104,140 research outputs found

    UV spectra of iron-doped carbon clusters FeC_n n = 3-6

    Full text link
    Electronic transitions of jet-cooled FeCn_n clusters (n=36n = 3 - 6) were measured between 230 and 300 nm by a mass-resolved 1+1 resonant two-photon ionization technique. Rotational profiles were simulated based on previous calculations of ground state geometries and compared to experimental observations. Reasonable agreement is found for the planar fan-like structure of FeC3_3. The FeC4_4 data indicate a shorter distance between the Fe atom and the bent C4_4 unit of the fan. The transitions are suggested to be 3^{3}A23_{2} \leftarrow ^{3}B1_{1} for FeC3_3 and 5^{5}A15_{1} \leftarrow ^{5}A1_{1} for FeC4_4. In contrast to the predicted Cv_{\infty \text{v}} geometry, non-linear FeC5_5 is apparently observed. Line width broadening prevents analysis of the FeC6_6 spectrum.Comment: 6 pages, 5 figure

    Replacing the Soft FEC Limit Paradigm in the Design of Optical Communication Systems

    Get PDF
    The FEC limit paradigm is the prevalent practice for designing optical communication systems to attain a certain bit-error rate (BER) without forward error correction (FEC). This practice assumes that there is an FEC code that will reduce the BER after decoding to the desired level. In this paper, we challenge this practice and show that the concept of a channel-independent FEC limit is invalid for soft-decision bit-wise decoding. It is shown that for low code rates and high order modulation formats, the use of the soft FEC limit paradigm can underestimate the spectral efficiencies by up to 20%. A better predictor for the BER after decoding is the generalized mutual information, which is shown to give consistent post-FEC BER predictions across different channel conditions and modulation formats. Extensive optical full-field simulations and experiments are carried out in both the linear and nonlinear transmission regimes to confirm the theoretical analysis

    Performance Metrics for Systems with Soft-Decision FEC and Probabilistic Shaping

    Full text link
    High-throughput optical communication systems utilize binary soft-decision forward error correction (SD-FEC) with bit interleaving over the bit channels. The generalized mutual information (GMI) is an achievable information rate (AIR) in such systems and is known to be a good predictor of the bit error rate after SD-FEC decoding (post-FEC BER) for uniform signaling. However, for probabilistically shaped (nonuniform) signaling, we find that the normalized AIR, defined as the AIR divided by the signal entropy, is less correlated with the post-FEC BER. We show that the information quantity based on the distribution of the single bit signal, and its asymmetric loglikelihood ratio, are better predictors of the post-FEC BER. In simulations over the Gaussian channel, we find that the prediction accuracy, quantified as the peak-to-peak deviation of the post-FEC BER within a set of different modulation formats and distributions, can be improved more than 10 times compared with the normalized AIR.Comment: 4 pages, 3 figure

    Reed-solomon forward error correction (FEC) schemes, RFC 5510

    Get PDF
    This document describes a Fully-Specified Forward Error Correction (FEC) Scheme for the Reed-Solomon FEC codes over GF(2^^m), where m is in {2..16}, and its application to the reliable delivery of data objects on the packet erasure channel (i.e., a communication path where packets are either received without any corruption or discarded during transmission). This document also describes a Fully-Specified FEC Scheme for the special case of Reed-Solomon codes over GF(2^^8) when there is no encoding symbol group. Finally, in the context of the Under-Specified Small Block Systematic FEC Scheme (FEC Encoding ID 129), this document assigns an FEC Instance ID to the special case of Reed-Solomon codes over GF(2^^8). Reed-Solomon codes belong to the class of Maximum Distance Separable (MDS) codes, i.e., they enable a receiver to recover the k source symbols from any set of k received symbols. The schemes described here are compatible with the implementation from Luigi Rizzo

    On the Impact of Optimal Modulation and FEC Overhead on Future Optical Networks

    Get PDF
    The potential of optimum selection of modulation and forward error correction (FEC) overhead (OH) in future transparent nonlinear optical mesh networks is studied from an information theory perspective. Different network topologies are studied as well as both ideal soft-decision (SD) and hard-decision (HD) FEC based on demap-and-decode (bit-wise) receivers. When compared to the de-facto QPSK with 7% OH, our results show large gains in network throughput. When compared to SD-FEC, HD-FEC is shown to cause network throughput losses of 12%, 15%, and 20% for a country, continental, and global network topology, respectively. Furthermore, it is shown that most of the theoretically possible gains can be achieved by using one modulation format and only two OHs. This is in contrast to the infinite number of OHs required in the ideal case. The obtained optimal OHs are between 5% and 80%, which highlights the potential advantage of using FEC with high OHs.Comment: Some minor typos were correcte

    Online multipath convolutional coding for real-time transmission

    Get PDF
    Most of multipath multimedia streaming proposals use Forward Error Correction (FEC) approach to protect from packet losses. However, FEC does not sustain well burst of losses even when packets from a given FEC block are spread over multiple paths. In this article, we propose an online multipath convolutional coding for real-time multipath streaming based on an on-the-fly coding scheme called Tetrys. We evaluate the benefits brought out by this coding scheme inside an existing FEC multipath load splitting proposal known as Encoded Multipath Streaming (EMS). We demonstrate that Tetrys consistently outperforms FEC in both uniform and burst losses with EMS scheme. We also propose a modification of the standard EMS algorithm that greatly improves the performance in terms of packet recovery. Finally, we analyze different spreading policies of the Tetrys redundancy traffic between available paths and observe that the longer propagation delay path should be preferably used to carry repair packets.Comment: Online multipath convolutional coding for real-time transmission (2012

    Performance Prediction of Nonbinary Forward Error Correction in Optical Transmission Experiments

    Get PDF
    In this paper, we compare different metrics to predict the error rate of optical systems based on nonbinary forward error correction (FEC). It is shown that the correct metric to predict the performance of coded modulation based on nonbinary FEC is the mutual information. The accuracy of the prediction is verified in a detailed example with multiple constellation formats, FEC overheads in both simulations and optical transmission experiments over a recirculating loop. It is shown that the employed FEC codes must be universal if performance prediction based on thresholds is used. A tutorial introduction into the computation of the threshold from optical transmission measurements is also given.Comment: submitted to IEEE/OSA Journal of Lightwave Technolog

    Implementation of an extended ZINB model in the study of low levels of natural gastrointestinal nematode infections in adult sheep

    Get PDF
    Background: In this study, two traits related with resistance to gastrointestinal nematodes (GIN) were measured in 529 adult sheep: faecal egg count (FEC) and activity of immunoglobulin A in plasma (IgA). In dry years, FEC can be very low in semi-extensive systems, such as the one studied here, which makes identifying animals that are resistant or susceptible to infection a difficult task. A zero inflated negative binomial model (ZINB) model was used to calculate the extent of zero inflation for FEC; the model was extended to include information from the IgA responses. Results: In this dataset, 64 % of animals had zero FEC while the ZINB model suggested that 38 % of sheep had not been recently infected with GIN. Therefore 26 % of sheep were predicted to be infected animals with egg counts that were zero or below the detection limit and likely to be relatively resistant to nematode infection. IgA activities of all animals were then used to decide which of the sheep with zero egg counts had been exposed and which sheep had not been recently exposed. Animals with zero FEC and high IgA activity were considered resistant while animals with zero FEC and low IgA activity were considered as not recently infected. For the animals considered as exposed to the infection, the correlations among the studied traits were estimated, and the influence of these traits on the discrimination between unexposed and infected animals was assessed. Conclusions: The model presented here improved the detection of infected animals with zero FEC. The correlations calculated here will be useful in the development of a reliable index of GIN resistance that could be of assistance for the study of host resistance in studies based on natural infection, especially in adult sheep, and also the design of breeding programs aimed at increasing resistance to parasites
    corecore