4 research outputs found

    EXTRACTION OF LINES AND REGIONS FROM GREY TONE LINE DRAWING IMAGES

    Get PDF
    An algorithm is described for extracting lines from grey level digitizations of industrial drawings. The algorithm is robust, non iterati e, and sequential, and includes procedures for differentiating shaded areas from lines. Examples are given for complex regions of a typical mechanical drawing

    Shape Information in an Artefact Database

    Get PDF

    Automated interpretation of digital images of hydrographic charts.

    Get PDF
    Details of research into the automated generation of a digital database of hydrographic charts is presented. Low level processing of digital images of hydrographic charts provides image line feature segments which serve as input to a semi-automated feature extraction system, (SAFE). This system is able to perform a great deal of the building of chart features from the image segments simply on the basis of proximity of the segments. The system solicits user interaction when ambiguities arise. IThe creation of an intelligent knowledge based system (IKBS) implemented in the form of a backward chained production rule based system, which cooperates with the SAFE system, is described. The 1KBS attempts to resolve ambiguities using domain knowledge coded in the form of production rules. The two systems communicate by the passing of goals from SAFE to the IKBS and the return of a certainty factor by the IKBS for each goal submitted. The SAFE system can make additional feature building decisions on the basis of collected sets of certainty factors, thus reducing the need for user interaction. This thesis establishes that the cooperating IKBS approach to image interpretation offers an effective route to automated image understanding

    The PSEIKI Report—Version 2. Evidence Accumulation and Flow of Control in a Hierarchical Spatial Reasoning System

    Get PDF
    A fundamental goal of computer vision is the development of systems capable of carrying out scene interpretation while taking into account all the available knowledge. In this report, we have focused on how the interpretation task may be aided by expected-scene information which, in most cases, would not be in registration with the perceived scene. In this report, we describe PSEIKI, a framework for expectation-driven interpretation of image data. PSEIKI builds abstraction hierarchies in image data using, for cues, supplied abstraction hierarchies in a scene expectation map. Hypothesized abstractions in the image data are geometrically compared with the known abstractions in the expected scene; the metrics used for these comparisons translate into belief values. The Dempster-Shafer formalism is used to accumulate beliefs for the synthesized abstractions in the image data. For accumulating belief values, a computationally efficient variation of Dempster’s rule of combination is developed to enable the system to deal with the overwhelming amount of information present in most images. This variation of Dempster’s rule allows the reasoning process to be embedded into the abstraction hierarchy by allowing for the propagation of belief values between elements at different levels of abstraction. The system has been implemented as a 2- panel, 5-level blackboard in OPS 83. This report also discusses the control aspects of the blackboard, achieved via a distributed monitor using the OPS83 demons and a scheduler. Various knowledge sources for forming groupings in the image data and for labeling such groupings with abstractions from the scene expectation map are also discussed
    corecore