46,742 research outputs found

    Fader Networks: Manipulating Images by Sliding Attributes

    Get PDF
    This paper introduces a new encoder-decoder architecture that is trained to reconstruct images by disentangling the salient information of the image and the values of attributes directly in the latent space. As a result, after training, our model can generate different realistic versions of an input image by varying the attribute values. By using continuous attribute values, we can choose how much a specific attribute is perceivable in the generated image. This property could allow for applications where users can modify an image using sliding knobs, like faders on a mixing console, to change the facial expression of a portrait, or to update the color of some objects. Compared to the state-of-the-art which mostly relies on training adversarial networks in pixel space by altering attribute values at train time, our approach results in much simpler training schemes and nicely scales to multiple attributes. We present evidence that our model can significantly change the perceived value of the attributes while preserving the naturalness of images.Comment: NIPS 201

    VGAN-Based Image Representation Learning for Privacy-Preserving Facial Expression Recognition

    Full text link
    Reliable facial expression recognition plays a critical role in human-machine interactions. However, most of the facial expression analysis methodologies proposed to date pay little or no attention to the protection of a user's privacy. In this paper, we propose a Privacy-Preserving Representation-Learning Variational Generative Adversarial Network (PPRL-VGAN) to learn an image representation that is explicitly disentangled from the identity information. At the same time, this representation is discriminative from the standpoint of facial expression recognition and generative as it allows expression-equivalent face image synthesis. We evaluate the proposed model on two public datasets under various threat scenarios. Quantitative and qualitative results demonstrate that our approach strikes a balance between the preservation of privacy and data utility. We further demonstrate that our model can be effectively applied to other tasks such as expression morphing and image completion

    The Many Moods of Emotion

    Full text link
    This paper presents a novel approach to the facial expression generation problem. Building upon the assumption of the psychological community that emotion is intrinsically continuous, we first design our own continuous emotion representation with a 3-dimensional latent space issued from a neural network trained on discrete emotion classification. The so-obtained representation can be used to annotate large in the wild datasets and later used to trained a Generative Adversarial Network. We first show that our model is able to map back to discrete emotion classes with a objectively and subjectively better quality of the images than usual discrete approaches. But also that we are able to pave the larger space of possible facial expressions, generating the many moods of emotion. Moreover, two axis in this space may be found to generate similar expression changes as in traditional continuous representations such as arousal-valence. Finally we show from visual interpretation, that the third remaining dimension is highly related to the well-known dominance dimension from psychology

    Self-tuned Visual Subclass Learning with Shared Samples An Incremental Approach

    Full text link
    Computer vision tasks are traditionally defined and evaluated using semantic categories. However, it is known to the field that semantic classes do not necessarily correspond to a unique visual class (e.g. inside and outside of a car). Furthermore, many of the feasible learning techniques at hand cannot model a visual class which appears consistent to the human eye. These problems have motivated the use of 1) Unsupervised or supervised clustering as a preprocessing step to identify the visual subclasses to be used in a mixture-of-experts learning regime. 2) Felzenszwalb et al. part model and other works model mixture assignment with latent variables which is optimized during learning 3) Highly non-linear classifiers which are inherently capable of modelling multi-modal input space but are inefficient at the test time. In this work, we promote an incremental view over the recognition of semantic classes with varied appearances. We propose an optimization technique which incrementally finds maximal visual subclasses in a regularized risk minimization framework. Our proposed approach unifies the clustering and classification steps in a single algorithm. The importance of this approach is its compliance with the classification via the fact that it does not need to know about the number of clusters, the representation and similarity measures used in pre-processing clustering methods a priori. Following this approach we show both qualitatively and quantitatively significant results. We show that the visual subclasses demonstrate a long tail distribution. Finally, we show that state of the art object detection methods (e.g. DPM) are unable to use the tails of this distribution comprising 50\% of the training samples. In fact we show that DPM performance slightly increases on average by the removal of this half of the data.Comment: Updated ICCV 2013 submissio

    C2AE: Class Conditioned Auto-Encoder for Open-set Recognition

    Full text link
    Models trained for classification often assume that all testing classes are known while training. As a result, when presented with an unknown class during testing, such closed-set assumption forces the model to classify it as one of the known classes. However, in a real world scenario, classification models are likely to encounter such examples. Hence, identifying those examples as unknown becomes critical to model performance. A potential solution to overcome this problem lies in a class of learning problems known as open-set recognition. It refers to the problem of identifying the unknown classes during testing, while maintaining performance on the known classes. In this paper, we propose an open-set recognition algorithm using class conditioned auto-encoders with novel training and testing methodology. In contrast to previous methods, training procedure is divided in two sub-tasks, 1. closed-set classification and, 2. open-set identification (i.e. identifying a class as known or unknown). Encoder learns the first task following the closed-set classification training pipeline, whereas decoder learns the second task by reconstructing conditioned on class identity. Furthermore, we model reconstruction errors using the Extreme Value Theory of statistical modeling to find the threshold for identifying known/unknown class samples. Experiments performed on multiple image classification datasets show proposed method performs significantly better than state of the art.Comment: CVPR2019 (Oral
    • …
    corecore