28 research outputs found

    Superconducting multicell cavities for linear colliders

    Get PDF

    Structures Division

    Get PDF
    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1995 are presented

    NASA Tech Briefs, October 1996

    Get PDF
    Topics covered include: Sensors; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Life Sciences; Books and Reports

    Dynamic tailoring of beam-like structures. Application to High Aspect Ratio unitized box-beam and internal resonant structures

    Get PDF
    This work is a journey into the dynamic tailoring of beam-like structures which aims to exploit unconventional couplings and nonlinearities to enlarge the design space and improving the performances of engineering systems. Particularly, two examples pertaining dynamic tailoring of aerospace and mechanical systems are investigated in depth. In the first case, the work aims to attain a desired structural performance exploiting typical nonlinear structural phenomena and unconventional couplings offered by the unitized structures. As for the unitized structures, the present work, derives two equivalent plate models of curvilinear stiffened panels namely, constant (or homogenized) stiffness model and variable stiffness model. The models are assessed through finite element analysis. In the spirit of CAS (Circumferentially Asymmetric Stiffness), the equivalent plate stiffness’s are used to determine the cross- sectional beam stiffness’s. The governing equations for the Euler-Bernoulli, anisotropic beam with variable stiffness are derived and then used to address the optimization problem. The objective of the optimization is to attain a desired static or dynamic performance of the unitized beam exploiting the enlarged design space which arises from the stiffness variability and the unconventional couplings. In the second type of system analyzed, the aim is synthesize meaningful topologies for planar resonators. The topology optimization is addressed using as initial guess a ground structure. Motivated by the results of the optimization, a generalized reduced order model is derived for multi-members beam structures. The generalized model have been then specialized for three cases namely, V- Y- and Z-shaped resonators. The analytical solution for the V-shaped resonator is also derived along with the electro-mechanical equations of motion. Different solutions are studied aiming at investigating the effect of the folding angle on to the performances of a V-shaped harvester. Beside the study of the static and dynamic behavior of the systems, the thesis presents two novel optimization algorithms namely, the Stud^P GA and the GERM. The Stud^P GA, is a population based algorithm conceived to enhance the exploration capabilities, and hence the convergence rate, of classical GA. The Stud^P GA has been preliminary assessed through benchmark problems for composite layered structure and then used for the optimization of the stiffeners' path aiming at attaining a desired static or dynamic performances. The GERM (Graph-based Element Removal Method), is a double filtering technique conceived for the topology synthesis of planar ground structures. The GERM has been used, in combination with a standard GA, to address the topology optimization problem of the two types of system namely, planar resonator and compliant structures. The work introduces also the concept of trace-based scaling for predicting the behavior of anisotropic structures. The effectiveness of the trace-based scaling is assessed through comparison between scaled and analytical performances of anisotropic structures

    International Workshop on MicroFactories (IWMF 2012): 17th-20th June 2012 Tampere Hall Tampere, Finland

    Get PDF
    This Workshop provides a forum for researchers and practitioners in industry working on the diverse issues of micro and desktop factories, as well as technologies and processes applicable for micro and desktop factories. Micro and desktop factories decrease the need of factory floor space, and reduce energy consumption and improve material and resource utilization thus strongly supporting the new sustainable manufacturing paradigm. They can be seen also as a proper solution to point-of-need manufacturing of customized and personalized products near the point of need

    NASA Tech Briefs, June 1991

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Solar thermal power generation. A bibliography with abstracts

    Get PDF
    Bibliographies and abstracts are cited under the following topics: (1) energy overviews; (2) solar overviews; (3) conservation; (4) economics, law; (5) thermal power; (6) thermionic, thermoelectric; (7) ocean; (8) wind power; (9) biomass and photochemical; and (10) large photovoltaics

    Research and technology

    Get PDF
    Significant research and technology activities at the Johnson Space Center (JSC) during Fiscal Year 1990 are reviewed. Research in human factors engineering, the Space Shuttle, the Space Station Freedom, space exploration and related topics are covered
    corecore