20,118 research outputs found

    Voltage Stability Assessment and Enhancement in Power Systems

    Get PDF
    Voltage stability is a long standing issue in power systems and also is critical in the power system. This thesis aims to address the voltage stability problems. When wind generators reach maximum reactive power output, the bus voltage will operate near its steady-state stability limit. In order to avoid voltage instability, a dynamic L-index minimization approach is proposed by incorporating both wind generators and other reactive power resources. It then verifies the proposed voltage stability enhancement method using real data from load and wind generation in the IEEE 14 bus system. Additionally, power system is not necessary to always operate at the most voltage stable point as it requires high control efforts. Thus, we propose a novel L-index sensitivity based control algorithm using full Phasor measurement unit measurements for voltage stability enhancement. The proposed method uses both outputs of wind generators and additional reactive power compensators as control variables. The L-index sensitivity with respect to control variables is introduced. Based on these sensitivities, the control algorithm can minimise all the control efforts, while satisfying the predetermined L-index value. Additionally, a subsection control scheme is applied where both normal condition and weak condition are taken into account. It consists of the proposed L-index sensitivities based control algorithm and an overall L-index minimisation method. Threshold selection for the subsection control scheme is discussed and extreme learning machine is introduced for status fast classification to choose the method which has less power cost on the transmission line. Due to the high cost of PMUs, a voltage stability assessment method using partial Phasor measurement unit (PMU) measurements is proposed. Firstly, a new optimisation formulation is proposed that minimizes the number of PMUs considering the most sensitive buses. Then, extreme learning machine (ELM) is used for fast voltage estimation. In this way, the voltages at buses without PMUs can be rapidly obtained based on the PMUs measurements. Finally, voltage stability can be assessed by using L-index

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Power system stability scanning and security assessment using machine learning

    Get PDF
    Future grids planning requires a major departure from conventional power system planning, where only a handful of the most critical scenarios is analyzed. To account for a wide range of possible future evolutions, scenario analysis has been proposed in many industries. As opposed to the conventional power system planning, where the aim is to ïŹnd an optimal transmission and/or generation expansion plan for an existing grid, the aim in future grids scenario analysis is to analyze possible evolution pathways to inform power system planning and policy making. Therefore, future grids’ planning may involve large amount of scenarios and the existing planning tools may no longer suitable. Other than the raised future grids’ planning issues, operation of future grids using conventional tools is also challenged by the new features of future grids such as intermittent generation, demand response and fast responding power electronic plants which lead to much more diverse operation conditions compared to the existing networks. Among all operation issues, monitoring stability as well as security of a power system and action with deliberated preventive or remedial adjustment is of vital important. On- line Dynamic Security Assessment (DSA) can evaluate security of a power system almost instantly when current or imminent operation conditions are supplied. The focus of this dissertation are, for future grid planning, to develop a framework using Machine Learning (ML) to effectively assess the security of future grids by analyzing a large amount of the scenarios; for future grids operation, to propose approaches to address technique issues brought by future grids’ diverse operation conditions using ML techniques. Unsupervised learning, supervised learning and semi-supervised learning techniques are utilized in a set of proposed planning and operation security assessment tools

    Smart Grid for the Smart City

    Get PDF
    Modern cities are embracing cutting-edge technologies to improve the services they offer to the citizens from traffic control to the reduction of greenhouse gases and energy provisioning. In this chapter, we look at the energy sector advocating how Information and Communication Technologies (ICT) and signal processing techniques can be integrated into next generation power grids for an increased effectiveness in terms of: electrical stability, distribution, improved communication security, energy production, and utilization. In particular, we deliberate about the use of these techniques within new demand response paradigms, where communities of prosumers (e.g., households, generating part of their electricity consumption) contribute to the satisfaction of the energy demand through load balancing and peak shaving. Our discussion also covers the use of big data analytics for demand response and serious games as a tool to promote energy-efficient behaviors from end users
    • 

    corecore