351 research outputs found

    SwingBot: Learning Physical Features from In-hand Tactile Exploration for Dynamic Swing-up Manipulation

    Full text link
    Several robot manipulation tasks are extremely sensitive to variations of the physical properties of the manipulated objects. One such task is manipulating objects by using gravity or arm accelerations, increasing the importance of mass, center of mass, and friction information. We present SwingBot, a robot that is able to learn the physical features of a held object through tactile exploration. Two exploration actions (tilting and shaking) provide the tactile information used to create a physical feature embedding space. With this embedding, SwingBot is able to predict the swing angle achieved by a robot performing dynamic swing-up manipulations on a previously unseen object. Using these predictions, it is able to search for the optimal control parameters for a desired swing-up angle. We show that with the learned physical features our end-to-end self-supervised learning pipeline is able to substantially improve the accuracy of swinging up unseen objects. We also show that objects with similar dynamics are closer to each other on the embedding space and that the embedding can be disentangled into values of specific physical properties.Comment: IROS 202

    Nonlinear control strategy for a cost effective myoelectric prosthetic hand

    Get PDF
    The loss of a limb tremendously impacts the life of the affected individual. In the past decades, researchers have been developing artificial limbs that may return some of the missing functions and cosmetics. However, the development of dexterous mechanisms capable of mimicking the function of the human hand is a complex venture. Even though myoelectric prostheses have advanced, several issues remain to be solved before an artificial limb may be comparable to its human counterpart. Moreover, the high cost of advanced limbs prevents their widespread use among the low-income population. This dissertation presents a strategy for the low-level of control of a cost effective robotic hand for prosthetic applications. The main purpose of this work is to reduce the high cost associated with limb replacement. The presented strategy uses an electromyographic signal classifier, which detects user intent by classifying 4 different wrist movements. This information is supplied as 4 different pre-shapes of the robotic hand to the low-level of control for safely and effectively performing the grasping tasks. Two proof-of-concept prototypes were implemented, consisting on five-finger underactuated hands driven by inexpensive DC motors and equipped with low-cost sensors. To overcome the limitations and nonlinearities of inexpensive components, a multi-stage control methodology was designed for modulating the grasping force based on slippage detection and nonlinear force control. A multi-stage control methodology for modulating the grasping force based on slippage detection and nonlinear force control was designed. The two main stages of the control strategy are the force control stage and the detection stage. The control strategy uses the force control stage to maintain a constant level of force over the object. The results of the experiments performed over this stage showed a rising time of less than 1 second, force overshoot of less than 1 N and steady state error of less than 0.15 N. The detection stage is used to monitor any sliding of the object from the hand. The experiments performed over this stage demonstrated a delay in the slip detection process of less than 200 milliseconds. The initial force, and the amount of force incremented after sliding is detected, were adjusted to reduce object displacement. Experiments were then performed to test the control strategy on situations often encountered in the ADL. The results showed that the control strategy was able to detect the dynamic changes in mass of the object and to successfully adjust the grasping force to prevent the object from dropping. The evaluation of the proposed control strategy suggests that this methodology can overcome the limitation of inexpensive sensors and actuators. Therefore, this control strategy may reduce the cost of current myoelectric prosthesis. We believe that the work presented here is a major step towards the development of a cost effective myoelectric prosthetic hand

    Neural bases of hand synergies

    Get PDF
    abstract: The human hand has so many degrees of freedom that it may seem impossible to control. A potential solution to this problem is “synergy control” which combines dimensionality reduction with great flexibility. With applicability to a wide range of tasks, this has become a very popular concept. In this review, we describe the evolution of the modern concept using studies of kinematic and force synergies in human hand control, neurophysiology of cortical and spinal neurons, and electromyographic (EMG) activity of hand muscles. We go beyond the often purely descriptive usage of synergy by reviewing the organization of the underlying neuronal circuitry in order to propose mechanistic explanations for various observed synergy phenomena. Finally, we propose a theoretical framework to reconcile important and still debated concepts such as the definitions of “fixed” vs. “flexible” synergies and mechanisms underlying the combination of synergies for hand control.View the article as published at http://journal.frontiersin.org/article/10.3389/fncom.2013.00023/ful

    Tactile-Filter: Interactive Tactile Perception for Part Mating

    Full text link
    Humans rely on touch and tactile sensing for a lot of dexterous manipulation tasks. Our tactile sensing provides us with a lot of information regarding contact formations as well as geometric information about objects during any interaction. With this motivation, vision-based tactile sensors are being widely used for various robotic perception and control tasks. In this paper, we present a method for interactive perception using vision-based tactile sensors for a part mating task, where a robot can use tactile sensors and a feedback mechanism using a particle filter to incrementally improve its estimate of objects (pegs and holes) that fit together. To do this, we first train a deep neural network that makes use of tactile images to predict the probabilistic correspondence between arbitrarily shaped objects that fit together. The trained model is used to design a particle filter which is used twofold. First, given one partial (or non-unique) observation of the hole, it incrementally improves the estimate of the correct peg by sampling more tactile observations. Second, it selects the next action for the robot to sample the next touch (and thus image) which results in maximum uncertainty reduction to minimize the number of interactions during the perception task. We evaluate our method on several part-mating tasks with novel objects using a robot equipped with a vision-based tactile sensor. We also show the efficiency of the proposed action selection method against a naive method. See supplementary video at https://www.youtube.com/watch?v=jMVBg_e3gLw .Comment: Accepted at RSS202

    Modular autonomous strawberry-picking robotic system

    Get PDF
    Challenges in strawberry picking made selective harvesting robotic technology very demanding. However, the elective harvesting of strawberries is a complicated robotic task forming a few scientific research questions. Most available solutions only deal with a specific picking scenario, for example, picking only a single variety of fruit in isolation. Nonetheless, most economically viable (e.g., high‐yielding and/or disease‐resistant) varieties of strawberry are grown in dense clusters. The current perception technology in such use cases is inefficient. In this work, we developed a novel system capable of harvesting strawberries with several unique features. These features allow the system to deal with very complex picking scenarios, for example, dense clusters. Our concept of a modular system makes our system reconfigurable to adapt to different picking scenarios. We designed, manufactured, and tested a patented picking head with 2.5‐degrees of freedom (two independent mechanisms and one dependent cutting system) capable of removing possible occlusions and harvesting the targeted strawberry without any contact with the fruit flesh to avoid damage and bruising. In addition, we developed a novel perception system to localize strawberries and detect their key points, picking points, and determine their ripeness. For this purpose, we introduced two new data sets. Finally, we tested the system in a commercial strawberry growing field and our research farm with three different strawberry varieties. The results show the effectiveness and reliability of the proposed system. The designed picking head was able to remove occlusions and harvest strawberries effectively. The perception system was able to detect and determine the ripeness of strawberries with 95% accuracy. In total, the system was able to harvest 87% of all detected strawberries with a success rate of 83% for all pluckable fruits. We also discuss a series of open research questions in the discussion section

    Barrels XXXII Meeting Report: Whiskers in the Windy City

    Full text link
    The 32nd Annual Barrels meeting was hosted at the Northwestern University Feinberg School of Medicine in Chicago, Illinois on October 17th and 18th, 2019. The annual meeting brings together researchers who utilize the rodent whisker-to-barrel system as a means to understand cortical function and development. This year’s meeting focused on social behaviors, development and cerebellar functions within the barrel system and beyond

    Flexor Dysfunction Following Unilateral Transient Ischemic Brain Injury Is Associated with Impaired Locomotor Rhythmicity

    Get PDF
    Functional motor deficits in hemiplegia after stroke are predominately associated with flexor muscle impairments in animal models of ischemic brain injury, as well as in clinical findings. Rehabilitative interventions often employ various means of retraining a maladapted central pattern generator for locomotion. Yet, holistic modeling of the central pattern generator, as well as applications of such studies, are currently scarce. Most modeling studies rely on cellular neural models of the intrinsic spinal connectivity governing ipsilateral flexor-extensor, as well as contralateral coupling inherent in the spinal cord. Models that attempt to capture the general behavior of motor neuronal populations, as well as the different modes of driving their oscillatory function in vivo is lacking in contemporary literature. This study aims at generating a holistic model of flexor and extensor function as a whole, and seeks to evaluate the parametric coupling of ipsilateral and contralateral half-center coupling through the means of generating an ordinary differential equation representative of asymmetric central pattern generator models of varying coupling architectures. The results of this study suggest that the mathematical predictions of the locomotor centers which drive the dorsiflexion phase of locomotion are correlated with the denervation-type atrophy response of hemiparetic dorsiflexor muscles, as well as their spatiotemporal activity dysfunction during in vivo locomotion on a novel precise foot placement task. Moreover, the hemiplegic solutions were found to lie in proximity to an alternative task-space solution, by which a hemiplegic strategy could be readapted in order to produce healthy output. The results revealed that there are multiple strategies of retraining hemiplegic solutions of the CPG. This solution may modify the hemiparetic locomotor pattern into a healthy output by manipulating inter-integrator couplings which are not damaged by damage to the descending drives. Ultimately, some modeling experiments will demonstrate that the increased reliance on intrinsic connectivity increases the stability of the output, rendering it resistant to perturbations originating from extrinsic inputs to the pattern generating center
    • 

    corecore