derivative (PID) controller. Early iterations of Yield attempted to implement

this approach using the delay trend information already used to control the size

of the next cwnd reduction. While this approach was unsuccessful in providing

demonstrable improvements over the PI controller-based implementation, a pre-

dictive approach in responding to increasing queuing delay could allow cwnd to be

reduced more quickly when a foreground transfer begins (particularly in very high

delay settings).

5.8 Summary

This chapter has presented Yield TCP, a new LBE congestion control mechanism

designed to reduce the impact to foreground traffic in environments with high fixed-

path delay without significant throughput penalties. Yield utilises a PI controller

to better interpret and respond to changes in queuing delay. In doing so, Yield

implements Dynamic Trend-Based Reduction, Adaptive Delay Targeting, and Cross-

Traffic Detection.

Yield was implemented for a recent version of Linux, and evaluated against two

existing LBE congestion control mechanisms: CDG and Nice. The results of this

evaluation suggest that Yield was successful in reducing impact on foreground traf-

fic in high delay settings, without significant penalties to throughput. In low delay

settings, Yield had a similar impact on foreground traffic to these LBE mechanisms.

Yield also demonstrated significantly better intra-protocol fairness than Nice in all

experimental settings.

Future work on LBE congestion control should seek to refine the adaptive delay

targeting mechanism used by Yield to provide greater adaptability, as well as im-

proving responsiveness to competing foreground traffic when used for uploads and

in the presence of very high path delay.
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Conclusion 6
6.1 Overview

This chapter presents the conclusions of the thesis. Section 6.2 presents a summary

of the research. Section 6.3 describes the major contributions, while Section 6.4

discusses the limitations of the research. Section 6.5 presents possible directions

for future research. Finally, Section 6.6 concludes the thesis by presenting some

closing remarks.

6.2 Summary of the Research

A major aim of this research was to substantially improve the understanding of

the performance characteristics of LBE congestion control algorithms. To do so,

seven LBE congestion control mechanisms were evaluated in a series of scenarios

representative of possible real-world usage. The evaluation was carried out using

a Linux testbed incorporating wired Ethernet and 802.11n wireless links. These

seven algorithms were: Apple LEDBAT, CAIA Delay-Gradient (CDG), Low Extra De-

lay Background Transport (LEDBAT), Low Priority, Nice, Westwood-LP, and Vegas.

Of these, three mechanisms — Apple LEDBAT, Nice, and Westwood-LP — were

implemented based on published descriptions and available code fragments to fa-

cilitate this evaluation. The performance of the LBE mechanisms was evaluated

using traffic and network profiles that typical end-users would encounter.

The results of this evaluation identified two classes of LBE congestion control mech-

anisms: regular TCP-like mechanisms, and low-impact mechanisms. Of the low-

impact mechanisms, CDG has the lowest impact on regular TCP transfers at the

expense of throughput. Nice had minimal impact on foreground traffic without the

reduction in background throughput associated with other low-impact LBE mecha-

nisms. However, neither mechanism was able to achieve a good balance between

low impact on foreground traffic and background throughput in the presence of

high fixed-path delay.
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The results of the evaluation identified low throughput in high delay settings as

a significant limitation of existing LBE mechanisms. Yield TCP is a new LBE TCP

congestion control algorithm designed to address this limitation, while also main-

taining low impact on regular TCP traffic observed in the low-impact mechanisms

such as CDG and Nice. Yield utilises elements of a PI controller to inform its re-

sponse to changes in queuing delay.

The performance of Yield was compared to low-impact mechanisms identified in

the comparison of existing mechanisms: Nice and CDG. The results indicate that

Yield is successful in achieving the primary design goal of improving performance in

high delay settings, while performing similarly to Nice in low delay settings. While

not exceeding the fairness of CDG, Yield also improves intra-protocol fairness over

Nice.

6.3 Major Contributions

Through the research described in this thesis, three significant contributions were

made to the area of LBE congestion control. These contributions are described in

the sections below.

6.3.1 Less-than-Best-Effort Congestion Control Evaluation

Prior to this work, very few studies had evaluated a range of LBE congestion control

algorithms and only one had done so independently of a newly proposed algorithm.

Additionally, few such studies had evaluated performance of these algorithms out-

side network simulation tools such as ns-2. As such, a major aim of this research

was to improve the limited understanding of LBE congestion control performance

outside of simulated environments.

The first study of this research evaluated the performance of seven LBE congestion

control algorithms in different scenarios in a Linux testbed incorporating wired Eth-

ernet and 802.11n wireless links. The results of this evaluation identified clear per-

formance trends among two categories of algorithms: regular TCP-like mechanisms

and low-impact mechanisms. In doing so, this evaluation substantially improved

the limited understanding of LBE congestion control algorithm performance and

provides a basis for evaluating future algorithms.
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6.3.2 Less-than-Best-Effort Algorithm Implementation

To facilitate the evaluation of LBE congestion control algorithms, three algorithms

— Apple LEDBAT, Nice, and Westwood-LP — have been implemented for Linux.

These implementations, which are described in Section 3.6, were based on pub-

lished descriptions and available code fragments.

Source code for these implementations is included in Appendix A, and has been

published on Github [60]. The availability of these mechanisms will allow future

research to include a broader range of LBE congestion control algorithms for evalu-

ation. The published code could also be used as a template for the implementation

of future LBE congestion control algorithms.

6.3.3 Yield TCP

Finally, this study proposed a new algorithm for LBE congestion control: Yield TCP.

Yield was designed to address the poor throughput of existing LBE algorithms in

high delay settings, while avoiding performance regression in low delay settings. To

facilitate its evaluation, an implementation of Yield was developed for Linux. This

implementation is described in Chapter 5, with source code listed in Appendix B.

The implementation of Yield has also been published on Github [61] and is avail-

able for use in future research evaluating LBE congestion control.

The evaluation of Yield indicates that it lowers impact on foreground traffic, while

achieving relatively high throughput, particularly in high delay settings. Yield also

demonstrates improvements in fairness over existing algorithms. In doing so, Yield

successfully addresses the lack of LBE congestion control algorithms that success-

fully balance the need to reduce impact on foreground traffic while providing ac-

ceptable throughput. Yield also provides a basis from which future research could

seek to make additional performance improvements to LBE congestion control, both

through identifying techniques that could provide further improvement, as well as

providing a codebase on which these changes could be implemented.
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6.4 Limitations of the Study

In this research, the module parameters for the mechanisms were based on default

values either from the existing Linux kernel module, or from original proposals. As

a result, LEDBAT was observed to behave like a regular TCP congestion control at

least partially due to the high default delay target. While this approach resulted

in undesirable performance for LEDBAT, it was assumed that the default values

would have been selected deliberately as a result of previous experimentation or

experiences and would likely be retained in production environments. As such,

the algorithms were evaluated based on these default settings. However, future re-

search could attempt to determine whether these parameter values could be further

optimised.

Evaluations of LBE congestion control, both existing mechanisms and Yield, were

carried out in a testbed network. Use of the testbed network allowed for Linux-

based implementations of the LBE mechanisms to be used, as well as permitting

a relatively stable environment in which to examine the performance of the algo-

rithms. This testing environment required assumptions to be made regarding the

network characteristics. While the LBE algorithms were evaluated under a wide

range of settings to ensure broad applicability of the results, it was infeasible to

introduce the level of variability present in production networks. As such, further

testing under more realistic conditions could be carried out in future research.

While Yield was successful at maintaining low impact on foreground traffic in a

number of scenarios, it had limited success when competing against traffic trans-

mitted in the opposite direction. This limitation is likely due to the use of OWD

estimates, which only measure delay along the forward path. While this approach

prevents Yield from erroneously responding to cross-traffic in the reverse direction,

it also prevents Yield from detecting competing traffic in this scenario. Future re-

search should consider the desirability of reacting to competing traffic on the return

path, and investigate the possibility of using RTT estimates or other techniques to

address this issue.
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6.5 Directions for Future Work

As stated in Chapter 1, limited research has been conducted into understanding the

performance of LBE congestion control. The evaluation of existing LBE congestion

control mechanisms, described in Chapter 4, included seven existing mechanisms.

However, algorithms for which only limited information or basis for implementation

was available, such as 4CP, Eclipse, and FLOWER, were excluded. These algorithms

should be implemented and tested in future work. Such testing would allow for a

greater understanding of their performance compared to existing mechanisms, as

well as allow for the identification of further modifications that could improve the

performance of LBE congestion control.

Internet-based testing was also considered when designing the evaluation of exist-

ing LBE mechanisms. Such experiments would allow for testing of LBE congestion

control under more realistic conditions, but the added unpredictability would also

introduce significant challenges in interpreting the results. As such, these exper-

iments were not pursued. Further evaluations of LBE congestion control, using

Internet-based testing, could provide further differentiation between these algo-

rithms that might otherwise not be detectable in a simulated or testbed network.

While Yield was successful in improving performance in high delay settings, it only

provided small improvements when used for uploads. As a result, Yield is more

aggressive than existing mechanisms such as Nice and CDG in this scenario. Addi-

tionally, the adaptive delay target used by Yield is limited by the inability to modify

the maximum queuing delay estimate during operation. This limitation could result

in the calculated delay target being inappropriately high in some scenarios. Future

work on LBE congestion control should seek to further improve performance by

addressing these limitations.

Early iterations of Yield also considered using a Proportional-integral-derivative

(PID) controller as the basis for design, rather than the PI controller ultimately

used. In the PID model, Yield would have considered the trajectory of queuing de-

lay in order to preemptively respond to impending changes before they occurred.

While the implementation tested with Yield was unsuccessful in providing notice-

able improvements, a predictive approach in responding to increasing queuing de-

lay could improve responsiveness to the introduction of a new foreground transfer

(particularly in very high delay settings) and should be investigated further.
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6.6 Closing Remarks

This research aims to improve the understanding of the performance characteris-

tics of LBE congestion control, as well as develop and evaluate a new mechanism

that addressed weaknesses in existing mechanisms. To address the limited un-

derstanding of LBE congestion control algorithm performance, seven existing LBE

congestion control algorithms were evaluated.

The results of this evaluation substantially improved understanding of LBE conges-

tion control performance by quantifying the performance of existing mechanisms,

and categorising the mechanisms by their performance characteristics. To facilitate

this evaluation, three previously proposed LBE congestion control algorithms were

implemented and made available for use and extension in future research.

Yield TCP, a new LBE congestion control algorithm, was also developed and im-

plemented to improve throughput in very high delay settings. Yield achieved this

goal through improvements in detecting and responding to foreground traffic. In

achieving its goal, Yield addresses a major limitation of existing LBE congestion

control mechanisms.
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Less-than-Best-Effort Code
Listing

A

A.1 Overview

This appendix presents the source code for the implementations of Nice, West-

wood+LP, and Apple LEDBAT described in Chapter 3.

A.2 Nice

A.2.1 Per-Acknowledgement Operation

void tcp_nice_pkts_acked(struct sock *sk, u32 cnt, s32 rtt_us)
{

struct nice *nice = inet_csk_ca(sk);
u32 vrtt;

if (rtt_us < 0)
return;

/* Never allow zero rtt or baseRTT */
vrtt = rtt_us + 1;

/* Filter to find propagation delay: */
if (vrtt < nice->baseRTT)

nice->baseRTT = vrtt;

/* Initialise maxRTT to 2*minRTT */
if (nice->cntRTT == 0)

nice->maxRTT = nice->baseRTT * 2;
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/* Find the min RTT during the last RTT to find
* the current prop. delay + queuing delay:
*/

nice->minRTT = min(nice->minRTT, vrtt);
nice->maxRTT = max(nice->maxRTT, vrtt);
nice->cntRTT++;

if (vrtt > ((100UL - threshold) * nice->baseRTT + threshold *
nice->maxRTT) / 100UL) {

nice->numCong++;
}

}
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A.2.2 Per-Round Operation

static void tcp_nice_cong_avoid(struct sock *sk, u32 ack, u32 acked)
{

struct tcp_sock *tp = tcp_sk(sk);
struct nice *nice = inet_csk_ca(sk);

if (nice->fractional_cwnd > 2&&
nice->nice_timer == nice->fractional_cwnd) {

/* Send two packets in this RTT then reset the timer */
tp->snd_cwnd = 2;
nice->nice_timer = 1;

} else if (nice->fractional_cwnd > 2) {
/* Waiting to send packets */
tp->snd_cwnd = 0;
nice->nice_timer++;

}

if (!nice->doing_nice_now) {
if (tp->snd_cwnd <= 2&& nice->fractional_cwnd >= 2&&

nice->fractional_cwnd <= max_fwnd) {
tcp_reno_fractional_ca(sk, ack, acked);

} else {
/* Just do Reno */
tcp_reno_cong_avoid(sk, ack, acked);

}
return;

}

if (after(ack, nice->beg_snd_nxt)) {
/* Do the Vegas once-per-RTT cwnd adjustment. */

/* Save the extent of the current window so we can use this
* at the end of the next RTT.
*/

nice->beg_snd_nxt = tp->snd_nxt;

/* We do the Vegas calculations only if we got enough RTT
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* samples that we can be reasonably sure that we got
* at least one RTT sample that wasn󰅦t from a delayed ACK.
* If we only had 2 samples total,
* then that means we󰅦re getting only 1 ACK per RTT, which
* means they󰅦re almost certainly delayed ACKs.
* If we have 3 samples, we should be OK.
*/

if (nice->cntRTT <= 2) {
/* We don󰅦t have enough RTT samples to do the Vegas

* calculation, so we󰅦ll behave like Reno.
*/

if (tp->snd_cwnd <= 2&& nice->fractional_cwnd >= 2&&
nice->fractional_cwnd <= max_fwnd) {

tcp_reno_fractional_ca(sk, ack, acked);
} else {

/* Just do Reno */
tcp_reno_cong_avoid(sk, ack, acked);

}
} else {

u32 rtt, diff;
u64 target_cwnd;

/* We have enough RTT samples, so, using the Vegas
* algorithm, we determine if we should increase or
* decrease cwnd, and by how much.
*/

/* Pluck out the RTT we are using for the Vegas
* calculations. This is the min RTT seen during the
* last RTT. Taking the min filters out the effects
* of delayed ACKs, at the cost of noticing congestion
* a bit later.
*/

rtt = nice->minRTT;

/* Calculate the cwnd we should have, if we weren󰅦t
* going too fast.
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*
* This is:
* (actual rate in segments) * baseRTT
*/

target_cwnd = (u64)tp->snd_cwnd * nice->baseRTT;
do_div(target_cwnd, rtt);

/* Calculate the difference between the window we had,
* and the window we would like to have. This quantity
* is the "Diff" from the Arizona Vegas papers.
*/

diff = tp->snd_cwnd * (rtt-nice->baseRTT) / nice->baseRTT;

if (diff > gamma && tcp_in_slow_start(tp)) {
/* Going too fast. Time to slow down

* and switch to congestion avoidance.
*/

/* Set cwnd to match the actual rate
* exactly:
* cwnd = (actual rate) * baseRTT
* Then we add 1 because the integer
* truncation robs us of full link
* utilization.
*/

tp->snd_cwnd = min(tp->snd_cwnd, (u32)target_cwnd+1);
tp->snd_ssthresh = tcp_nice_ssthresh(tp);
nice->numCong = 0;

} else if (tcp_in_slow_start(tp)) {
/* Slow start. */
tcp_slow_start(tp, acked);

} else if (nice->numCong > tp->snd_cwnd / fraction_divisor) {
/* Nice detected too many congestion events

* perform multiplicative window reduction.
*/

if (tp->snd_cwnd > 2&& nice->fractional_cwnd == 2) {
tp->snd_cwnd = tp->snd_cwnd / 2;
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} else if (nice->fractional_cwnd <= max_fwnd) {
nice->fractional_cwnd *= 4;

}

nice->numCong = 0; // Reset multiplicative decrease counter.
} else {

/* Congestion avoidance. */

/* Figure out where we would like cwnd
* to be.
*/

if (diff > beta) {
/* The old window was too fast, so

* we slow down.
*/

if (tp->snd_cwnd > 2&& nice->fractional_cwnd == 2) {
tp->snd_cwnd--;

} else if (nice->fractional_cwnd <= max_fwnd) {
nice->fractional_cwnd+=2;

}

tp->snd_ssthresh
= tcp_nice_ssthresh(tp);

} else if (diff < alpha) {
/* We don󰅦t have enough extra packets

* in the network, so speed up.
*/

if (tp->snd_cwnd >= 2&& nice->fractional_cwnd == 2) {
tp->snd_cwnd++;

} else if (nice->fractional_cwnd <= max_fwnd) {
nice->fractional_cwnd-=2;

}
} else {

/* Sending just as fast as we
* should be.
*/

}
}
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if (tp->snd_cwnd < 2&& nice->fractional_cwnd == 2)
tp->snd_cwnd = 2;

else if (tp->snd_cwnd > tp->snd_cwnd_clamp)
tp->snd_cwnd = tp->snd_cwnd_clamp;

tp->snd_ssthresh = tcp_current_ssthresh(sk);
}

/* Wipe the slate clean for the next RTT. */
nice->cntRTT = 0;
nice->minRTT = 0x7fffffff;
nice->maxRTT = 0;
nice->numCong = 0;

}
/* Use normal slow start */
else if (tcp_in_slow_start(tp))

tcp_slow_start(tp, acked);
}
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A.3 Westwood+LP

A.3.1 Per-Acknowledgement Operation

static void tcp_westwood_pkts_acked(struct sock *sk, u32 cnt, s32 rtt)
{

struct westwood *w = inet_csk_ca(sk);

if (rtt > 0)
w->rtt = usecs_to_jiffies(rtt);

}

A.3.2 Per-Round Operation

static void tcp_westwood_cong_avoid(struct sock *sk, u32 ack, u32 acked)
{

struct tcp_sock *tp = tcp_sk(sk);
struct westwood *w = inet_csk_ca(sk);

u32 ewr_thresh = 0;
u32 queue_length = 0;
u32 rtt = 0;

/* Negate RTT as a factor if delay_loss has no value */
if (w->delay_loss > 1) {

rtt = w->rtt;
}

/* Check that we have an RTT estimate before computing EWR threshold */
/* Use delay_min and delay_max until the first EWR event */
if (w->dmin_avg != w->dmax_avg && w->dmax_avg != 0) {

queue_length = tp->snd_cwnd - w->bw_est * w->rtt_min / tp->advmss;
ewr_thresh = (beta * (100 - 100* (rtt << 2) / w->delay_loss) / 100)

* (100 - 100* w->dmin_avg / w->dmax_avg) / 100;
} else if (w->delay_min != w->delay_max && w->delay_max != 0

&& !tcp_in_slow_start(tp)) {
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queue_length = tp->snd_cwnd - w->bw_est * w->rtt_min / tp->advmss;
ewr_thresh = (beta * (100 - 100* (rtt << 2) / w->delay_loss) / 100)

* (100 - 100* w->delay_min / w->delay_max) / 100;
}

if (queue_length > ewr_thresh) {
tp->snd_cwnd = tp->snd_ssthresh = tcp_westwood_bw_rttmin(sk);

/* Update min and max delay averages with values from this EWR window */
w->dmin_avg = westwood_update_delay(w->delay_min, w->dmin_avg);
w->dmax_avg = westwood_update_delay(w->delay_max, w->dmax_avg);

/* Current RTT becomes lowest and highest RTT observed */
w->delay_max = w->delay_min = w->rtt;

} else {
tcp_reno_cong_avoid(sk, ack, acked);

}

}
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A.4 Apple LEDBAT

A.4.1 Per-Acknowledgement Operation

The RFC6817 LEDBAT implementation used as the template for this version of Ap-

ple LEDBAT does not specify any new per-acknowledgement behaviour.

A.4.2 Per-Round Operation

void tcp_apledbat_cong_avoid(struct sock *sk, u32 ack, u32 acked) {

struct tcp_sock *tp = tcp_sk(sk);
struct ledbat *ledbat = inet_csk_ca(sk);

u32 delay = 0;
u32 queuing_delay;
int off_target;
u32 max_allowed_cwnd;

/* estimate the remote peers time granularity ->
doesn󰅦t work and therefore not used */

//estimate_remote_HZ(sk);

// remember first timestamp of local and remote host as base
if (ledbat->remote_time_offset == 0)

ledbat->remote_time_offset = tp->rx_opt.rcv_tsval;
if (ledbat->local_time_offset == 0)

ledbat->local_time_offset = tp->rx_opt.rcv_tsecr;

//calculate current OWD
//delay * 1000 * 1/HZ; -> Result in [s]. Multiply by 1000 for [ms]
u32 time = (tp->rx_opt.rcv_tsval - ledbat->remote_time_offset)

*1000/HZ;
u32 remote_time = (tp->rx_opt.rcv_tsecr - ledbat->local_time_offset)

*1000/HZ;
if (time > remote_time)
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delay = time - remote_time;

// update delays
tcp_ledbat_update_base_delay(sk, delay);
tcp_ledbat_update_current_delay(sk, delay);
ledbat->base_delay = min(ledbat->base_delay, delay);

// calculate queuing delay
if (ledbat->current_delays.buffer!=NULL &&

ledbat->base_delays.buffer!=NULL) {
queuing_delay = tcp_ledbat_get_min_from_list(&ledbat->current_delays)

- tcp_ledbat_get_min_from_list(&ledbat->base_delays);
} else {

queuing_delay = delay - ledbat->base_delay;
}

/* don󰅦t change cwnd is not cwnd-limited */
if (!tcp_is_cwnd_limited(sk))

return;

/* In "safe" area, increase exponentially. */
if (tp->snd_cwnd <= tp->snd_ssthresh) {

acked = tcp_slow_start(tp, acked);
if (!acked)

return;
}

/* LEDABT cwnd increase/decrease */
off_target = target - queuing_delay;

if (off_target >= 0) {
/* under delay target, apply additive increase */

tcp_reno_cong_avoid(sk, ack, acked);
} else {
/* over delay target, apply 1/8th cwnd reduction */

u32 decr;

decr = tp->snd_cwnd >> 3;
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tp->snd_cwnd -= decr;
}

// From RFC6817: max_allowed_cwnd = flightsize + ALLOWED_INCREASE * MSS
max_allowed_cwnd = tp->packets_out + acked + ALLOWED_INCREASE;
tp->snd_cwnd = min(tp->snd_cwnd, max_allowed_cwnd);
// or
// cwnd = max(MIN_CWND, min(cwnd, tp->snd_cwnd_clamp));

// set cwnd
tp->snd_cwnd = max(MIN_CWND, tp->snd_cwnd);

// also adapt ssthreash if the cwnd is reduced!
if (tp->snd_cwnd <= tp->snd_ssthresh)

tp->snd_ssthresh = tp->snd_cwnd-1;
}

144 Appendix A Less-than-Best-Effort Code Listing



Yield TCP Code Listing B
B.1 Overview

This appendix presents the source code for the Yield TCP implementation described

in Chapter 5.

B.1.1 Per-Acknowledgement Operation

void tcp_yield_pkts_acked(struct sock *sk, u32 cnt, s32 rtt_us) {

struct tcp_sock *tp = tcp_sk(sk);
struct yield *yield = inet_csk_ca(sk);

u32 time, remote_time;
s32 trend = 0;

/* Capture initial timestamps on first run */
if (yield->remote_time_offset == 0) {

yield->remote_time_offset = tp->rx_opt.rcv_tsval;
}
if (yield->local_time_offset == 0) {

yield->local_time_offset = tp->rx_opt.rcv_tsecr;
}

time = (tp->rx_opt.rcv_tsval - yield->remote_time_offset)
* 1000 / HZ;

remote_time = (tp->rx_opt.rcv_tsecr - yield->local_time_offset)
* 1000 / HZ;

if (time > remote_time) {
yield->delay = time - remote_time;

145



}

/* Update delay_min and delay_max as needed */
if (yield->delay < yield->delay_min) {

yield->delay_min = yield->delay;
} else if (yield->delay > yield->delay_max) {

yield->delay_max = yield->delay;
}

/* Update the smoothed minimum */
if (((yield->delay_min << 3) < yield->delay_smin) ||

yield->delay_smin == 0) {
/* overwrite if the latest minimum is below the smoothed */
yield->delay_smin = yield->delay_min << 3;

} else if (yield->delay_min > yield->delay_smin) {
/* otherwise update the moving average */
yield->delay_smin =

update_delay(yield->delay, yield->delay_smin, 3);
}

/* Update the smoothed maximum */
if (((yield->delay_max << 3) > yield->delay_smax) ||

yield->delay_smax == 0) {
/* overwrite if the latest maximum is below the smoothed */
yield->delay_smax = yield->delay_max << 3;

} else if (yield->delay_max > yield->delay_smax) {
/* otherwise update the moving average */
yield->delay_smax =

update_delay(yield->delay, yield->delay_smax, 3);
}

if (yield->prev_delay != 0) {
/* determine whether delay is increasing or decreasing */

trend = yield->delay - (yield->prev_delay >> hist_factor);

if (yield->delay_trend != 0&& trend >
max((yield->delay_trend / trend_factor) * ct_threshold, 1)) {

yield->cross_traffic = 1;
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}
}

if (trend >= increase_threshold && yield->cross_traffic == 1) {
/* delay is increasing and cross traffic is present

so a bigger decrease will be needed */
yield->reduction_factor -= 1;
yield->reduction_factor =

max(yield->reduction_factor, maxc_reduction);
} else if (trend >= increase_threshold) {
/* delay is increasing so a bigger decrease will be needed */

yield->reduction_factor -= 1;
yield->reduction_factor =

max(yield->reduction_factor, max_reduction);
} else if (trend <= decrease_threshold) {
/* delay is decreasing so make the next decrease smaller */

yield->reduction_factor += 1;
yield->reduction_factor =

min(yield->reduction_factor, min_reduction);
}

if (yield->delay < yield->delay_min && yield->delay > 0) {
yield->delay_min = yield->delay;

}

/* current delay reading becomes last seen */
yield->prev_delay =

update_delay(yield->delay, yield->prev_delay, hist_factor);

/* update delay trend history using current */
yield->delay_trend = update_delay_trend(trend, yield->delay_trend);

}
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B.1.2 Per-Round Operation

static void tcp_yield_cong_avoid(struct sock *sk, u32 ack, u32 acked) {

struct tcp_sock *tp = tcp_sk(sk);
struct yield *yield = inet_csk_ca(sk);

int target = 0; /* target queuing delay (in ms) */
u32 qdelay = 0;
int off_target;

/* Window under ssthresh, do slow start. */
if (tp->snd_cwnd <= tp->snd_ssthresh) {

acked = tcp_slow_start(tp, acked);
if (!acked)

return;
}

/* Only calculate queuing delay once we have some delay estimates */
if (yield->delay_smin != 0) {

qdelay = yield->delay - (yield->delay_smin >> 3);
}

/* Calculate target queuing delay */
target = beta * 100* ((yield->delay_smax - yield->delay_smin) >> 3)

/ 10000;

off_target = target - qdelay;

if (off_target >= 0) {
/* under delay target, apply additive increase */

tcp_reno_cong_avoid(sk, ack, acked);
} else {
/* over delay target, apply multiplicative decrease */

u32 decrement;

decrement = tp->snd_cwnd >> yield->reduction_factor;
tp->snd_cwnd -= decrement;
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/* just decreased, next decrease should be smaller */
yield->reduction_factor += 1;

}

tp->snd_cwnd = max(MIN_CWND, tp->snd_cwnd);

yield->delay_min = UINT_MAX;
yield->delay_max = 0;
yield->cross_traffic = 0;

}
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