193 research outputs found

    Open-source software product line extraction processes: the ArgoUML-SPL and Phaser cases

    Get PDF
    Software Product Lines (SPLs) are rarely developed from scratch. Commonly, they emerge from one product when there is a need to create tailored variants, or from existing variants created in an ad-hoc way once their separated maintenance and evolution become challenging. Despite the vast literature about re-engineering systems into SPLs and related technical approaches, there is a lack of detailed analysis of the process itself and the effort involved. In this paper, we provide and analyze empirical data of the extraction processes of two open source case studies, namely ArgoUML and Phaser. Both cases emerged from the transition of a monolithic system into an SPL. The analysis relies on information mined from the version control history of their respective source-code repositories and the discussion with developers that took part in the process. Unlike previous works that focused mostly on the structural results of the final SPL, the contribution of this study is an in-depth characterization of the processes. With this work, we aimed at providing a deeper understanding of the strategies for SPL extraction and their implications. Our results indicate that the source code changes can range from almost a fourth to over half of the total lines of code. Developers may or may not use branching strategies for feature extraction. Additionally, the problems faced during the extraction process may be due to lack of tool support, complexity on managing feature dependencies and issues with feature constraints. We made publicly available the datasets and the analysis scripts of both case studies to be used as a baseline for extractive SPL adoption research and practice.This research was partially funded by CNPq, grant no. 408356/2018-9; FAPPR, grant no. 51435; and FAPERJ PDR-10 Fellowship 202073/2020. Open access funding provided by Johannes Kepler University Lin

    A Framework for Seamless Variant Management and Incremental Migration to a Software Product-Line

    Get PDF
    Context: Software systems often need to exist in many variants in order to satisfy varying customer requirements and operate under varying software and hardware environments. These variant-rich systems are most commonly realized using cloning, a convenient approach to create new variants by reusing existing ones. Cloning is readily available, however, the non-systematic reuse leads to difficult maintenance. An alternative strategy is adopting platform-oriented development approaches, such as Software Product-Line Engineering (SPLE). SPLE offers systematic reuse, and provides centralized control, and thus, easier maintenance. However, adopting SPLE is a risky and expensive endeavor, often relying on significant developer intervention. Researchers have attempted to devise strategies to synchronize variants (change propagation) and migrate from clone&own to an SPL, however, they are limited in accuracy and applicability. Additionally, the process models for SPLE in literature, as we will discuss, are obsolete, and only partially reflect how adoption is approached in industry. Despite many agile practices prescribing feature-oriented software development, features are still rarely documented and incorporated during actual development, making SPL-migration risky and error-prone.Objective: The overarching goal of this PhD is to bridge the gap between clone&own and software product-line engineering in a risk-free, smooth, and accurate manner. Consequently, in the first part of the PhD, we focus on the conceptualization, formalization, and implementation of a framework for migrating from a lean architecture to a platform-based one.Method: Our objectives are met by means of (i) understanding the literature relevant to variant-management and product-line migration and determining the research gaps (ii) surveying the dominant process models for SPLE and comparing them against the contemporary industrial practices, (iii) devising a framework for incremental SPL adoption, and (iv) investigating the benefit of using features beyond PL migration; facilitating model comprehension.Results: Four main results emerge from this thesis. First, we present a qualitative analysis of the state-of-the-art frameworks for change propagation and product-line migration. Second, we compare the contemporary industrial practices with the ones prescribed in the process models for SPL adoption, and provide an updated process model that unifies the two to accurately reflect the real practices and guide future practitioners. Third, we devise a framework for incremental migration of variants into a fully integrated platform by exploiting explicitly recorded metadata pertaining to clone and feature-to-asset traceability. Last, we investigate the impact of using different variability mechanisms on the comprehensibility of various model-related tasks.Future work: As ongoing and future work, we aim to integrate our framework with existing IDEs and conduct a developer study to determine the efficiency and effectiveness of using our framework. We also aim to incorporate safe-evolution in our operators

    Software product line engineering: a practical experience

    Get PDF
    The lack of mature tool support is one of the main reasons that make the industry to be reluctant to adopt Software Product Line (SPL) approaches. A number of systematic literature reviews exist that identify the main characteristics offered by existing tools and the SPL phases in which they can be applied. However, these reviews do not really help to understand if those tools are offering what is really needed to apply SPLs to complex projects. These studies are mainly based on information extracted from the tool documentation or published papers. In this paper, we follow a different approach, in which we firstly identify those characteristics that are currently essential for the development of an SPL, and secondly analyze whether the tools provide or not support for those characteristics. We focus on those tools that satisfy certain selection criteria (e.g., they can be downloaded and are ready to be used). The paper presents a state of practice with the availability and usability of the existing tools for SPL, and defines different roadmaps that allow carrying out a complete SPL process with the existing tool support.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. Magic P12-TIC1814, HADAS TIN2015-64841-R (cofinanciado con fondos FEDER), MEDEA RTI2018-099213-B-I00 (cofinanciado con fondos FEDER), TASOVA MCIU-AEI TIN2017-90644-RED

    A comparison of two SPLE tools : Pure::Variants and Clafer tools

    Get PDF
    In software product line engineering (SPLE), parts of developed software is made variable in order to be able to build a whole range of software products at the same time. This is widely known to have a number of potential benefits such as saving costs when the product line is large enough. However, managing variability in software introduces challenges that are not well addressed by tools used in conventional software engineering, and specialized tools are needed. Research questions: 1) What are the most important requirements for SPLE tools for a small-to-medium sized organisation aiming to experiment with SPLE? 2) How well those requirements are met in two specific SPLE tools, Pure::Variants and Clafer tools? 3) How do the studied tools compare against each other when it comes to their suitability for the chosen context (a digital board game platform)? 4) How common requirements for SPL tools can be generalized to be applicable for both graphical and text-based tools? A list of requirements is first obtained from literature and then used as a basis for an experiment where support for each requirement is tried out with both tools. Then a part of an example product line is developed with both tools and the experiences reported on. Both tools were found to support the list of requirements quite well, although there were some usability problems and not everything could be tested due to technical issues. Based on developing the example, both tools were found to have their own strengths and weaknesses probably partly resulting from one being GUI-based and one textual. ACM Computing Classification System (CCS): (1) CCS → Software and its engineering → Software creation and management → Software development techniques → Reusability → Software product lines (2) CCS → Software and its engineering → Software notations and tools → Software configuration management and version control system
    • …
    corecore