258 research outputs found

    Learning Adaptive FETI-DP Constraints for Irregular Domain Decompositions

    Get PDF
    Adaptive coarse spaces yield a robust convergence behavior for FETI-DP (Finite Element Tearing and Interconnecting - Dual Primal) and BDDC (Balancing Domain Decomposition by Constraints) methods for highly heterogeneous problems. However, the usage of such adaptive coarse spaces can be computationally expensive since, in general, it requires the setup and the solution of a relatively high amount of local eigenvalue problems on parts of the domain decomposition interface. In earlier works, see, e.g., [2], it has been shown that it is possible to train a neural network to make an automatic decision which of the eigenvalue problems in an adaptive FETI-DP method are actually necessary for robustness with a satisfactory accuracy. Moreover, these results have been extended in [6] by directly learning an approximation of the adaptive edge constraints themselves for regular, two-dimensional domain decompositions. In particular, this does not require the setup or the solution of any eigenvalue problems at all since the FETI-DP coarse space is, in this case, exclusively enhanced by the learned constraints obtained from the regression neural networks trained in an offline phase. Here, in contrast to [6], a regression neural network is trained with both, training data resulting from straight and irregular edges. Thus, it is possible to use the trained networks also for the approximation of adaptive constraints for irregular domain decompositions. Numerical results for a heterogeneous two-dimensional stationary diffusion problem are presented using both, a decomposition into regular and irregular subdomains

    Adaptive BDDC in Three Dimensions

    Full text link
    The adaptive BDDC method is extended to the selection of face constraints in three dimensions. A new implementation of the BDDC method is presented based on a global formulation without an explicit coarse problem, with massive parallelism provided by a multifrontal solver. Constraints are implemented by a projection and sparsity of the projected operator is preserved by a generalized change of variables. The effectiveness of the method is illustrated on several engineering problems.Comment: 28 pages, 9 figures, 9 table

    Adaptive FETI-DP and BDDC methods for highly heterogeneous elliptic finite element problems in three dimensions

    Get PDF
    Numerical methods are often well-suited for the solution of (elliptic) partial differential equations (PDEs) modeling naturally occuring processes. Many different solvers can be applied to systems which are obtained after discretization by the finite element method. Parallel architectures in modern computers facilitate the efficient use of diverse divide and conquer strategies. The intuitive approach, to divide a large (global) problem into subproblems, which are then solved in parallel, can significantly reduce the solution time. It is obvious that the solvers on the local subproblems then should deliver the contributions of the global solution restricted to the subdomains of computational region. The class of domain decomposition methods provides widely-used iterative algorithms for the parallel solution of implicit finite element problems. Often, an additional coarse space, which introduces a coupling between the subdomains, is used to ensure a global transport of information between the subdomains across the entire domain. The FETI-DP and BDDC domain decomposition methods are highly scalable parallel algorithms. However, when the parameter or coefficient distribution in the underlying partial differential equation becomes highly heterogeneous, classical methods, with a priori chosen coarse spaces, might not converge in a limited number of iterations. A remedy is offered by problem-dependent coarse spaces. These coarse spaces can be provided by adaptive methods, which then can improve the convergence at the cost of additional constraints. In this thesis, we introduce robust FETI-DP and BDDC methods for three-dimensional problems. These methods incorporate constraints, which are computed from local eigenvalue problems on faces and edges between subdomains, into the coarse space. The implementation of the constraints is performed by a deflation or balancing approach or by partial finite element assembly after a transformation of basis. For the latter, we introduce the generalized transformation-of-basis approach and show its correspondence to a deflation or balancing approach. An efficient parallel implementation of adaptive FETI-DP is discussed in the last part of this thesis. We provide weak and strong parallel scalability results for our adaptive algorithm executed on the supercomputer magnitUDE of the University of Duisburg-Essen. For weak scaling, we can show very good results up to 4,096 cores. We can also present very good strong scaling results up to 864 cores

    BDDC and FETI-DP under Minimalist Assumptions

    Full text link
    The FETI-DP, BDDC and P-FETI-DP preconditioners are derived in a particulary simple abstract form. It is shown that their properties can be obtained from only on a very small set of algebraic assumptions. The presentation is purely algebraic and it does not use any particular definition of method components, such as substructures and coarse degrees of freedom. It is then shown that P-FETI-DP and BDDC are in fact the same. The FETI-DP and the BDDC preconditioned operators are of the same algebraic form, and the standard condition number bound carries over to arbitrary abstract operators of this form. The equality of eigenvalues of BDDC and FETI-DP also holds in the minimalist abstract setting. The abstract framework is explained on a standard substructuring example.Comment: 11 pages, 1 figure, also available at http://www-math.cudenver.edu/ccm/reports
    corecore