16,560 research outputs found

    Structure and properties of maximal outerplanar graphs.

    Get PDF
    Outerplanar graphs are planar graphs that have a plane embedding in which each vertex lies on the boundary of the exterior region. An outerplanar graph is maximal outerplanar if the graph obtained by adding an edge is not outerplanar. Maximal outerplanar graphs are also known as triangulations of polygons. The spine of a maximal outerplanar graph G is the dual graph of G without the vertex that corresponds to the exterior region. In this thesis we study metric properties involving geodesic intervals, geodetic sets, Steiner sets, different concepts of boundary, and also relationships between the independence numbers and domination numbers of maximal outerplanar graphs and their spines. In Chapter 2 we find an extension of a result by Beyer, et al. [3] that deals with Hamiltonian degree sequences in maximal outerplanar graphs. In Chapters 3 and 4 we give sharp bounds relating the independence number and domination number, respectively, of a maximal outerplanar graph to those of its spine. In Chapter 5 we discuss the boundary, contour, eccentricity, periphery, and extreme set of a graph. We give a characterization of the boundary of maximal outerplanar graphs that involves the degrees of vertices. We find properties that characterize the contour of a maximal outerplanar graph. The other main result of this chapter gives characterizations of graphs induced by the contour and by the periphery of a maximal outerplanar graph. In Chapter 6 we show that the generalized intervals in a maximal outerplanar graph are convex. We use this result to characterize geodetic sets in maximal outerplanar graphs. We show that every Steiner set in a maximal outerplanar graph is a geodetic set and also show some differences between these types of sets. We present sharp bounds for geodetic numbers and Steiner numbers of maximal outerplanar graphs

    The generalized 3-edge-connectivity of lexicographic product graphs

    Full text link
    The generalized kk-edge-connectivity λk(G)\lambda_k(G) of a graph GG is a generalization of the concept of edge-connectivity. The lexicographic product of two graphs GG and HH, denoted by GHG\circ H, is an important graph product. In this paper, we mainly study the generalized 3-edge-connectivity of GHG \circ H, and get upper and lower bounds of λ3(GH)\lambda_3(G \circ H). Moreover, all bounds are sharp.Comment: 14 page

    Packing Steiner Trees

    Full text link
    Let TT be a distinguished subset of vertices in a graph GG. A TT-\emph{Steiner tree} is a subgraph of GG that is a tree and that spans TT. Kriesell conjectured that GG contains kk pairwise edge-disjoint TT-Steiner trees provided that every edge-cut of GG that separates TT has size 2k\ge 2k. When T=V(G)T=V(G) a TT-Steiner tree is a spanning tree and the conjecture is a consequence of a classic theorem due to Nash-Williams and Tutte. Lau proved that Kriesell's conjecture holds when 2k2k is replaced by 24k24k, and recently West and Wu have lowered this value to 6.5k6.5k. Our main result makes a further improvement to 5k+45k+4.Comment: 38 pages, 4 figure

    Statistical Mechanics of Steiner trees

    Get PDF
    The Minimum Weight Steiner Tree (MST) is an important combinatorial optimization problem over networks that has applications in a wide range of fields. Here we discuss a general technique to translate the imposed global connectivity constrain into many local ones that can be analyzed with cavity equation techniques. This approach leads to a new optimization algorithm for MST and allows to analyze the statistical mechanics properties of MST on random graphs of various types

    Colored Non-Crossing Euclidean Steiner Forest

    Full text link
    Given a set of kk-colored points in the plane, we consider the problem of finding kk trees such that each tree connects all points of one color class, no two trees cross, and the total edge length of the trees is minimized. For k=1k=1, this is the well-known Euclidean Steiner tree problem. For general kk, a kρk\rho-approximation algorithm is known, where ρ1.21\rho \le 1.21 is the Steiner ratio. We present a PTAS for k=2k=2, a (5/3+ε)(5/3+\varepsilon)-approximation algorithm for k=3k=3, and two approximation algorithms for general~kk, with ratios O(nlogk)O(\sqrt n \log k) and k+εk+\varepsilon

    Graphs with large generalized (edge-)connectivity

    Full text link
    The generalized kk-connectivity κk(G)\kappa_k(G) of a graph GG, introduced by Hager in 1985, is a nice generalization of the classical connectivity. Recently, as a natural counterpart, we proposed the concept of generalized kk-edge-connectivity λk(G)\lambda_k(G). In this paper, graphs of order nn such that κk(G)=nk21\kappa_k(G)=n-\frac{k}{2}-1 and λk(G)=nk21\lambda_k(G)=n-\frac{k}{2}-1 for even kk are characterized.Comment: 25 pages. arXiv admin note: text overlap with arXiv:1207.183

    Flip Distance Between Triangulations of a Simple Polygon is NP-Complete

    Full text link
    Let T be a triangulation of a simple polygon. A flip in T is the operation of removing one diagonal of T and adding a different one such that the resulting graph is again a triangulation. The flip distance between two triangulations is the smallest number of flips required to transform one triangulation into the other. For the special case of convex polygons, the problem of determining the shortest flip distance between two triangulations is equivalent to determining the rotation distance between two binary trees, a central problem which is still open after over 25 years of intensive study. We show that computing the flip distance between two triangulations of a simple polygon is NP-complete. This complements a recent result that shows APX-hardness of determining the flip distance between two triangulations of a planar point set.Comment: Accepted versio
    corecore