
Purdue University
Purdue e-Pubs
Department of Electrical and Computer
Engineering Technical Reports

Department of Electrical and Computer
Engineering

7-1-1988

The PSEIKI Report—Version 2. Evidence
Accumulation and Flow of Control in a
Hierarchical Spatial Reasoning System
K. M. Andress
Purdue University

A. C. Kak
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Andress, K. M. and Kak, A. C., "The PSEIKI Report—Version 2. Evidence Accumulation and Flow of Control in a Hierarchical Spatial
Reasoning System" (1988). Department of Electrical and Computer Engineering Technical Reports. Paper 594.
https://docs.lib.purdue.edu/ecetr/594

https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F594&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F594&utm_medium=PDF&utm_campaign=PDFCoverPages

The PSEIKI Report—Version 2

Evidence Accumulation
and Flow of Control in
a Hierarchical Spatial
Reasoning System

K. M. Andress
A. C. Kak

TR-EE 88-9
July 1988

School of Electrical Engineering
Purdue University
West Lafayette, Indiana 47907

The PSEIKI Report--Version 2

EVIDENCE ACCUMULATION AND FLOW OF CONTROL
IN A HIERARCHICAL SPATIAL REASONING SYSTEM

K. M. Andress and A. C. Kak

Robot Vision Lab
School of Electrical Engineering

Purdue University
W. Lafayette, IN 47907

Technical Report TR-EE 88-9
July 1988

Work supported by the Army Night Vision and Electro-Optics Lab

ii andress/kak

TABLE OF CONTENTS

ABSTRACT...1

CHAPTER 1. INTRODUCTION...2

CHAPTER 2. RELATED WORK..10

CHAPTER 3. PREPROCESSING OF INPUT VISION DATA13

3.1 Format of Input Data... 13

3.2 An Edge Based Image Preprocessor for PSEIKI...15

3.3 A Region Based Image Preprocessor for PSEIKI...

CHAPTER 4. EXPECTED SCENE GENERATION...............................

_______20

...............................26

4.1 Expected Scene Generation for
Sidewalk Navigation Applications...26

4.2 Expected Scene Generation for
Industrial Applications..31

CHAPTER 5. AN EVIDENCE ACCUMULATION SCHEME FOR
BLACKBOARD REASONING..38

5.1 Computationally Feasible Methods for Evidence Accumulation Based on
the Dempster-Shafer Theory...

5.2 A Computationally Efficient Evidence Accumulation Scheme Using Labels

...............................39

.............................41

5.3 Hierarchical Evidence Accumulation in PSEIKI...................................43

5.3.1 Evidence Propagation Between Levels in the Hierarchy........................... 45

1
5.4 Use of the Hierarchical Evidence Accumulation Scheme in PSEIKI...............47

iii andress/kak

Page

5.5 Another Application of the Hierarchical Evidence Accumulation Scheme48

5.6 Future Work 49

CHAPTER 6. GEOMETRIC COMPUTATIONS FOR INITIAL AND
UPDATING BELIEF FUNCTIONS50

6.1 Computing Initial Belief Functions for Data Elements............ ...50

6.1.1 Computing Initial Belief Functions for Edge-Elements................. ..53

6.1.2 Computing Initial Belief Functions for Face-Elements................55

6.2 Computing Updating Belief Functions for Data Elements..............56

6.2.1 Computing Updating Belief Functions for Edge-Elements with the Same Label56

6.2.2 Computing Updating Belief Functions for Face-Elements with the Same Label.....58

6.2.3 Computing Updating Belief Functions for Elements with Different Labels........... .59

CHAPTER 7. EVIDENTIAL ASPECTS OF THE GROUPER, SPLITTER,
AND MERGER KNOWLEDGE SOURCES.............. 66

7.1 The Grouper Knowledge Source... ;........66

7.2 The Merger Knowledge Source.............................. ..70

7.3 The Splitter Knowledge Source „;..71

CHAPTER S. BLACKBOARD IMPLEMENTATION IN OPS83...74

8.1 OPS83 Data Structures Used By PSEIKI.................74

8.1.1 Working Memory Elements for Representing Data.............75

8.1.2 The WME Class for Representing KSARs.............77

iv andress/kak

Page

8.2 Scheduler and Monitor Operation...........78

8.2.1 Scheduler Operation.......................78

8.2.2 Monitor Operation...84

8.3 Operation of the KS s.........................8 5

8.3.1 Grouper KS operation..............86

8.3.2 Labeler KS operation............. 91

{1.3.3 Splitter KS and Merger KS Operation..92

CHAPTER 9. COMPLEXITY ISSUES IN BLACKBOARD PROCESSING.........96

9.1 System Modeling with Petri Nets...96

CHAPTER 10. EXPERIMENTAL RESULTS...104

APPENDIX A. A BRIEF REVIEW OF DEMPSTER-SHAFER THEORY............................ .109

APPENDIX B. CONVERSION OF CONFIDENCE VALUES TO
BASIC PROBABILITY ASSIGNMENTS..............110

ACKNOWLEDGEMENTS...113

BIBLIOGRAPHY.............114

The PSEIKI Report - Version 2

ABSTRACT

A fundamental goal of computer vision is the development of systems capable of carrying
out scene interpretation while taking into account all the available knowledge. In this report,
we have focussed on how the interpretation task may be aided by expected-scene information
which, in most cases, would not be in registration with the perceived scene.

In this report, we describe PSEIKI, a framework for expectation-driven interpretation of
image data. PSEIKI builds abstraction hierarchies in image data using, for cues, supplied
abstraction hierarchies in a scene expectation map. Hypothesized abstractions in the image
data are geometrically compared with the known abstractions in the expected scene; the
metrics used for these comparisons translate into belief values. The Dempster-Shafer formal
ism is used to accumulate beliefs for the synthesized abstractions in the image data. For accu
mulating belief values, a computationally efficient variation of Dempster’s rule of combination
is developed to enable the system to deal with the overwhelming amount of information
present in most images. This variation of Dempster’s rule allows the reasoning process to be
embedded into the abstraction hierarchy by allowing for the propagation of belief values
between elements at different levels of abstraction. The system has been implemented as a 2-
panel, 5-level blackboard in OPS 83. This report also discusses the control aspects of the black
board, achieved via a distributed monitor using the OPS83 demons and a scheduler. Various
knowledge sources for forming groupings in the image data and for labeling such groupings
with abstractions from the scene expectation map are also discussed.

CHAPTER 1

INTRODUCTION

This report is an expanded version of the discussion published earlier on PSEIKI, a sys
tem for expectation-driven scene interpretation [AndKak88]. In addition to elaborating upon
some of the points that were only tersely mentioned in the earlier publication, this report also
presents an upgraded version of PSEIKI that can handle both region-based and edge-based
symbolic representations of images. The acronym PSEIKI stands for a Production System
Environment for Integrating Knowledge with Images.

PSEIKI can be used for expectation-driven interpretation of vision data in any domain
where a good estimate of the expected scene is available. For example, for the navigation of a
self-guided munition, PSEIKI could be used to compare an image of the terrain with a map of
the terrain; the results produced by PSEIKI could then be used to yield an updated fix on the
location of the munition. In more industrial applications, PSEIKI could be used to verify file
location and orientation of an object by comparing its 2-D image with a description of the
expected scene generated from CAD data. Such verification systems are expected to play an
important role for monitoring the progress of assembly robots. i

PSEIKI was originally developed for integrating the global map information with vision
data to aid navigation for an autonomous mobile robot [KakRob87]. In this problem, the
robot’s task is to traverse a known network of sidewalks. The primary source of information
on the location of the robot is a set of encoders mounted on the wheels; however, due to slip
page in the wheels, there is always an uncertainty in the exact location of the robot. PSEEKI’s
task is to compare the visual image of what the robot sees with the stored map knowledge and
obtain an updated position fix on the robot. To simplify this problem of self-location, the cam
eras on the robot were aimed such that the robot could only see in its immediate vicinity, mak
ing for a near-sighted robot.

As a simple illustration of PSEIKI’s integration of image and expected scene information
in the context of self-location of a mobile robot, consider Fig. 1.1. If panel (a) of this figure is
a graphic rendition of an expected scene and panel (b) a depiction of the edges found in the
vision data collected for the scene, then PSEIKI would produce an output similar to the one in
panel (c), where the labels attached to some of the edges and their corresponding belief values
are shown. For example, the label ’right:35%’ means that PSEIKI has found the expected-
scene edge labeled ’right’ in panel (a) to be compatible with the lower right edge in panel (b)
with a belief of 35%. In this case, the rest of the belief, 65%, would be apportioned either to
this particular label being incorrect or to the system professing ignorance on the subject of
assigning a label to this edge in the vision data. The reader might note that the edge labeled
’top:38%’ actually corresponds to two edge segments in panel (b). This merger of nearly com
patible edges in the vision data is one consequence of various tests PSEIKI makes for internal

-2- andress/kak

graphic rendition of an expected scene with edges labeled. Panel (b) shows a simple example of the

Output of an edge based preprocessor which PSEIKI would use as input data. Panel (c) shows the final

output of PSEIKI, with labeled edges and the labels’ belief values in the most plausible interpretation of
the scene. The confidence value attached to the overall interpretation of the scene is also shown.

geometric consistencies in the vision data.

The match information generated by PSEIKI is expressed by labeling the image-elements
with the identities of the corresponding model-elements; a belief value indicating the
confidence of the match found is attached to each label. The Dempster-Shafer theory of evi
dence is used to accumulate evidence about the certainty of the matches made, a particular
advantage of using this formalism being that if a grouping from the image data is too distant or
too dissimilar from its correspondent in the^expected scene, the system is capable of expressing
ignorance for such unlikely associations. To overcome the exponential explosion usually

A Bayesian would probably insist one could use low belief values when one is comparing
dissimilar or distal groupings in the image data on the one hand and the expected scene on the ;

associated with the Dempster-Shafer formalism, a computationally efficient variation of
Dempster’s rule is used to combine evidence about the labels. This variation of Dempster’s
rule also allows the reasoning process to exploit the hierarchical nature of the integration task.
For example, the belief value associated with the top level of the hierarchy is considered to be
the confidence in the entire matching process; if this belief value does not exceed a threshold,
the matches found are rejected.

Although the original version of PSEIKI, as reported in [AndKak88], was edge based,
meaning that both the input image data and the expected scene data had to consist of edge
descriptions, the newer version reported here can also handle region-based image inputs
directly. However, even when the an image is input into PSEIKI in a region based form, the
system still exploits edge level information by treating the boundaries between regions as
edges and matching them with edges in the expected scene. We believe that if the edge level
information was completely ignored for region based inputs to PSEIKI, the resulting evidence
accumulation processes would become weaker, meaning that the system would make weaker
assertions about labeling the image regions with entities from the expected scene. As a
perhaps poor analogy, given blurry images of, say, a horse and a cow, it may be hard to make a
distinction between the two. What we are trying to say is that even in region-based processing,
edge level information is not ignored.

PSEIKI groups low-level image-elements into higher level constructs by taking cues from
the supplied abstractions in the expected scene. For example, if PSEIKI’s low-level preproces
sor provides edge information to the system, then PSEIKI would group compatibly labeled,
adjacent edges into faces. Once these higher level image-elements are formed, PSEIKI can
then match them with high-level model-elements. The following list enumerates the levels of
data abstraction present in PSEIKI and describes the data residing on each level.

Level 5:
Scenes -- The entire scene (expected or observed) is represented on this level. The scene
is defined as the union of all objects in level 4 of the hierarchy. This level provides a way
of labeling multiple objects that otherwise would not be possible. The confidence of the
match made on this level is interpreted as the confidence in the entire matching process
and is used to determine if the matching process has succeeded.

Level 4:
Objects — Each element on this level corresponds to a distinct physical object. An object
is defined as the union of its boundary faces from level 3.

other. We do not dispute that. However, our experience has shown, and as will be illustrated by
the discussions in the report, when belief values must be generated from the rather ad hoc
measures of geometric compatibility and when such belief values must be normalized for obvious
reasons, expressing ignorance by withholding belief becomes a convenient aspect of evidence
accumulation — something that is not allowed in a Bayesian formalism.

-4- andress/kak

-5- andress/kak

■ Level 3:
Faces — The elements on this level represent the polygonal faces that form boundary
representations of the observable portions of objects. In image data, a face corresponds to
a region in the image; in range data, surfaces are stored on this level.

Level 2:
Edges — These elements represent edges detected in the sensor data; they are used to
form the boundaries of the faces in level 3 of the hierarchy.

Level 1;
Vertices — The vertices are the endpoints of the edges from level 2. They can be
expressed either in world or image coordinates depending on the type of data they
represent

Fig. 1.2 shows how a simple scene, a single block, can be broken down hierarchically.
Each element in this hierarchy is defined by its parts on lower levels. This figure demonstrates
how an object can be defined in terms of its bounding faces and how a face can be defined by
the group of edges which form its border.

PSEIKI exploits geometric relationships between data-elements at the above levels of
abstraction in the reasoning process. Initial matches between image data and model data are
formed by noting geometric relationships between image-elements and model-elements. For
example, an image-edge will be matched with the model-edge that comes the closest (in some
sense) to lying along the same line in the world coordinate frame. To find the match partner of
an image-edge, PSEIKI measures the degree of collinearity between the edge and all the
model-edges in the vicinity in the world frame; it then chooses as the match partner the
model-edge with which the image-edge is most collinear. The belief of the match made then is
then made proportional to the degree of collinearity between the two edges.

After the initial matches are made, the extent to which image elements satisfy spatial con
straints, dictated by the model information, is used to update the beliefs associated with the
assignment of particular model labels to image data. In general, two metrics are required to
measure the degree to which image-elements meet these constraints. The two metrics must
provide measures of compatibility and incompatibility between image-elements given the spa
tial relationships amongst their matched model elements. The compatibility metric provides
evidence that an element’s label is correct, and, conversely, the incompatibility metric pro
vides evidence that an element’s label is incorrect, both from the standpoint of how well the
model generated constraints are satisfied. For example, two edges that have the been matched
with the same model-edge should lie approximately along the same line. Thus the compatibil
ity metric for edge-elements with the same label, collinearity(edge], edge2), measures the
degree to which the two edges lie along the same line. This collinearity metric is closely
related to the measure used to establish initial edge labels, but it is not identical to that meas
ure. The edge-level incompatibility metric, noncollinearity(edge!, edge2), measures the

-6- andress/kak

Level Elements Sub-Elements

Object

Face

Edge

Vertex
V 6

B

VO
E

E
G

V o
A

Vo
D

V6
G

V o
e

Vo
F

6s.<II

O < F F }
B C

F ={ E
A A

E E
B C

E»!

II E E
E F

l1

F ={ E
c D

E E
F G E tI

E = { V
A A

V }
B

E = { V
B A

V }
c

E ={ v
C B

V }
D

E ={V
D »

V }
c

II.
w

W

V }
E

E ={V
F G

V }
t)

E ={V
G F

V }
c

E ={V
H G V }E

E ={V
i G

V }F

FIGURE 1.2 This figure shows how a simple scene can be broken down hierarchically into Objects, faces, edges

and vertices.

degree to which two edges do dot lie along the same line. Of course, different
(in)compatibility metrics must be used at each level of abstraction. For example, the metrics
that are used to compute the (in)compatibility between two faces on the data panel are based

on the distance between the two faces’ centroids. The metrics used to determine matches and
the mechanisms for updating the belief of those matches are discussed in detail in chapters 5
and 6.

An important aspect of evidential reasoning in PSE1KI is the propagation of beliefs up
and down the abstraction hierarchy. The propagation of belief values towards the higher
abstraction levels is based on the rationale that any evidence confirming a data element’s label
should also provide evidence that its parent’s label is correct. Propagation of beliefs to lower
levels is based on the intuitive idea that if, say, a face is mislabeled, then all its Constituent
edges are also most likely mislabeled.

Although PSEIKI currently is restricted to performing expectation-driven processing on
image data, it can also be extended to perform expectation-driven processing on range data.
This extendibility stems partially from the independent nature of the blackboard knowledge-
sources; the system can be extended by updating or adding a few knowledge sources without
worrying about the effect of the extension on the operation of the existing knowledge sources.
The system’s extendibility also stems from the generic way that PSEIKI treats its data; the data
structure that is used to store data-elements can be used to store elements generated by range
sensors. Furthermore, the opportunistic nature Of blackboard processing can be exploited to
tune PSEIKI’s flow of control for particular sensors or applications. At the present time, a lim
itation of PSEIKI is that the expectated scene must be described as an abstraction hierarchy
over piecewise-linear edge segments. This implies that any curved boundaries in the scene
must be approximated by piecewise linear forms.

In its present configuration, PSEIKI has been implemented in OPS83 as a 2-panel / 5-
level blackboard, as shown in Fig. 1.3. The left panel, called the model panel, holds the
abstraction hierarchy for the expectated scene, and the lower levels of the right panel, called
the data-panel, are supplied with the image data after it is reduced to a symbolic level. For
region-based implementations of PSEIKI, the region level symbolic information from the input
image is fed directly to the face level of the data panel. Each level in the blackboard
corresponds to one of the levels of data abstraction discussed earlier. Thus each blackboard
panel contains the following abstraction levels: scenes, objects, faces, edges and vertices.
Each element on the blackboard, except for vertices, is defined by a finite collection of lower-
level elements.

PSEIKI has four main knowledge sources (KSs) that it uses to establish correspondences
between image-elements and model-elements: labeler, grouper, splitter, and merger. The
grouper KS determines which data-elements at a given level of the hierarchy should be
grouped to form a data-element at a higher level. The merger KS also groups elements; how
ever, its job is to merge multiple elements at a given level and retain the grouped information
at the same level. For example, the grouper KS may group together a set of edges into a face;
while the merger KS may group together a series of short edge segments into a longer

-7- andress/kak

-8- andress/kak

Expected
Scene

Generator

Low-Level
Vision
System

Scene Scene

Model Panel r Face

Vertex Vertex

Labeler
Knowledge

Source

Grouper
Knowledge

Source

Splitter
Knowledge

Source

Merger
Knowledge

Source
Scheduler Monitor

FIGURE 1.3 This figure shows the current configuration of PSEIKI’s architecture.

segment, or a set of faces into a single larger face. The splitter KS performs the opposite
action of the merger KS; it splits a single element on the blackboard into multiple smaller ele
ments . The labeler KS has the responsibility of establishing model to data correspondences at
all levels of the blackboard, and to accumulate evidence on the validity of those correspon
dences. Each of these KSs can operate at any level of the blackboard by using level-specific
actions.

As was mentioned before, the input image is first preprocessed and then deposited into
the lowest two or three levels of the data panel. The type of preprocessing performed by a
low-level systems determines the blackboard levels on which the data is deposited. The sym
bolic information produced by edge based preprocessors is deposited directly at the vertex and
edge levels of the data panel. On the other hand, for preprocessors that are capable of

For those familiar with our earlier publications on PSEIKI, the merger and the splitter KSs in the
current implementation are a ‘generalization’ of the data-reduction KS in the earlier version of the
system. The data-reduction KS could only operate at the edge level of the blackboard and its
function was to merge edge segments into longer edges and to delete short segments. On the other
hand, the merger and the splitter KSs can merge and split information at all levels of the
blackboard.

producting region type outputs, the additional information is fed directly into the face level of
the data panel. This additional input has been depicted by a dashed line in Fig. 1.3. Some
low-level systems that can be used to generate input data for PSEIKI are presented in chapter
3. Model data is deposited onto all levels of the blackboard because we assume that perfect
knowledge of the expected scene is available.

Work related to PSEIKI will be discussed in the next chapter; a survey of some previous
knowledge-based computer vision systems will be presented there. In Chapter 3 we will talk
about the type of preprocessing that must be carried out before an image can be fed into
PSEIKI; in this chapter, we will also show the data structures used for describing the image
elements (the same data structures are used for model elements). Chapter 4 will focus on the
generation of expectated scene information and will briefly discuss a couple of CAD systems
we have used for this purpose. Chapters 5, 6, 7 and 8 are used to describe PSEIKI in detail.
Chapters 5 and 6 are used to present the techniques used in the labeler KS to generate and
accumulate evidence for correspondences between the data and the model elements. In partic
ular, chapter 5 is used to describe a hierarchically based evidence accumulation scheme based
on the Dempster-S hafer framework; chapter 6 demonstrates how geometric constraints can be
used to generate evidence about the matches found between elements. The grouper, splitter
and merger KSs are discussed in chapter 7. Chapter 8 is used to discuss the implementation of
the blackboard in OPS 83; the data structures and the flow of control on the blackboard will be
examined. Complexity issues of blackboard processing are addressed in chapter 9. Finally,
some preliminary experimental results are presented in chapter 10.

-9- andress/kak

CHAPTER 2

RELATED WORK ON SPATIAL REASONING

It is now realized that for a computer vision system to be able to make scene interpreta
tions in complex environments, the spatial reasoning involved must utilize domain knowledge.
Yet, systems that are too domain specific tend to solve problems that are rather narrow in their
scope, and given the amount of effort it takes to program such systems, their payoffs tend to be
rather limited. In designing PSEIKI, our aim was to create a spatial reasoning tool that would
be as domain independent as possible. Clearly, what we have in mind is that a powerful tool
like PSEIKI would be used by a higher level, but more domain specific, system for comparing
scene expectations with vision data. The higher level system could also guide the inference
mechanisms by controlling the various policies used by PSEIKI, such as the policy regarding
the priority given to the different KSs, etc. Since our current efforts are focussed on PSEIKI
itself, we have not yet addressed how PSEIKI would be embedded in higher level systems that
are more domain specific.

In this chapter, we will briefly survey what has been done to date in the development of
knowledge based Systems for image understanding. r

An early model-based image understanding system is described by Brooks in [Bro81]; the
task of this system, ACRONYM, consists of finding instances of known objects in the image.
To perform object identification, the system first builds an Observability Graph that specifies
information about objects that could be in the image; generalized cones are used to represent
these model objects. The system then builds a Picture Graph of the image and identifies
instances of objects in the image by matching nodes of the Observability Graph with sets of
nodes in the Picture Graph. The objects in the Observability Graph are represented in slot -
filler structures where any slot that can accept numeric values can also accept algebraic con
straints expressed as inequalities. The system then can manipulate these constraints and deter
mine if they are met by properties of objects detected in the image. ACRONYM uses only
backward chaining in the matching process and does not incorporate inexact reasoning.

The SIGMA image understanding system for aerial interpretation was first described in
[MatHwa85] and later developed in [DavHwa85]. The system represents its object classes
hierarchically using frames and uses both forward and backward chaining to arrive at an
interpretation of a scene. Furthermore, the system is able to integrate hypotheses about
specific objects in the scene. The system does not use uncertain reasoning, but instead is able
to control its focus of attention based on the strength of a situation.

Another aerial interpretation system is described by Nagao and Matsuyama [NagMat80];
the system is based on the blackboard architecture and uses multispectral images in the
interpretation process. To accomplish the interpretation task, the system first performs a global

-10- andress/kak

survey of the entire image and labels regions without using domain specific knowledge. The
characteristic regions that it finds, such as water, vegetation, roads, etc., are then used to gen
erate context information for further blackboard processing. This processing consists of a
detailed analysis of local areas in the scene using context information provided by the charac
teristic regions and applying context specific object detection subsystems.

SPAM, a system designed by McKeown, Harvey and McDermott also is an aerial image
interpretation system [MckHar85]. The system originally was constructed to interpret airport
scenes but has been expanded with a rule generator so it now can interpret scenes from other
domains, SPAM uses confidence values to aid in labeling and can manipulate these values
based on the consistency of the various labels.

VISIONS (Hanson and Riseman) is another blackboard expert system designed to
analyze color images [HanRis78]. The system uses a flexible control scheme, hierarchical
scene representation, and a number of knowledge sources to accomplish the scene interpreta
tion task; VISIONS is domain independent, but schemas can be used to tune the system for a
particular application.

Nazif and Levine describe an expert system based image segmenter in [NazLev84]; the
system was designed to provide a framework that would allow the combination of edge, region
and area based segmentation techniques. With these segmentation techniques, the segmenter
can split and merge regions, link and break edges and operate on image areas based on features
of the elements. The system is rule-based and stores its rules in a global long term memory;
the image data undergoing segmentation is operated on in a short term memory, The expert
system, which contains a set of metarules, can focus its attention on interesting areas of the
image. Many of the processes described in this work are used by PSEIKI to group, split and
merge elements on its blackboard.

PSEIKI differs from the above knowledge-based Systems in the following three main
areas: First, PSEIKI’s task differs from those of previous systems. Most of the other systems
were designed to find object instances in the image and, through such discoveries; to arrive at a
global interpretation of the image. PSEIKI’s task is limited to integrating image data with
expected scene information - it generates consistent labels, with associated belief values for
the data-elements. Of course, since PSEIKI is limited to matching data-elements, a higher
level system is required to make a global interpretation of the scene content.

PSEIKI differs from SPAM and SIGMA, and to a certain extent VISIONS, in not relying
on domain-dependent information . For example, SPAM uses airport design knowledge when
*—- - - - - - - - - - - - • ' . V ' ■ .

In the context of this report, a system is called domain dependent when domain-specific
knowledge is embedded in various components of the inference engine, such as the rules or the
knowledge-sources. PSEIKI is domain independent in this sense; the context information that
PSEIKI uses is encoded entirely in the form of the graphic rendition of the expected scene.

-11- andress/kak

interpreting airport scenes. Context-cues also have been used extensively in past computer
vision systems. For example, if SIGMA detects a driveway irt an image, it then would search
for a house and for roads connected to the driveway. Because PSEIKI is provided with a good
estimate of the expected scene, it does not have to perform inferences of this type. Although it
might be said that context-cues are indispensable for scene interpretation because they make
deductions more powerful, their use necessarily introduces some domain dependence. There
fore, it is our philosophy to separate the generation of the mapping from the formation of an
overall interpretation of the scene. If the use of context-cues is desired by a system using
PSEIKI, then it is up to the higher level system to provide PSEIKI with a graphic rendition of
the expect scene incorporating the information contained in the cues.

PSEIKI also differs from previous systems in its method of performing inexact reasoning.
Many systems, including ACRONYM, SIGMA and the system by Nazif and Levine use no
uncertain reasoning in the image interpretation process. Because of the overwhelming amount
of data in an image, most of the inexact reasoning schemes used in the past have employed
simple combination schemes in order to keep from becoming bogged down in certainty value
computations. On the other hand, inexact reasoning in PSEIKI is based on the Dempster-
Shafer formalism in a tangled hierarchical space. The use of a hierarchy curtails the number of
uncertainty calculations and is made possible by the use bf the blackboard architecture.

-12- andress/kak

CHAPTER 3

-13- andress/kak

PREPROCESSING OF INPUT VISION DATA

The image to be interpreted must first be converted into a symbolic form before it can be
deposited on the lowest two or three levels of the data panel of the blackboard. This chapter
will focus on the preprocessing steps that we use for this conversion to symbolic form. In this
chapter, we will also describe the the format in which PSEIKI expects to see the input sym
bolic data. The same format is also used to pass expected scene information to PSEIKI, more
on that in Chapter 4.

The chapter will describe two image segmenters, one is edge-based and the other region-
based. The former is used for generating edge-based symbolic descriptions of the input image,
and the latter for region-based symbolic descriptions. The two segmenters described here are
presented only as examples of systems that can generate input data; because they both use well
known techniques, they will not be described in any great detail. Furthermore, no claim of
optimality for any of the presented systems is made. In fact, for PSEIKI to be a truly general
expectation-driven vision system, it should be robust enough to overcome any peculiarities of
these or most other low-level preprocessors. Thus, if improved low-level preprocessing tech
niques become available in the future, PSEIKI should be general enough to use the segmenta
tion produced by the new preprocessors.

3.1. Format of Input Data

PSEIKI expects to see its input data as an ASCII text file with each line corresponding to
a separate data element, as shown in Fig. 3.1. The fields used in the data files are self-
explanatory. The first field on a line following the *+’ specifies the level of the blackboard
onto which the element is deposited. All other fields are specified by keyword - data pairs; the
data part of some fields can hold multiple values. For example, the data part of the children
field can specify that an element has more than one child. The id field is used to specify a
unique identification number for a data element; each element on the blackboard is referenced
via its id number. The element’s children field specifies the sub-elements that are used to
build it; for example, an edge has two children — its end vertices. If an element is a vertex, its
location may be specified in one of two ways. If the vertex is on an image plane, its location
must be specified via the row and col fields. However, if the vertex is to be specified in three-
space, the coordinate field is used to specify its location in world coordinates; the data part of
this field holds three values — the x, y and z values of its location. Any text appearing after a
semicolon is considered to be a comment and is ignored. Besides the fields shown in Fig. 3.1,
there are a number of optional fields that the low-level systems can use to provide additional

-14- andress/kak

+ object id 1 children 2 3 4 ; object A

+ face id 2 children 5 6 7 8 ; face A
+ face id 3 children 7 9 10 12 ; face B
+ face id 4 children 8 10 11 13 ; face C

+ edge id 5 children 14 15 ; edge A
+ edge id 6 children 14 16 ; edge B
+ edge id 7 children 15 17 ; edge C
+ edge id 8 children 16 17 ; edge D
+ edge id 9 children 15 18 ; edge E
+ edge id 10 children 17 20 ; edge F
+ edge id 11 children 16 19 ; edge G
+ edge id 12 children 18 20 ; edge H
+ edge id 13 children 19 20 ; edge I

+ vertex id 14 coordinates 1.0 1.0 1.0 ; vertex A
+ vertex id 15 coordinates 1.0 0.0 1.0 ; vertex B
+ vertex id 16 coordinates 0,0 1.0 1.0 ; vertex C
+ vertex id 17 coordinates 0.0 0.0 1.0 ; vertex D
+ vertex id 18 coordinates 0.0 1.0 0.0 ; vertex E
+ vertex id 19 coordinates 1.0 0.0 0.0 ; vertex F
+ vertex id 20 coordinates 0.0 0.0 0.0 ; vertex G

FIGURE 3.i Sample data file demonstrating PSEIKI’s input data file format

information to PSEIKI. The value field can be used to provide PSEIKI with a level specific
value; for example, this field can be used to indicate an edge’s average strength or a region’s
average grey level. Likewise, the size field can provide PSEIKI with level specific size infor
mation (e.g. region area, edge length, degree of a vertex).

The input data presented by the edge-based preprocessor is deposited on the edge and
vertex levels, in this description the vertices may be described by either the image based coor
dinates or their 3-D world coordinates. On the other hand, in addition to the edge and vertex
level information, the region-based preprocessor also, feeds information at the face level. The
data on the face level represent the regions extracted by the segmenter; the borders between
these regions would be represented as edges, and would be described at the edge level. Finally,
the vertices associated with the edges would be input at the vertex level.

3.2. An Edge Based Image Preprocessor For PSEIKI

Edge detection is a common technique used in image segmentation and other low-level
image processing [RosKak82|, [BalBro82]. However, the most common edge detection pro
cess, which consists of thresholding the output of a gradient type window operator, is incapa
ble of generating input data directly for PSEIKI. This is due to the difficulty encountered
when converting thick edges produced by this process to the symbolic form required by
PSEIKI. Although iterative methods are available to reduce the widths of these edges, they are
prohibitively time-consuming [RosKak82], [Ebe76], [BalBro82]. Ridge-tracking is another
method that can be used for edge detection [WatArv87]. A variation of the ridge-tracking
algorithm described in [Kim88], which lends itself to the conversion of edges into a form
usable by PSEIKI, will be described in this section. A modification of the original algorithm
was necessary due to PSEIKI’s requirement that all of its input data be represented symboli
cally. The original algorithm’s inability to find edge intersections also has been corrected in
PSEIKI’s preprocessor. There are a number of steps to the modified segmentation process.

1) First, a window-based gradient operator is applied to the image; the Sobel operator is
used in the current system [RosKak82], Since the ridge-tracking algorithm uses only gra
dient magnitude information, the direction of the gradient is not computed.

2) After the gradient operator is applied to the image, every pixel above a user-specified
threshold is stored in a list; this list of pixels is called the threshold list. Since the system
only works on pixels in this list (usually between 5% and 10% of the total number of pix
els), the required amount of work is drastically reduced.

3) To reduce the algorithm’s noise sensitivity, all pixels in the threshold list are averaged
with their eight closest neighbors.

4) The next step in the process consists of finding all edge endpoints; eventually, these pix
els correspond to vertices on PSEIKI’s blackboard. To find these elements, the notion of
the degree of one dimensional maximum (DODM) is used. Each pixel has four pairs of
neighbors — horizontal neighbors, vertical neighbors, and neighbors in two diagonal
directions. The DODM of a pixel is the number of pairs of neighbors in which both
neighbors have lower values than the pixel itself. Fig. 3.2 demonstrates this concept; the
DODM for the center pixel, “C”, is defined to be the number of cases in which it is
larger than both of its two neighbor pixels, “N”. The center pixel of the image neighbor
hood shown in Fig. 3.3 has DODM 2 since it is larger than its four neighbors in the hor
izontal and vertical directions. All pixels in the threshold-list with DODM of three or
four are considered to be edge endpoints.

5) It is in the next step in segmentation that the ridge-tracking process actually occurs. Two
image structures are used to aid in this ridge-tracking process; these image structures are
called the edge and mark arrays. The edge array is used to record the pixels that have

-15- andress/kak

-16- andress/kak

FIGURE 3.2 This figure demonstrates the concept of the Degree of one Dimensional Maxima (DODM).

The DODM for the center pixels is defined to be the number of cases (1-4) in which the center

pixel “C” is larger than both adjacent pixels “N” along a line.

FIGURE 3.3 The DODM of this example image neighborhood is 2 because the center pixel has a larger

value than its horizontal and vertical neighbors.

been determined to be endpoints or parts of an edge. If the value of a pixel is nonzero in
the mark array, then the pixel is said to be marked and the tracker will not follow the edge
onto that pixel. This technique is used to keep the tracker from backtracking onto pixels
recently determined to be part of the edge. Another concept that is used in the tracking
process is called the current(i) pixel; this is the ridge pixel that was determined, at time i,
to be part of the edge. The tracking process is described below.

5a) Let i = 0. Obtain an endpoint vertex found in step 4 of the process and designate this as
the current(O) pixel. In the edge array, label this pixel as an endpoint and mark this pixel
in the mark array (by setting the value of the pixel in the mark array to nonzero).

5b) In the edge array, label the current(i) pixel (if i * 0) as an edge pixel and let i - i + 1.

5c) Choose the eufrent(i) pixel in the following manner: If there is an unmarked endpoint or
edge pixel adjacent to the current(i - 1) pixel in the edge array, choose this unmarked
pixel as the current(i) pixel, designate it as an endpoint in the edge array, and stop the
tracking process. Otherwise, find the next pixel in the edge by finding the largest
unmarked pixel which is adjacent to the current(i - 1) pixel and has DODM > 2. Label
this pixel as current(i), add it to a list of pixels that denote the edge, and designate it as an

edge in the edge array. If there exists no pixel fitting this description, then the edge
"died;" designate the current(i - 1) pixel as an endpoint and stop the tracking process.

5d) Unmark the current(i - 2) pixel and its eight neighbors.

-17- andress/kak

5e) Mark the current(i — 1) pixel and its eight neighbors.

5f) Go to step (5b).

The original algorithm never unmarked pixels after they were marked; this
prevented the system from finding junctions between edges. By unmarking pixels when
there is no possibility of the ridge-tracker backtracking onto freshly labeled edge pixels,
these vertex pixels can be found. If the number of pixels in an edge is less thari a user
specified threshold, then the list is deleted and all pixels in the edge matrix are reset to
their original state.

A few iterations of the tracker at step (5e) are shown in Fig. 3.4 to demonstrate how the
tracking algorithm works. In this illustration, the pixels in boldface have been labeled as
belonging to the edge. The shading denotes pixels that have been marked on the current itera
tion of the tracking algorithm.

6) The final step of the segmentation process is the fitting of piecewise-linear segments to
the lists of edge pixels. This step is based on a process described in [DudHar73] and also
used in [NavBab80]. This step also requires a user-specified parameter — the maximum
fitting error, Emax. In this process, a line, called the model line, is drawn between the two
endpoints of an edge; then the edge pixels are followed (by traversing the list of edge pix
els) and the distance between the individual pixels in the edge and the model line is com
puted. If the distance between every pixel and the line is less then Emax, then the edge
can be represented by the model line. However, if any pixels are greater than Emax away
from the model line, then the pixel that is the farthest from the model line is considered to
be a new endpoint and the line fitting algorithm is called recursively (once for each edge
between the new endpoint and the old endpoints). The line fitting process is shown in Fig
3.5; in this example, the line-fitting process breaks the line into two piecewise linear seg
ments.

The segmentation process, including the intermediate steps, is shown in Figs 3.6 and 3.7.
Fig. 3.6 demonstrates the process when applied to an image typical of those taken by a mobile
robot with downward pointing cameras. Fig. 3.7 demonstrates the process when applied to an
industrial scene. In each of these two figures, panel (a) shows the original image; panel (b)
shows the magnitude of the gradient as found by the Sobel operator, and panel (c) shows the
edges that were traced by the ridge-tracking algorithm. Panel (d) shows the final output of the
segmenter after it has converted the edges in panel (c) into piecewise-linear segments.

-18- andreSs/kak

14 14 16 12 8 6 7 14 17 19

13 19 18 14 12 15 16 18 23 24

14 12 H 23 19 27 26 28 19 16

7 7 12 16 21 18 14 15 15 13

6 8 8 12 16 15 13 12 1° 9

(a)

14 14 16 12 8 6 7 14 17 19

13 19 111 14 12 15 16 18 23 24

14 12 11 23 19 27 26 28 19 16

7 7 111 16 21 18 14 15 15 13

6 8 8 12 16 15 13 12 10 9

(b)

14 14 16 12 8 6 7 14 17 19

13 19 III 34 iz 15 16 18 23 24

14 12 H 23 19 27 26 28 19 16

7 7 III ill! 21 18 14 15 15 13

6 8 8 12 16 15 13 12 10 9

(c)

14 14 16 12 8 6 7 14 17 19

13 19 18 14 12 15 16 18 23 24

14 12 25 ■||11 26 28 19 16

7 7 12 111 11111 14 15 15 13

6 8 8 Hi illill 13 12 10 9

(d) .. .

FIGURE 3.4 This figure demonstrates the marking of pixels in the ridge-tracking algorithm. The boldface pixels

represent edge pixels and the shaded pixels are marked.

This process is fairly efficient due to the use of linked lists to represent the edges. The
segmenter was applied to a set of 512x480 test images; the system was able to segment an
image (perform the Sobel operation, threshold, smooth, ridge-track and Convert to symbolic
form) in an average of 45 seconds on a lightly loaded SUN/3.

3.3. A Region Based Image Preprocessor For PSEIKI

As was mentioned before, PSEIKI can be driven in two modes: in the first mode the
input image is first reduced to an edge-based description and the resulting description used for
deriving abstraction hierarchies; in the second, mode abstraction hierarchies are built on top of

-19- andress/kak

(a) original image (b) image after applying sobel operator

(c) edge found by ridge follower (d) edges after conversion to piecewise-linear segments

FIGURE 3.6 This figure shows the intermediate and final output of the edge-based preprocessor when applied to

an image typical of those gathered by a mobile robot with downward pointing cameras.

-20- andress/kak

(a) original image (b) image after applying sobel operator

(c) edge found by ridge follower (d) edges after conversion to piecewise-liriear segments

typical image of an industrial scene.

-21- andress/kak

max

max

*max

max
max

max

FIGURE 3.5 This figure demonstrates how a sample edge could be broken into two piecewise-linear

segments by the line fitting algorithm. Since the edge falls outside the Emax boundaries in (a),

the line is split into two in (b) where the edge lies within the Emax boundaries.

region-based descriptions of the input image. For the second mode of operation, we use a seg-
menter based on region growing ideas first advanced in [BriFen70] and later further developed
by Horowitz and Pavlidis in [HorPav76]. Our implementation differs from that described in
[HorPav76] in that we use the quadtree data structure that has become rather popular since the
original algorithm was published. The quadtree data structure, a well known tool for
representing binary images [Sam84a, Sam84b], has been extended in this application to
represent greyscale images. There are a number of steps that the region growing process uses
to generate the final segmented image.

1) The segmenter’s first step is to break the image into a data structure called a greyscale
quadtree. A greyscale quadtree is a simple extension of the binary quadtree in which
every leaf is maximal and satisfies a constraint (a leaf is maximal if it is not part of a
larger leaf that satisfies the constraint). In this segmenter, a group of pixels is allowed to
be grouped into a leaf of a quadtree if

max f(x, y) - min f(x, y) L <2e (3 1)
x, y x, y

where f(x, y) denotes the brightness function of the image and x, y are allowed to range
over the entire leaf; epsilon is a user-supplied parameter. In the original algorithm, this
process required an iterative split-and-merge procedure. However, with the use of the
Morton matrix [Mor66], [Sam84a] the quadtree can be built without any iterations. By
visiting the pixels in the order defined by the Morton matrix, the building of a leaf can be
postponed until it is certain that no larger leaf node satisfying constraint (3.1) is possible.
Fig. 3.8 shows an example of an 8x8 Morton matrix.

-22- andress/kak

1 2 5 6 17 18 21 22

3 4 7 8 19 20 23 24

9 10 13 14 25 26 29 30

11 12 15 16 27 28 31 32

33 34 37 38 49 50 53 54

35 36 39 40 51 52 55 56

41 42 45 46 57 58 61 62

43 44 47 48 59 60 63 64

FIGURE 3.8 An example of an 8 by 8 Morton Matrix.

Note that the Morton matrix does not have to be stored explicitly to guide the traversal of
the image in the order that it prescribes. An image can be traversed in the correct order
by recursively visiting the four quadrants of the image in the following order: northwest,
northeast, southwest and southeast.

2) The segmenter’s second step is to merge adjacent quadtree leaves into regions. Adjacent
leaves are merged into a region only if the region formed also satisfies constraint (3.1).
Regions of the image are represented using the tree based UNION-FIND data structure
described in [AhoHop74].

3) The third step in the process is the merging of adjacent regions whose average greyscale
values differ by less then a user specified threshold.

4) At the end of these processes there may exist very small regions that should be elim
inated; for example, many of these regions are generated by shot noise and are only a sin
gle pixel large. Each small region is merged with the neighboring region whose average
grey level is closest to its own.

5) The segmenter’s final step is to convert the segmented image into a format usable by
PSEIKI. This is accomplished by first finding all the borders between regions; these
border-elements are then converted into piecewise-liner segments using the process dis
cussed in the previous section. The endpoint pixels are output as vertex-elements for the
blackboard; likewise, the borders and regions are output as edges and faces respectively.

The segmentation process, including the intermediate steps, is shown in Figs. 3.9 and
3.10. These two figures demonstrate the region growing process when it is applied to the sam
ple images described in the previous section. In each of these two figures, panel (a) shows the
original image; panel (b) Shows the quadtree leaves generated by step 1 (the grey-levels in
these images are arbitrarily generated and are used to help the reader distinguish between adja
cent regions). Panels (c), (d) and (e) show the regions after steps 2, 3 and 4 are used to gen
erate and merge regions. Panel (f) shows the region borders after they are converted into
piecewise-linear segments.

This segmenter is slightly less efficient than the edge-based process; however, the system
was able to segment 512x480 images in less than two minutes on a lightly loaded SUN/3.

-23- andress/kak

-24- andress/kak

(a) original image (b) greyscale quadtree

(c) regions after max-min merging (d) regions after merging based on averages

(e) final result after merging small regions (f) symbolic output

an image typical of those gathered by a mobile robot with downward pointing cameras.

-25- andress/kak

(c) regions after max-min merging (d) regions after merging based on averages

(e) final result after merging small regions (f) symbolic output

to a typical image of an industrial scene.

CHAPTER 4

EXPECTED SCENE GENERATION

-26- andress/kak

Computer graphics systems and CAD systems are two obvious methods of generating
PSEIKFs expected scene information; this chapter will present two systems used to generate
model information for PSEIKI. A computer graphics interface is used to generate the expected
scene information for mobile robotic applications, while a solid modeling package is used for
more industrial domains. Any modeling tool that is used for expected scene generation must
possess the capability for hidden line removal. Also, the modeling tool must output its infor
mation in the same format that was described in Section 3.1. Note that while the symbolic
information that is input on the data panel has at most two or three levels initially, the expected
scene has to be described as a hierarchy containing descriptions at all levels.

4.1. Expected Scene Generation for Sidewalk Navigation Applications

For sidewalk-navigation applications, a simple 2D graphics program is used to generate
PSEIKI’s expected scene information from stored sidewalk maps. In this system, the sidewalk
maps are stored in a graph data structure. The links in this graph represent straight sections of
the sidewalk and nodes represent the endpoints of the straight sections. Associated with each
node is an (x, y) pair designating the coordinates of the sidewalk junction corresponding to the
node; thus, the centerline of a straight section of sidewalk is the line that connects the coordi
nates of its two junction nodes. Associated with each link of the graph is a numerical value
that specifies the width of the corresponding segment of the sidewalk. This is enough informa
tion to completely specify a sidewalk map.

Fig. 4.1 illustrates the steps involved in the generation of a symbolic description of the
expected scene from the graph data structure. The first step involved in generating the
expected scene information is the extraction of the edges of the sidewalk from the graph data
structure. It is a trivial task to determine the lines defining the edges of a straight section of the
sidewalk because both the section’s width and its centerline are known. A more difficult prob
lem is encountered when trying to determine the location of the vertices corresponding to the
intersection points of the edges of the sidewalk. These are determined by the following algo
rithm. First, we associate four vertices with each link in the graph corresponding to the two
endpoints of each of its two edges. For example, we associate the vertices P, Q, R and S with
the link AB as shown in Fig. 4.2. Vertices P and Q are obtained by analyzing node B, whereas
vertices R and S are obtained by analyzing node A. Consider node B first. The graph is
searched for all the links that meet at B; the angle that each link subtends with the link AB,
measured in a counterclockwise fashion, is then calculated. We then retain only those links

andress/kak

Data-Structure

; Frame

Output

World Frame

FIGURE 4.1 This figure shows a block diagaram of the processes used to generate PSEIKI’s expected scene

information in a mobile robotic context.

that correspond to the minimum and maximum of these angles. As shown in the figure, links

Clip Edges

Behind Robot

Determine

Sidewalk Edges

Transform to

Robot Frame

Backproject

Clip Edges

Outside Image

Transform to

Image Plane

BC and BE correspond to the minimum and maximum angles there, respectively. Now it is
rather simple matter to compute the location of the two vertices, P and Q, that correspond to
node B of link AB; for example, the computation of the location of vertex P can be found by
solving the equations of the straight lines corresponding to the edges SP and PT. Similarly, the
location of vertices R and S can be computed by analyzing node A. Note that at node A,
where there is only a bend in the sidewalk, as opposed to a junction, the minimum and the
maximum angles correspond to the same link, that is the link AF. The pseudo code in Fig. 4.3
presents the algorithm more formally. The reader should note that this procedure will yield
each vertex, such as point P in the figure, twice. In this example, the vertex corresponding to
point P will be generated when node B is considered as belonging to link AB, and then again
when the same node is considered as belonging to link BC. This duplication at the vertex level
of the symbolic description is easily eliminated by comparing vertices and dropping one when
two are found to be nearly identical in terms of their coordinates.

After a symbolic description of the edges in the sidewalk map has been extracted from
the graph data structure, a “spotlight" function is applied to the description to delete all those
edges that can not be seen from the robot’s hypothesized location and orientation. To imple
ment the spotlight function, we first generate two homogeneous transformation matrices, one
that takes a world point into the robot base coordinate frame and the other that takes a point
from the robot base coordinate frame into the camera image plane. The first matrix, which is
derived from knowledge of robot’s location and orientation, is used to transform end points of
edges, such as point P for edge PS in Fig. 4.2, from the world frame into a robot base

-28- andress/kak

FIGURE 4.2 This figure shows a part of a sidewalk map; it shows the process used to generate a sidewalk’s edges

from a graph description.

coordinate frame. A clipping operator is applied to the transformed data to delete all those
edges that are behind the robot. The middle panel of Fig. 4.4 illustrates the edges from die left
panel that would remain after this clipping operation is applied. Now the second transforma
tion matrix, which is derived from camera calibration parameters, is applied; this transforma
tion is used to project the clipped edges onto the camera image plane. A second clipping algo
rithm is now applied to delete the edges and parts of the edges that fall outside the boundaries
of the image. The edges from the middle panel of Fig. 4.4 that are not deleted by the final clip
ping operation are shown in the right panel. Note that the edges of the sidewalk are still
described symbolically at this point; that is, they have not been converted into image form.

If the expected scene is to be expressed in world coordinates, the clipped edges are then
back-projected into the world coordinate frame. This vertex level and edge level information
is finally output in the format described in section 3.1. The project/clip/back-project process
just described has the desired affect of deleting all of the edges that are not visible from the
robot’s hypothesized location and orientation. If the expected scene is to be expressed in
image coordinates, then the system outputs the edges in the appropriate format without back-
projecting them. Although it would be possible to implement the world coordinate spotlight
function via a simple clipping operation performed in the world coordinate frame, using the

-29- andress/kak

get_both_edges(LINK, right_start, right_end, left_start, left_end) {

get_veitices(LINK, start_node(LINK), left_start, right_start)

get_vertices(LINK, end_node(LINK), right_end5 left_end)

' } '

get_vertices(LINK, NODE, right_vertex, left_vertex) {

for each link in the graph not equal to LINK {
if (one of the link’s nodes is equal to NODE)

add the link to the set of intersecting links
}■

sort the intersecting links on the basis of the angle between them and LINK

min_link = link with minimum angle

maxjink = link with maximum angle

right_vertex = intersect(edge(LINK, right), edge(min_link, right))

left_vertex = intersect(edge(LINK, left), edge(max_link, left))

') ■

FIGURE 4.3 This figure shows the pseudo code for algorithm used to determine the location of the vertices of a

section of the sidewalk.

FIGURE 4.4 This figure shows how the spotlight function is used to delete from the expected scene all edges that

can not be seen from the robot’s hypothesized location and orientation. In the leftmost panel, the

triangle shows the expected location and orientation of the robot and the unshaded area shows the

region of the ground visible to the robot’s downward slanted cameras. The center panel shows the

clipping of the edges behind the robot. The rightmost panel shows the edges remaining after the

image-coordinate clipping is performed.

project/clip/back-project algorithm allows us to use a single spotlight function for both world
coordinate and image coordinate output.

-30- andress/kak

After the low-level information is generated by the graphics system, the model informa
tion on the face level, the object level and the scene level is hand entered by editing the output
file. On the face level, each connected section of sidewalk and each connected section of the
ground is considered to be a separate face. These faces are hand grouped onto the single
object in the scene. To help the operator enter this upper-level information, an image of the
expected scene, with the grey values of each edge indicating its symbolic id number, is
displayed at the same time the low-level symbolic output is generated. Generating this image
is trivial because the spotlight function projects the sidewalk’s edges into the image coordinate
plane. Hand entering the upper-level information is usually not difficult because the sharp
down-look angle of the camera limits the complexity of the expected scenes.

As an example of the processing performed by this graphics system, consider the follow
ing figures; Fig. 4.5 shows a simple sidewalk map to be used in this example.

Position 4

Position 1 Position 2

Position 3

FIGURE 4.5 This figure shows the sidewalk map used to generate the expected scene images of figure 4.6. The

robot’s position for each of the four expected scenes is indicated in the drawing.

Fig. 4.6 shows a sequence of expected-scene images that the system would produce for a
mobile robot traveling to the middle sidewalk section of the map, turning up that section and
then turning right.

4.2. Expected Scene Generation for Industrial Applications

A generic solid modeling system is used to generate PSEIKI’s expected-scene data for
industrial applications. Solid modeling techniques have gained great popularity in the past
decade for representing geometric objects in a complete and unambiguous fashion. Construc
tive solid geometry (CSG) and boundary-representation (B-rep) are the two most popular
solid-modeling techniques. In this section, we will first highlight the principles used in CSG
based modeling and show an example of an object constructed using CSG principles. We will
then describe the TWIN B-rep modeling system and describe how the system is used to gen
erate PSEIKI’s expected scene information.

Solid objects are created in CSG systems by combining primitive objects using the fol
lowing boolean operators: union, intersection and difference. Fig. 4.7 shows how CSG can be
used to construct a simple object, a mug, by combining primitive solids using these operators.
CSG systems usually are restricted to working with regular solids; a set of points, X, is said to
be regular if it is equal to the closure of its interior, that is

X = ki(X)

where k and i denote the closure and interior, respectively. Because a solid produced by the
combination of regular solids using the set-theoretic boolean operations is not necessarily reg
ular, CSG systems use regularized boolean operators when combining objects to guarantee
that the result of the combination will be regular. Fig 4.8 shows how a nonregular object can
result from the set-theoretic intersection of two regular objects; it also shows the object pro
duced by the regularized intersection of the two objects. The set-theoretic intersection of the
two faces in panel (a) of Fig. 4.8 is shown in panel (b); note that the result of the combination
is not regular (because of the "dangling" edge). Panel (c) shows the valid face produced by
taking the regularized intersection of the two faces in panel (a). The set-theoretic union and
difference operators have similar problems. The regularized operators, union (^j*), intersec
tion (f''!*) and difference (-*), of two sets, X and Y, are defined as

XU* Y = fc(XUY)

Xn* Y = */(XnY)

X- Y = ki(X-Y)

Most of the concepts used in CSG modeling systems were originally developed for the PADL
solid modeling system [VoeReq77], [HarMar85].

-31- andress/kak

-32 andress/kak

position 1

position 3 position 4

FIGURE 4.6 This figure shows some typical expected scenes generated for a mobile robot with downward

pointing cameras. The scehes depicted in this figure were generated with the map shown in Fig. 4.2.

-33- andress/kak

Difference

Cylinder

FIGURE 4.7 This figure demonstrates how objects are defined in CSG systems by the boolean combination of
successively simpler objects. The coffee mug in this figure is defined in terms of two cylindrical

primitives and one toroidal primitive.

Boundary-representation modeling is another common solid-modeling technique. In this
scheme, objects are represented in terms of their boundary surfaces. In many B-rep systems,
polyhedrons are used to approximate the boundary of the objects; thus, any curved surfaces,
such as cylindrical or spherical surfaces, are only approximately represented. PSEIKI uses the
TWIN B-rep solid modeling package [Mas87] to generate expected scene information in an
industrial domain. TWIN was developed at the Computer Aided Design and Graphics Labora
tory (CADLAB) at Purdue University’s Engineering Research Center. TWIN is a library of

-34- andress/kak

FIGURE 4.8 This figure shows a shortcoming of the set-theoretic intersection operation in two dimensions. The

face in panel (b) is the set-theoretic intersection of the two faces in panel (a); it is not a valid face

(because of the dangling edge). The face in panel (c), a valid face, is the regularized intersection of

the two faces.

subroutines in the C language that contains routines to generate the primitive objects included
in most CSG systems; the set of primitives that TWIN can generate includes parallelepipeds,
wedges, cylinders, cones, toruses, spheres, fillets, elliptical cones, and ellipsoids. The library
also contains routines to perform regularized boolean operations on solid objects. Because the
TWIN library contains routines to generate the primitives used in CSG systems and routines to
perform the operations used by CSG systems, the same process used to generate solid objects
in CSG systems can be used to generate objects with TWIN. That is, solid objects can be
defined by regularized boolean combinations of primitive objects.

A two step procedure is used to convert the TWIN models into a form usable by PSEIKI.
First, the Watkins scan-line rendering algorithm [Wat70], is used to generate an image of the
expected scene. The grey value of every pixel in the rendered image is set to the id number of
the model surface visible at that location in the image; thus, regions in the image with the same
grey level all belong to the same surface in the TWIN model. After the model is converted
into an image, the region-based preprocessor described in chapter 3 is then used to extract the
image’s labeled regions and output the scene description on the vertex, edge and face levels.
The threshold values required by the segmenter are set to zero so that each region detected by
the segmenter will correspond to a single model surface. The information on the object and
scene levels is generated by assuming that there is only a single object in the expected scene.
Thus, all of the faces detected in the image, with the exception of the background face (which
has id number zero), are grouped into a single object. This object is then set to be the only
object in the scene. If there is more than one object in the image, then the output file must be
hand edited to correct the object level and scene level information. Fig. 4.9 shows a graphic
output of the system for an industrial object, a piston connecting rod; this figure shows three
orthogonal views and one oblique view of the object. Fig 4.10 illustrates the process used to

-35- andress/kak

□

<[□!i>

0

FIGURE 4.9 This figure shows some typical expected scenes generated in an industrial environment. It shows a

piston rod from three orthogonal views and one perspective view.

generate the data file for the oblique view of the connecting rod shown in Fig. 4.9. The image
at the top of the figure represents the TWIN solid model. The image at the middle of the figure
shows the rendered image with uniquely labeled surfaces. A small portion of the symbolic
output is shown at the bottom of the figure. In reality, this data file contains the definition for
about 200 elements.

The current method of generating PSEIKFs expected scene information has a number of
obvious flaws. The main deficiency of the technique is that all 3D information is lost when the
model is rendered. This deficiency has not been a problem to date because of the simple
scenes currently being used to test PSEIKI; this loss of information is expected to become
more limiting as PSEIKI is applied to more complex scenes in the future. Another deficiency
of the technique is the assumption that there is only one object visible in the expected scene.
Although it is usually not difficult to correct this information by hand if there is more than a
single object in the scene, it would be convenient if the system was able to correctly generate
PSEIKI’s input data at all levels of abstraction. Future versions of the expected scene genera
tor will avoid these problems by converting the expected scene information directly into a
form that PSEIKI can use without the intermediate rendering step. These future versions of
the expected scene generator will be able to easily convert curved borders of nonplanar sur
faces into piecewise-linear segments for PSEIKFs input because the curved borders are
already represented as piecewise-linear facet boundaries in the TWIN models. |

-36- andress/kak

-37- andress/kak

TWIN solid model

Watkins rendering algorithm
>r

Rendered image

Region-based Segmentation

+ scene id 2194 children 2193
+ object id 2193 children 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 ...
+ face id 2174 children 2149 2161 2162 2163 2164 size 684 value 2
+ face id 2175 children 2103 2145 2146 2147 2148 2149 size 924 value 255
+ face id 2176 children 2106 2107 2108 2109 2142 2143 2145 2146 2155 2156 ...
+ face id 2177 children 2084 2085 2086 2087 2088 2089 2090 2091 size 1098 value 5

FIGURE 4.10 This figure shows the processing performed to generate the symbolic expected scene data for

industrial objects. The top image represents the TWIN solid model information; the middle panel

shows the rendered model image with every surface uniquely labeled. The lower part of the image

shows a small portion of the symbolic output which would be presented to PSEIKI.

-38- andress/kak

CHAPTERS

AN EVIDENCE ACCUMULATION SCHEME FOR BLACKBOARD REASONING

The use of inexact reasoning in computer vision systems is certainly not new; however,
most of the previous schemes for evidence accumulation have been based only loosely on for
mal uncertainty calculi [HanRis78], [MckHar85]. The main reason that these systems
employed ad-hoc schemes is the overwhelming amount of data in an image; the systems
needed a fairly simplistic evidence accumulation scheme to avoid becoming bogged down in
confidence value computations. In contrast, the evidence accumulation scheme used in
PSEIKI is based on the Dempster-Shafer (D-S) theory of evidence, Whose normally exponen
tial computational complexity is controlled by a number of mechanisms to be discussed in this
chapter. For example, one of the mechanisms consists of accumulating evidence over binary
sets of hypotheses, meaning the evidence either supports that a data element from the image
should be given a particular label from the model or denies this supposition. Pooling of evi
dence in this fashion leads to a particularly efficient implementation of the Dempster’s rule.
Performance also is improved by exploiting the hierarchical nature of the blackboard system.
By performing a small number of computations on upper levels of the hierarchy, many compu
tations on lower levels can be avoided. The hierarchical nature of the blackboard also is used
to constrain the matching process for elements on lower levels of the hierarchy; elements on
lower levels of the hierarchy are allowed to match only if their parents are matched.

In the next section of this chapter, we will introduce Dempster’s rule of combination and
point to its exponential time complexity. Next, it will be shown how, in past systems, the com
putational efficiency of Dempster’s rule was improved by making assumptions that the focus
of incoming evidence is limited to a small number of subsets of ©. Once these assumptions
are made, a computationally efficient form of Dempster’s rule can be derived. The evidence
accumulation scheme employed by PSEIKI will be introduced in this context; the new accu
mulation scheme will first be introduced in general terms. Next, it will be shown that the accu
mulation scheme can be embedded into a hierarchy if the reasoning task has the appropriate
structure. It also will be shown that the hierarchical structure allows the computational com
plexity of the scheme to be improved by limiting the size of the elements’ FODs and by limit
ing the number of evidence sources that are allowed to provide updating evidence. Further
more, a method for passing belief values up and down the hierarchy will be introduced; After
the general scheme has been fully developed, its use by PSEIKI’s labeler KS will then be
presented as an application. Finally, to show the enerality of our evidence accumulation
scheme, we will point out how it could be applied to the speech recognition domain.
*------------------

It is assumed that the reader has a working knowledge of the Dempster-Shafer theory of
evidence and its associated terminology. For those not familiar with the theory, see [Sha76]; a,
brief review is also presented in appendix A,

5.1. Computationally Feasible Methods For Evidence Accumulation Based on the
Dempster-Shafer Theory

The Dempster-Shafer theory of evidence is gaining wider acceptance as an uncertainty
calculus. However in the general case the formula used to accumulate evidence in this theory,
Dempster’s sum, takes exponential time (in the size of the FOD) to combine evidence from
two independent sources. This is shown easily by observing the formula for Dempster’s sum
as shown in equation 5.1.

m(X) = m^mi = K XZ mi(xi)m2(X2) (5.1)
xrx2

xinx2=x
where

K-1 = 1 — XZ m1(X1)m2(X2)
xxx2

x,nx2=0
The main reason for the exponential complexity is the requirement that the probability mass
for all 2101 elements of the power set of © be evaluated when combining evidence from
independent sources. If N bpa’s are combined to form a data-element’s belief function, then
the total number of operations will be on the order of Nx2101 (this will be denoted as
0(Nx 2101)).

Barnett [Bar8l] was one of the first to show that Dempster’s rule could be implemented
in better than exponential time if the focus for all evidence is restricted to a limited number of
elements of 2®. Barnett was able to implement Dempster’s rule in linear time by assuming
that all evidence either confirms or denies members of the FOD. Although this assumption
places a fairly large restriction on the general D-S theory, many systems naturally provide evi
dence in this form and are not hindered by the assumption. It can be shown that, in the general
case, 0(Nx 101) operations are required to combine N bpa’s when using Barnett’s equations.

Gordon and Shortliffe also were able to improve the computational complexity of the D-S
theory by making an assumption about the type of evidence allowed to update beliefs
[GorSho85]. They formed what they termed a hierarchical hypothesis space, a hierarchical
partition of an element’s FOD, and assumed that all evidence either would confirm or deny
elements in the partition. An example of a hierarchical hypothesis space that could be used in
a computer vision system is shown in Fig. 5.1; it shows the partition that could be used by a
target identification system to classify tactical objects detected in a sequence of image frames.
The identification system could use the partition shown in this figure if it detected an object
that moved from frame to frame. If the system detected a moving oject, then it would be able
to use the hierarchy to provide evidence asserting that the object was a vehicle without needing
to specify which type of vehicle. A system using the formulas derived by Barnett would not be
able to provide evidence for the generic class of vehicles directly, because evidence is limited

-39- andress/kak

-40- andress/kak

to focusing on the individual members of the FOD in that scheme.

{tank, jeep, truck, half-track, house, bam, school, church)

vehicles ___buildings

untracked

{half-track} {church){house}

FIGURE 5.1 This figure shows a hierarchical partition of a hypothesis space that could be used to classify objects

detected in a tactical image.

In order to provide a computational gain, Gordon and Shortliffe were forced to approximate
Dempster’s sum; the resulting approximation had a number of drawbacks. When presented
with highly contradictory evidence, the approximation produced poor results. The approxima
tion also prevented the computation of belief values for negations of elements in the hierarchy;
thus, plausibilities for elements in the hierarchy could not be computed.

Shafer and Logan were able to formalize the problem of using Dempster’s rule to com
bine evidence focused on elements of a hierarchical partition [ShaLog87]. By applying varia
tions of Barnett’s formulas to elements in a hierarchical partition of an element’s FOD, they
were able to compute Dempster’s sum for elements in the partition without any approxima
tions; thus, the results that their formulas provide are always valid. Their formulas also are
slightly more general than those used by Gordon and Shortliffe in that they can compute both
belief values and plausibilities for elements in the hierarchy.

Binary frames of discernment (BFODs) involve the most drastic restriction to the D-S
theory, but they provide the greatest computational gain. As presented in [SafGot87], a BFOD
is a FOD with 101= 2. Equivalently, any FOD with all of its probability mass constrained to
two disjoint elements of 2® and {©} itself can be thought of as a BFOD. Obviously, since the
size of the FOD is constrained to be 2, the time needed to combine two bpa’s is constant. Thus
the time needed to combine N bpa’s is O(N).

Although the above variations of Dempster’s rule greatly improve its computational
efficiency, none of them are applicable to the problem of accumulating evidence in PSEIKI.
Binary FODs are too restrictive to be used in a general matching procedure; their requirement
that all probability mass be constrained td three subsets of 0 severly limits their applicability.
Barnett’s scheme, while remaining general enough for use in PSEIKI, is still too inefficient to
handle the overwhelming amount of data in an image. Finally, the use of hierarchical
hypothesis spaces is not possible because the hierarchy used in PSEIKI is not Sttidt (e,g. an
edge can be the children of two faces - the faces it separates). For this reason, a new pro
cedure to accumulate evidence was developed by incorporating the concept of an element’s
label into the reasoning process.

-41- andress/kak

5.2. A Computationally Efficient Evidence Accumulation Scheme using Labels

As has already been mentioned, Barnett was able to implement Dempster’s sum in linear
time (with respect to the size of the FOD) by assuming that all evidence either confirms or
denies members of the FOD. Although this is a great improvement over the complexity of the
original formulation of Dempster’s rule, in the general case it still takes 0(Nx 101) operations
combine the evidence contained in N bpa’s. We will show that it is possible to further reduce
the computational complexity of Dempsters rule by splitting the accumulation process into two
phases: initialization and updating. In the accumulation scheme introduced here, a single evi
dence source is used to define the bpa during the initialization phase. This source is used to
provide confirmatory and disconfirmatory evidence focused on all members of the FOD, much
as in Barnett’s scheme. Once the belief function has been established, the updating phase
commences and the focus of all new evidence is restricted to focus on only particular elements
in the FOD. We will show that, by using this two phase accumulation scheme, it is possible to
combine evidence from N sources in 0(N+1 © I) operations.

In this accumulation scheme, assume that the identity of an element, E;, is in question and
that its identity can be any one of M possibilities, 0i, 02, •'.•*, 0^. Therefore, the FOD for Ej
iS - ' • ,

0= (01, 02, * * ' , 0m)

Furthermore, assume that there are N evidence sources, Si, S2, • , Sn, that can provide
information about the element’s identity. The sources are assumed to provide bpa’s with evi
dence that is focused entirely on members of 0 or their compliment. This is exactly the same
assumption that Barnett uses to reduce the computational complexity of Dempster’s rule to
linear time. However, we also assume that it is also possible to force the evidence sources to
provide bpa’s with evidence focused entirely on a single member of 0 and that element’s com
pliment . It is this ability to restrict the focus of the evidence produced by the sources that
*------ -—1 - " ■

One way forcing the bpa’s to have this form is to incorporate all the probability mass from
unwanted subsets of 0 to 0 itself.

enables the computational complexity of the accumulation scheme to be reduced.

During the initialization phase of the accumulation process, a single evidence source is
used to provide evidence about Ej’s label. This source is used to define the initial bpa by pro
viding confirmatory and disconfirmatory evidence focused oh all (singleton) members of the
FOD, as in Barnett’s scheme. After the initial bpa for the element’s identity is computed, the
label of the element is determined. An element’s label is defined to be the member of 0 with
the largest belief. (If two or more elements of the FOD yield the same belief, one is arbitrarily
selected). Thus, in some sense, the element’s label can be considered to be the current best
hypothesis for the element’s identity. As an example of the ease with which an element’s label
can be found, consider the process of determining the label for element Ei. Remember that the
FOD for E; consists of M elements

-42- andress/kak

0= {0i, 02, •••,0m)

To determine the Ej’s label, the element of © with maximum belief must be found. However,
since only singletons are being considered as labels, finding the element of 0 with greatest
belief is equivalent to finding the element of 0 with the largest probability mass (the belief of a
singleton is equal to its probability mass). Thus, only the following elements of Ej’s bpa need
be considered

mE.({0<x}) for a - 1, ...» M

Let 00^ be the element of © for which the bpa takes a maximum value. That is,

mEi({0am„ }) ^ mEi({0a}) for a = 1, ..., M

The label of element E; is defined to be 0^.

Once the initialization phase of the accumulation scheme is complete and the initial bpa
for Ei’s identity has been computed and the label determined, the belief updating phase begins.
In this phase, all evidence is restricted to focus on the label-element and its compliment. That
is, the only elements in an updating bpa that are allowed to have non-zero probability masses
are _}, {“'®(w} and {©}• Thus at any time, all new evidence provided by the evidence
sources is focused on either trying to prove or trying to disprove that an element’s label is
correct (i.e. that the element’s identity has been correctly determined). If the accumulated
disconfirmatory evidence about an element’s label is enough to force the belief in the label ele
ment to fall below the belief in another member of 0, then the label will be changed to the ele
ment with greater belief. The evidence sources then are allowed to provide confirmatory or
disconfirmatory evidence about the new label.

When incorporating new evidence for an element’s label, the computational load can be
eased by making use of the associative nature of Dempster’s rule. If an element’s bpa is
updated incrementally with every piece of new evidence, as is done in Barnett’s scheme, then
the new bpa will be computed as

-43 andress/kak

mnew — ((fo^dd ® ^update) ® ®update) ®" ® ^update)
2-»i 3->i T«-»i

Where © denotes Dempster’s rule of combination and m^ate is the updating bpa for the new
j~>i

evidence that source Sj is providing for element Ei. Since Dempster’s rule of combination is
invariant with respect to the order of combination, the new bpa can be expressed as

tHnew =:.'mold ® mjjpdate

where

^tupdate = ((mupdate ® ^update) ® "" ® ntupdate)
2-»i 3—>i N-»i

Now the fact that the updating bpa’s use binary frames of discernment can be exploited (if ele
ment Ej is labeled as EA then the only elements of Ei’s bpa with nonzero probability mass
correspond to the subsets {EA}, {-iEa} and {0} itself). Because BFODs can be updated in
constant time, the time needed for N evidence sources to form an element’s updating bpa is
O(N). Furthermore, Barnett’s formulas can be used to incorporate the updating bpa into the
initial bpa in 0(101) time. Thus, the total amount of time for N evidence sources to update an
element’s belief in its label is 0(N+101). Of course, if an element’s label changes during the
accumulation process then further computation is necessary because the evidence sources must
provide evidence to update the element’s belief in the new label.

It should be mentioned that if the updating belief for a number of elements is generated
by noting the degree to which their labels are mutually compatible, then the updating evidence
contained in their updating bpa’s should not be incorporated into their belief functions until all
of the updating bpa’s are formed. If the incorporation of the updating bpa’s is not delayed in
this manner, then it is possible for the updating bpa for an element to be influenced by its belief
in its own label. Ah element could provide updating evidence to itself if it was used to gen
erate updating evidence in another element’s label which in turn was then used to provide
updating evidence about the first element’s label. Delaying the incorporation of updating evi
dence into elements’ belief functions until all updating evidence has been generated prevents
this from occurring;

5.3. Hierarchical Evidence Accumulation in PSEIKI

If the task of a system is to determine the identity of a number of elements which are
arranged into a part-of hierarchy, then the evidence accumulation scheme introduced in the
previous section can be embedded into the hierarchy to provide further computational gain. A
part-of hierarchy is shown in panel (b) of Fig. 5.2; in this figure, as in most part-of hierarchies,
elements on the higher levels of the hierarchy are defined by groups of elements on lower lev
els. For example, in this figure elements Eu through E1i4 are grouped to form element E2>i
(Eij denotes the j* element on the i* level of the hierarchy). Part-of hierarchies are a natural

-44- andress/kak

way to represent many types of objects. For example, this report contains a number of
chapters each of which, in turn, contain a number of sections. As we progress down this struc
ture, we find that the sections can be broken down into paragraphs, sentences, clauses, words
and letters. An automobile also can be represented hierarchically using a part-of hierarchy.
Panel (a) of Fig. 5.2 is a simple example of how an auto can be broken down into its major
assemblies (the frame, the body and the powertrain) and how each of these assemblies can be
broken down into its main components. Of course, a part-of hierarchy that could be used to
represent a real auto would be much more complex. Note that these hierarchies do not need to
be strict; that is, an element can have more than a single parent if it is in more than one group.

(a) (b)
FIGURE 5.2 (a) Hierarchical description of an automobile, (b) demonstrates how a number of unidentified

elements can be grouped into a part-of hierarchy.

The structure of a part-of hierarchy can be used to aid in the determination of the identity
of its elements. For example, in many cases, the label for an element will dictate the possible
labels that its children can assume. For example, in Fig. 5.2, if elements Ei j through Elf4 are
grouped to form element E2, i and if E^i is thought to be the drivetrain of an auto, then the
possible labels for elements Elti through E^ would be

0= {engine, transmission, driveshaft, differential, axle)

Thus panel (a) of Fig. 5.2 can be thought of as a hierarchical arrangement of the possible labels
that the elements of panel (b) can assume (i.e. their frames of discernment). If the hierarchy
was not used to restrict certain possible labels from being included in an element’s FOD; then
the FOD might include all possible labels on the same level of the hierarchy. As it stands, the
FOD for an element is determined by its parent’s label-element and the children of its parent’s
label-element. Specifically, an element’s FOD is defined to be the children of its parent’s
label-element.

Because an element’s FOD is determined by its parent’s label, the FOD for the element
and all of its descendents must change if the parent’s label changes - a computationally inten
sive operation. Thus it is advantagepus to incorporate new evidence on upper levels of the
hierarchy before incorporating evidence on lower levels of the hierarchy. Because calculations
on upper and lower levels of the hierarchy can be thought to correspond to checking global and

-45- andress/kak

local consistencies respectively, generating updating evidence for elements on the upper levels
of the hierarchy before generating updating evidence for elements on lower levels corresponds
to performing global consistency checks before local ones.

To further curtail the number of uncertainty calculations, elements are only used to gen
erate updating evidence for their siblings. For example, only elements thought to be part of the
auto’s drivetrain would be used to generate updating evidence for other elements in the
drivetrain. If the data were not arranged hierarchically, every element would be needed to
generate updating evidence for every other element. An element can be used to generate evi
dence for another element that is not a sibling by propagating the first element’s confidence
value up through the hierarchy until a common ancestor is reached and then back down to the
second element.

5.3.1. Evidence Propagation Between Levels in the Hierarchy

Evidence from an element’s siblings is not the only Source of knowledge used to update
its belief function. A mechanism also is provided for passing belief values between different
levels of the hierarchy. This is done to satisfy the intuitive argument that says any evidence
confirming an element’s label also should provide evidence that its parent’s label is correct.
Discontinuing evidence also is required to be passed down to the lower levels of the hierarchy
Furthermore; it is intuitively appealing to pass both confirmatory and discOnfirnaatory informa
tion up the hierarchy if all updating evidence for an element is generated by measuring its con
sistency with its siblings.

The updating bpa, mupdate, is used when passing evidence up the hierarchy. To do this,
mupdate is combined not only with the bpa for the element in question, but also with that for the
element’s parent. Combining the updating bpa with an element’s parent makes intuitive sense
because all new evidence generated on a level comes from the (in)compatibility between ele
ments bn that level. If the children of an element have consistent (compatible) labels, then
these child-elements should provide evidence that the label given to the parent-element is
correct. Likewise children with inconsistent labels provide evidence that their parent’s label is
incorrect. Thus, by passing the updating bpa’s to each parent-element, new evidence is pro
vided for those elements based on the consistency or the inconsistency of their descendents.

Evidence from an element cannot be applied directly to its parent because the FODs of an
element and its parent are composed of different types of data elements. However, it will be
shown, with the help of the above example, that it is possible to build a FOD that can be used
to update the belief functions of elements on a higher level of the hierarchy. Assume that the
data is as shown in panel (b) of Fig. 5.2 and that element Elfl is a child of element E2>i.
Furthermore, assume that Ei,i is labeled as the transmission and E^i islabeled as the
drivetrain. Because the confirmatory evidence for Eu ’s label derived from its siblings arises

from the consistency of the label with its sibling’s labels,, it may be considered as a weighted
vote of confidence that E2(i ’s label is correct. Likewise, because the disconfirmatory evidence
for Ejj’s label derived from its siblings arises from the inconsistency of the label with its
sibling’s labels, it may be considered as a (weighted) vote of no confidence in E2>i’s label.
Thus, mup^ate (©) can be considered to be the amount of ignorance in E^i’s label. Using this

Bl,l

rationale, an updating bpa for E2,1 with the following non-zero probability masses may be
defined as

ni update ({diivetrain}) = mUpdate({transmission})
Bl .1-*2.1 *1.1

111 update ({—idrivetrain}) = mUpdate({ ^transmission}}
• ^l,l-4E2,l “1,1

^ update (®E21) = mupdate (®E!!)

El,i—>E2,1 ’ “1,1

Now it will be shown that m update is a bpa for E2ii . As described in the last section, the FOD
Bl-.i—»E2,1

for an element’s updating bpa is binary in nature. Thus the only non-zero elements of the
updating bpa for Ei are mUpdate({transmission}), mUpdate({—itransmission}), m„pHat>.((Ql) and

they sum to 1. Because m update has unity total mass and its null hypothesis has zero mass, it
El.l—>E2.i

is a bpa by definition. The total accumulated new belief for E^i from its children E^i,..., Ei^
now can be expressed as

tnUgdate = (m Update © • • . © m update)
^2,1 Eiji -»E2,1 Eit4->E2,l

Information is passed down the hierarchy only if it is disconfirmatory. This downward
propagation of information takes file form of the reassignment of frames of discernment caused
by the ancestor of an element having its label changed. In the previous example, this could
happen if the hypothesized identity fop E24 is changed to be the frame of the auto. Using
information from the model panel, the FOD for Ei would be reassigned to

© = {carraige, front suspension, rear suspension}

It should be mentioned that there are two cases that require special consideration. First, a
data-element may have no siblings; in this case, since the element’s consistency can not be
checked with its siblings, the only updating evidence that will be received about its label will
be generated by checking the consistency of its children’s labels. The other special case
occurs when an element’s label-element is an only child; in this case, there is only one member
of the element’s FOD. Therefore, the element’s label can not be changed no matter how small
the belief in this label becomes. Note that since the element has only one element in its FOD
(101 =1), its bpa is a simple support function.

-46- andress/kak

-47- andress/kak

5.4. Use of the Hierarchical Evidence Accumulation Scheme in PSEIKI

The evidence accumulation scheme introduced here was originally developed to aid in
the matching of data-elements with model-elements by PSEIKI’s labeler KS. In this applica
tion, the labeler KS uses the scheme to determine the identities of the elements on the data
panel of the blackboard. Their possible identities are the elements on model panel. To illus
trate how the scheme used used by PSEIKI, consider the example in Fig. 5.3.

8
7

10

14

16

... A ' .

I;

FIGURE 5.3 The left panel of this figure shows a simple example of model-elements derived from a graphics

source; die right panel shows image-elements from 2D vision data. The figure is used to aid the textual

explanation of how PSEIKI’s labeler KS uses the evidence accumulation scheme introduced here. Note

that the elements in this figure could represent only a small fraction of the data-elements on the

blackboard panels.

This figure shows the edge-level and face-level of the data on the blackboard. Model-data is
shown in the left panel; in this frame edges Ea through Ed are grouped into face Fa. The right
panel shows image-data; here edges Ei through Eg are grouped into face Ff

As was mentioned in the previous section, the hierarchical nature of the matching task is
used to increase the efficiency of the matching process by restricting the model-elements
allowed to be members of an image-element’s FOD. For example, in Fig. 5.4, if Fj is matched
with Fa, then the frame of discerment for edges Ei through Eg would be

© - {Ea» Eb, Eg, Ed}

These model elements are allowed be members of the FODs for edges Ei - Eg because they
W ‘ : ' ■■ ;
Note that in the following discussion the elements generated by the graphics source have capital

letters as subscripts while elements derived from 2D vision data have numeric subscripts.

-48 andress/kak

are the children of their parent’s model element, face Fa.

The hierarchical nature of the task is exploited further by checking the consistency of an
element only with its siblings. In the previous example, the belief Ei’s label would be Updated
only with evidence generated by noting its consistency with edges E2 - Eg. These edges would
be used to provide the updating evidence because they are grouped into face Fj along with
edge Ej. If the image-elements were not grouped hierarchically, then every edge Would be
needed to generate updating evidence in Ej ’s label. The method used to generate updating
evidence for edges and faces based in their consistency with their siblings is discussed in
chapter 6,

PSEIKI’s labeler KS also propagates updating bpa’s up the hierarchy in the previously
discussed manner. For example, if edge E1? one of face Fi’s children, has label Ea and face
Fi has label Fa, then the following updating bpa for Fx can be created from the updating bpa
forE]

ti^update ({ }) — J-^update ({ EA })
Ei-»Fi Ei

n^update(('Fa}) = nidjxiateCt-iEa })
Fi~>pi ei

^update (®Ft) = ®update (®Et)
Hl-»Fi Ei

The bpa’s are propagated upwards for the reasons discussed earlier. Compatibly labeled
siblings should provide confirmatory evidence about their parent’s label; conversely, incompa
tibly labeled siblings should provide disconfirmatory evidence about their parent’s label. As in
the general scheme, changing the bpa for an element on an upper level of the hierarchy will
force all of its descendents to change their FODs. The FODs are changed to satisfy the heuris
tic which states, for example, that the constituent edges of a mislabeled face also are most
likely mislabeled.

5.5. Another Application of the Hierarchical Evidence Accumulation Scheme

It is also possible to use the hierarchical evidence accumulation scheme developed here in
domains suitable for blackboard processing other then computer vision. The scheme is appli
cable to these domains because of their hierarchical nature. For example, the evidence accu
mulation scheme could be used in the domain for which the Hearsay-Il [ErmHay80] black
board system was developed: speech understanding. We will examine how the evidence accu
mulation scheme could be used by a speech understanding system based on Hearsay-II.

Speech is represented hierarchically in the Hearsay-II system on the following 6 levels:
phrases, word-sequences, words, syllables, segments and parameters. The lowest-level of the
representation, the parameter level, breaks the speech waveform into five classes: silence,

sonorant peak, sonorant nonpeak, fricative and flap. The next higher level, the segment level,
is used to label the elements on the parameter level with phoneme-like labels. These labels are
generated using statistical pattern recognition techniques and can assume 98 different values.
Hearsay-II forms the elements on the higher levels of the hierarchy (the syllable, word, word-
sequence and phrase levels) by grouping compatible elements from the lower levels.

To apply the accumulation scheme to Hearsay-II’s task, the statistically-based classifier
could still be used to generate phoneme-like labels for the parameter elements. However, ini
tial belief values for the segments’ labels could be generated from the probabilities produced
by the segment classifier. Updating evidence for the elements’ labels could then based on the
compatibility between the elements and their siblings, as is done in PSEIKI. For example, on
the word level of the blackboard, if an adjective is followed by a noun then the two should lend
support to each other.

Updating evidence could be passed up the hierarchy as is done in PSEIKI (for example,
evidence that a word is correct would also be evidence that its parent phrase is correct). Like
wise, changing the label of an element on an upper level of the blackboard would cause all of
its descendents to change their FODs.

5.6. Future Work

In this chapter, a new hierarchical evidence accumulation scheme based on a restricted
form of Dempster’s rule has been developed and informally has been shown to be computa
tionally efficient, This efficiency has been shown to stem direcdy from a restriction on the
focus of updating evidence; however, research needs to be performed on how restrictions
placed on the updating evidence affect an element’s belief function. Future work will investi
gate how an element’s belief function changes when the various schemes discussed in this
chapter are Used for evidence accumulation. This investigation will use techniques developed
in the past to compare competing models for inexact reasoning [MitHar87]. Another topic that
may warrant investigation is the performance of the combination scheme when the evidence
provided by the sources is not independent. Some previous work addressing this topic can be
found in [DiibPra85], [DubPra86], [HunJay87], [Kyb87], [Sme76], and [Yen86].

-49- andress/kak

. CHAftfeiiS

GEOMETRIC COMPUTATIONS FOR
tMtiAL AND UPDATING BELIEF FUNCTIONS

Chapter 5 showed how evidence is used to generate and update belief in a data-element’s
label; however, rid mention Was made Of hdW that evidence is generated. This chapter Will
address the process Of generating evidence to choose initial labels for elements and to update
the confidence values for those labels. In PSEIKI, evidence about an element’s label is gen
erated by measuring how well the element meets geometric constraints betwden itself and
other elements. These constraints take tWo general forms. Initially when matches are being
formed, the constraints measure the similarity between an image element and model elements.
After the initial matches are found and a label for the element has been determined, the con
straints are used to measure how consistent the element’s label is with the labels of its siblings
in the hierarchy.

There are many techniques available that PSEIKI can use to determine if elements are
meeting geometric constraints. Besl describes some general techniques to match image data
and model data at various levels of abstraction (points, curves, surfaces and volumes) using
geometric constraints [Bes88]. Crowley and Ramparany take a different approach to the pro
cess of generating evidence based on geometric constraints; they model sensor readings as
samples from a multivariate Gaussian distribution and use this assumption to calculate a "dis
tance" from a feature measurement to its mean value [CroRam87]. They then estimate the
belief in an entity based on the distance measured. No matter what method is used to measure
the degree to which the elements are meeting the geometric constraints, the constraint meas
urements must be converted into belief functions. The method used in PSEIKI to convert raw
confidence values to belief functions is described in appendix B; of course, the conversion
method described there is only one possible method that could be used to convert the measure
ments into belief functions.

In this chapter the two components bf the evidence generation process will be explored.
The first section of this chapter addresses the generation of initial labels based on the compati
bility of data-elements with model-elements. Generation Of the initial labels for elements on
the edge-level and face-level is discussed in detail. The second portion of the chapter
addresses the process of generating updating evidence for an element’s label based on the
compatibility between its label and its siblings’ labels,

-50- andress/kak

6.1. Computing Initial Belief Functions for Data Elements

As described in chapter 5, an iriiage-element’s initial label and belief function are
obtained by checking constraints between the elBhieht itself and elements on the model panel

-51- andress/kak

of the blackboard. Obviously, the constraints used to provide initial evidence need not be the
same for all levels of the hierarchy. The evidence generated by measuring the degree to which
the constraints are met only needs to focus on members of an element’s FOD or their compli
ments since these are the only subsets of © that can be used by the evidence accumulation
scheme described in chapter 5. The output of the metrics must range from 0.0 to 1.0 in order
to use the technique presented in appendix B to convert the measurements into bpa’s.

Before any labels may be generated for an element, its FOD must be determined. If an
element has a parent, then its FOD is defined to be the children of its parent’s label-element, as
described in chapter 5. For example, consider Fig. 5.3. If edges {Ei,..., Es} on the data panel
are grouped into face F^ and Fj is matched with Fa, then the FOD for each edge in the group
wouldbe

Note that, since label information of elements on upper levels of the blackboard is used to
determine the FOD for an element’s label, it is advantageous to determine the labels of ele
ments on the higher levels first, and then work down to elements on lower levels.

If an element has not been placed into a group and, therefore, has no parent, then a dif
ferent tack must be taken to form its FOD. In this case, the extents of the elements are used to
determine their FODs. The term extent is taken from the computer graphics arena [FolVan82]
and is defined to be the minimum-size rectangle with edges parallel to the coordinate axis that
contains an object. Examples of the extents for an edge and a face are shown in Fig. 6.1.

FIGURE 6.1This figure shows the extent for an arbitrary face and an arbitrary edge. The objects in this figure are

drawn using solid lines and their extents are the dashed boxes.

The FOD for an orphan face-element includes any model element whose extent overlaps its
own. Fig. 6.2 demonstrates the process of determining an orphan face’s FOD. In cases (b) and
(c) of this figure, FA would be placed in Fj ’s FOD; however, in case (a) it would be excluded

from the FOD because the two extents do not overlap.

-52- andress/kak

A

(a) (b) (c)

FIGURE 6.2 This figure demonstrates how extents are used to determine a face element’s FOD. In this figure,
would be placed in Fj’s FOD in cases (b) and (c) because their extents (shown as dashed boxes)

overlap. Conversely, it would be excluded in case (a) because the two extents do not overlap.

A similar method is used to determine the FODs for orphan edges. However, the method
must be modified slightly because two edges can be arbitrarily close and not have overlapping
extents (for example, if they are both parallel to the same coordinate axis). To guarantee that
all model edges are included in an edge’s FOD that should be, the extent of the edge is
expanded. Fig. 6.3. shows how the extent of an edge is expanded by adding a border around
the extent. The size of the border around the edge’s extent, Dmax, is set by the user and reflects
the maximum expected misregistration between the image and the expected scene. Fig. 6.4
demonstrates the process used to determine if a model edge is included in an orphan edge’s
FOD. In panel (a) of this figure, the model edge would not be included in the edge’s FOD
because the extents do not overlap. However, the model edge would be included on the FOD
in cases (b) and (c) because the extents overlap. Note that although the image elements and
the model elements are on different panels of the blackboard, it is possible to speak of dis
tances and angles between them because they are both projected into the same world coordi
nate system.

r....*:~ar................. :........ :
I ' D I

-53- andress/kak

(a) (b)

FIGURE 6.3 This figure demonstrates how a border is added to an edge’s extent. Panel (a) Shows the edge’s

original extent; panel (b) shows the edge’s expanded extent.

(a) (b) , (c)

FIGURE 6.4 This figure demonstrates how extents are used to determine an edge element’s FOD. In this figure,

Ea would be placed in Ej ’s FOD in cases (b) and (c) because model elements’ extents (shown as

dashed boxes) overlap with the data edge’s expanded extent. Conversely, it would be excluded in case

(a) because the two extents do not overlap.

6.1.1. Computing Initial Belief Functions for Edge-Elements

When determining initial matches between edges, PSEIKI’s labeler KS tries to match a
data edge with the edge in its FOD that lies closest to the same line. To find the match partner
of a data edge, the KS measures the degree of "collinearity" between the edge and all the
model edges in its FOD; it then chooses as the match partner the model edge with which the
data edge is most collinear. The belief of the match made then is set to the degree of .collinear
ity between the two edges.

The following formula is used as the measure of collinearity between an edge detected in
the image and an edge from the expected scene (edge E, is the model edge and Ej is the data
edge).

-54- andress/kak

ES_collinearity (Ej,
c ^ _ ^max Dpcyp ^ Dmax Dpaj-
tj)------- - X

Dmax D„

where Dj*,^ is the distance from the middle of Ei to the line defined by EA, Dpar is the
misregistration along the direction EA, Dmax is the maximum allowable value for either of the
two misregistrations, and 0 is the acute angle between the segments (see Fig. 6.5). The value
for Dmax reflects the maximum expected misregistration between the image and the expected
scene and is set equal to the amount that the edges’ extents are expanded when their FODs are
determined.

FIGURE 6.5 This figure shows parameters used in the definition of collinearity.

To determine an edge-element’s label, PSEIKI’s labeler KS computes its bpa over 0 by
applying the ES_collinearity measure to each element in its FOD. For example, if edge Ei’s
FOD was determined to be

® = {EA, Eb, Ec, Ej>}

then the formula might produce the following ES_collinearity measurements,

ES_collinearity(EA, EO = 0.43

ES_collinearity(EB, Ei) = 0.11

ES_collinearity(Ec, Ei) = 0.73

ES_collinearity(Ei), Ei) = 0.56

Using the technique described in appendix B, the ES_collinearity measurements can be con
verted to the following bpa for Ei by normalizing all the values by the total confidence.

niEj (Ea) = ES_collinearity(EA, Ej) / total_confidence = 0.24

mE1 (Eb) = ES_coIlinearity(EB, Ei)/total_confidence = 0.06

mg,(Ec) = ES_collinearity(Ec, Ei) /total_confidence = 0.40

mE, (Ed) = ES_collinearity(Eo, Ej) / total_confidence = 0.30

-55- andress/kak

mEl (•) = 0.0 for all other subsets of ©

where totaI_confiderice = 0.43 + 0.11 + 0.73 + 0.56 = 1.83

With this bpa, Ei’s label would be set to Ec with a belief of 0.40.

Another procedure is used to initialize the bpa if the ES_collinearity measures sum to less
than one. Assume for a moment that the distance cutoff, Dmax, is decreased resulting in the
following ES_collinearity measurements

ES_collinearity(EA, Ei) = 0.23

ES^collinearity(EB, Ei) = 0.11

ES_collinearity(Ee, Ei) = 0 13

ES_collinearity(ED, Ei) = 0.26

In this case, the amount of confidence left uncommitted by the metric, 0.27, is considered to be
the amount of ignorance in the identity of edge Ei and is set to be the probability mass of the
FOD, 0. We set the probability mass in 0 to the uncommitted confidence because
ES_compatibility(Ej, Ei) measures the belief that the edge Ei’s identity is Ei. Clearly, if the
edge’s identity cannot be determined to be any of the elements in its FOD with a sufficiently
high degree of confidence, then some belief about its identity should be left uncommitted.
Using this procedure, the following bpa for Ei is constructed.

mE, (Ea) = ES_collinearity(EA, Ei) = 0.23

mEl (Eb) = ES_collinearity(EB, Ei) = 0.11

thEj(Ec) = ES_collinearity(Ec, Ei) = 0.13

mEl(Ed) = ES_collinearity(ED, Ei) = 0.26

mEl (0) = 1.0- total_confidence = 0.27

: niEi Q = 0.0 for all. other subsets of-0.

where total_confidence = 0.23 + 0.11 + 0.13 + 0.26 = 0.73

6.1.2. Computing Initial Belief Functions for Face-Elements

When determining initial matches between face-elements, PSEIKI’s labeler KS tries to
maximize the percentage of overlap between matched elements. That is, to determine a face-
element’s label, the percent of overlap between it and all elements of its FOD is measured and
the model face-element with maximum overlap is selected. The percentage of overlap
between two face-elements is defined to be the area of their intersection divided by the area of
their union. This notion is shown in Fig. 6.6 and can be expressed as

ES_overlap(Fm0(jei, F^agg) —
Area

-56- andress/kak

intersection

Area,,

(a) Union

FIGURE 6.6 This figure shows the union and intersection of two faces.

To improve the computational efficiency, the percent of overlap between two faces currently is
approximated by the percentage of overlap of their two extents.

6.2. Computing Updating Belief Functions for Data Elements

After the initial matches are established between elements, the labeler KS provides evi
dence about the validity of the an element’s label based on the label’s consistency with the
element’s siblings Mabels. In general, two metrics are required for updating an element’s label
belief function. The two metrics must provide measures of compatibility and incompatibility
between the element and its siblings. The compatibility metric is used to provide confirmatory
evidence that the element’s label is correct. Conversely, the incompatibility metric provides
disconfirmatory evidence about the element’s label. Both metrics should range between 0.0
and 1.0 to facilitate conversion of their values to an updating bpa. It is illustrative to examine
how one element can be used to update the belief in another element’s label when both have
the same label. When this process is understood, the case in which two elements have dif
ferent labels follows naturally.

6.2.1. Computing Updating Belief Functions for Edge-Elements with the Same Label

ColIinearityO) and noncollinearity(’) are the metrics used to determine the
(in)compatibility between two edges with the same label (the collinearity metric is related to
the ES_collinearity measure used to establish initial matches). That is, if Ei and Ej are edges

in the data panel and have the same label, then collinearity(Ej, Ej) is the measure of compati
bility between them. Collinearity is defined as

collinearity(Ei, Ej) = —x cos(0)

where 0 is the acute angle between the two edges and Dperp the distance from the middle of Ej
to the line defining Ej (see Fig. 6.5). Dmax, the maximum allowable value for Dp^s is a user-
specified heuristic parameter or function. For the computation of updating evidence, Dmax is
set in a manner different from that described in Section 6.1.1; its value is set equal to the
length of Ej. Setting Dmax in this manner is justified by the rationale that the maximum allow
able distance between two data-elements with the same label should be a function of the sizes
of the data-elements.

Likewise, the incompatibility between two edges, can be measured by calculating the
noncollinearity(Ei, Ej) between them. Noncollinearity is defined as

noncollinearity(Ei, Ej) = perp x scale(Ei) x sin(0)
^max

5fC
where scale(Ej) depends on the length of Ex .

Because the (in)compatibility measures are defined heuristically, it usually is advanta
geous to limit the amount of evidence that they can provide. This is accomplished by scaling
the measures by a level-specific scale factor SF (O.O < SF < 1.0). Thus the (in)compatibility
measures for the edge-level can be defined as:

compatibility (Ei, Ej) = collinearity (Ei, Ej) x SF^ge

incompatibility (Ej, Ej) = noncollinearity (E;,Ej) x SFedge

Once the (in)compatibility between the two edges has been determined, the technique
described in appendix B can be used to convert them into a bpa. For example, assume that Ej
and E2 exhibit maximal beliefs for the same model edge, EA, and that the labeler KS is using
E2 to update the belief of Ej’s label. To do so, the labeler measures the collinearity and the
noncollinearity of Ei and E2, If the results of the (in)compatibility measurements are

:''-/'-.:".;'.:.9omp,atibility(E2,Ei)-:0.8;.----...;..-.v

incompatibility (E2, Ei) = 0.1

the belief in ^ ’s label (say, for example, 0.8) can be used to create an "updating" confidence
function for Ei as follows:

*—~
The scale factor is provided to limit the amount of disconfirmatory evidence generated by small

edges which may be due to noise.

-57- andress/kak

-58 andress/kak

Conf2_>i({EA}) = m2({EA}) x compatibility(E2, Ei)

= 0.64

Conf2_41({-iEA}) = mE2({EA}) x incompatibility(E2, Ei)

= 0.08

Since the confidence function has some belief left uncommitted, E^’s updating bpa can be
defined as

mUgtoe({EA}) = Conf^i ({EA })=0.64

te ({—>E A}) = Conf2_1({-nEA})= 0.08

mu^date({©}) = 1.0 - Conf2^!({EA}) - Conf2^1({-,EA})= 0.28

where the probability mass for the FOD was set to the uncommitted portion of belief.

6.2.2. Computing Updating Belief Functions for Face-Elements with the Same Label

The (in)compatibiiity metrics for face-elements are called colocate(-) and noncolocate(*).
These two metrics are designed to measure how close two face-elements are to each other by
measuring the distance between their centroids. The compatibility metric between two face-
elements, colocate(F!, F2), is defined as

, /t- r- \ ^max — Dceniroid
colocate(Fi, F2) =---- ——------------

^max

where Dcentroid is the distance between the centroids of the two faces. Dmax is the maximum
allowable value for Dp^o^; currently, it is set to the length of the diagonal of Fj’s extent.
Again, this is done to scale, by an element’s size, the evidence that the metric can provide. To
improve computational efficiency, the centroid of a face currently is approximated by the cen
troid of its extent, Similarly, noncolocate(Fi, F2), the face-level incompatibility metric, is
defined as

noncolocateOFj, F2) =
^centroid

Dm cy

Note that these metrics can be used for range data by extending the definitions to use the
directions of the normal vectors of the two faces. In the three dimensional case, these metrics
could be defined as

colocateapCF!, F2) = Dm" ~ x cos(8)

^max

-59- andress/kak

■and ;

noncolocate3D (Fi, F2) - ^ntTOld x sin(8)
^max

where the distance parameters are defined as before and 0 is the acute angle between the two
normal vectors. This extension is not needed currently because of the two-dimensional aspect
of the mobile robotic environment.

Another metric that can be used to compute the incompatibility between two faces, Fi and
Fj, on the data panel of the blackboard, is the fraction of overlap between them,
overlap(Fj, Fj). To understand how this metric is used, consider the following example.
Assume that the incompatibility of two faces on the data panel, Fx and F2, is being computed
and that the two are thought to correspond with two non-overlapping faces on the data panel,
Fa and Fb , respectively. If faces Fi and F2 overlap by 10%, then the incompatibility between
them can be defined to be

incompatibility^!, F2) = overlaps, F2) = 0.1

6.2.3. Computing Updating Belief Functions for Elements with Different Labels

If two elements correspond to different model-elements, a rigid motion transformation is
applied to one of them before the computation of the (in)Compatibility metrics. This has the
effect of enforcing relational constraints between the two data-elements. For example, if edges
Ej and E3 are thought to correspond to model edges Ea and Eb , respectively, then the measure
of compatibility between Ei and E3 would be defined as

compatibility(E3, Ex) = collinearity(E3, TEa^Eb(E1» x SFgdge

where T^^^ is the rigid motion transformation that makes model edge Ea collinear with

model edge Ee.

Fig. 6.7 can be used to aid in the explanation of how the transformation is defined. First,
for a given pair of non-parallel edges, the vertices on the convergent and the divergent sides of
the edges are distinguished; the convergent side of the two edges is the side on which they
would meet if extended. The transformation T^^^ is accomplished by rotating edge Ea
about its convergent vertex through an angle that makes the edges parallel; subsequently, EA is
translated so that the two convergent vertices coincide. Performing this transformation forces
model-elements to be compatible; in other words,

collinearity(EB, TEa_^Eb(Ea)) = 1.0

Note that the definition of the transformation is not well defined. There are two transfor
mations that can be used to make the two model edges collinear depending on the direction

-6,0- andress/kak

After Translation
EB———o

(a) (b)

FIGURE 6.7 This figure shows the rigid morion transformation that makes two model-elements collinear. Panel

(a) shows the transformation created by "unfolding" the two edges. Panel (b) shows the transformation created by

"collapsing" the two edges.

that edge EA is rotated. The first transformation "unfolds" the two model edges by forcing the
angle between them to be 180 degrees; this type of transformation is shown in panel (a) of Fig.
6.7. The other type of transformation "collapses" the two edges onto each other by forcing the
angle between them to be 0 degrees. It is impossible to determine completely from the
geometry of the model edges which transformation will be needed to make two data edges col
linear; the transformation also depends on the direction that the image is misregistered from
the expected scene. Therefore, the transformation that should be used to make two edges col
linear must be determined at runtime. PSEIKTs labeler KS computes the collinearity of the
two edges using both transformations and uses the transformation that results in the largest col
linearity measurement. The same transformation is then used to determine the incompatibility
of the two edges.

Consider, as an example, how the relational constraints are checked by transforming ele
ments and measuring their (in)compatibility. Assume that edge E3 is being used to provide

o—■———o
i E E"

W B Ao------------------- o

updating evidence about the label of edge Ei. Furthermore, assume that edge Ej has label Ea
and edge E3 has label Eg. To measure the extent to which the geometrical relationship
between E^ and E3 is the same as the one between Ea and Eg, the labeler carries out the fol
lowing (in)compatibility computations:

compatibility(E3, Ei) = collinearity(E3, TEa_^Eb (Ex)) x SF^

incompatibility(E3, E^) = noncollinearity(E3, x SF^ge

where TEa_»Eb is the transformation that makes the model edges Ea and Eg coincident and
results in the greatest measured eollinearity between E3 and the transformed version of edge

■'Ei. Clearly, compatibility^, Ei) = 1.0 implies that the geometrical relationship between Ei
and E3 in the data is exactly the same as between Ea and Eg in the model (in this case,
incompatibility(E3, Ei) = 0.0). If the compatibility calculations yielded the following results:

compatibility^, Ei) = 0.7

incompatibility^,Ei) = 0.4

and the belief in E3’s label was 0.95 then the following confidence function could be defined
by using the (in)compatibility measures and the belief in E3’s label.

Conf3^i ({EA}) = m^ ({Eg}) x compatibility(E3, Ei)

= 0.7x0.95

. =0.665 .

Conft^i({-.Ea}) = m^({Eg}) x incompatibility(E3, E2)

= 0.4x0.95

- = 0.38 ^

Since the confidence is overspecified, the updating bpa can be defined by normalizing with the
total confidence.

mu^iate ({ ^a })= 0.64

®u^date ({ "^A)) 0.36

The same technique of checking relational constraints can be used on the elements resid
ing on the face level. That is, the (ih)c6mpatibility between face elements can be measured by
applying the (non)colocate metrics to transformed face elements with different labels. How
ever, since the metrics used to calculate the (in)compatibility between face-elements use only
the distance between Centroids for their computations, only a translational transformation is
required. Formally, the transformation TF._^F. merely translates Fj’s centroid until it is coin
cident with Fj’s centroid. The transformation used to measure face-level relational constraints

-61- andress/kak

-62- andress/kak

is shown in Fig. 6.8.

A +
B+

FIGURE 6.8 This figure shows the rigid motion transformation that makes the centroid face Fa coincident With
the centroid of the transformed version of face Fg. The crosses inside each face indicate the location of

its centroid.

Note that if the metrics are extended to work in three-space, as previously discussed, then there
should be a rotational component to the transformation that would make the faces’ normal Vec
tors collinear.

In reality, a single procedure is used for enforcing both the local and die relational con
straints within a group. Note that if the identity transformation, Tgx_4Ex is used, the
(in)compatibility calculations for relational constraints reduce to the computations required for
(in)compatibility calculations for mutual consistency in Sections 6.2.1 and 6.2.2.

To make the concepts introduced in this chapter more concrete, we will show an example
of the how face elements are labeled and hOw the belief in those labels are updated. In this
example, assume that the expected scene consists of a single object with four faces, as shown
in the left panel of Fig. 6.9. Also assume that a region-based preprocessor presented PSEIKI
with the observed scene depicted in the right panel of Fig. 6.9.

The first step in the labeling process consists of determining the frames of discernment
for the faces on the data panel. As previously described, a model element is include in a face-
level data element’s FOD if the extents of the two elements overlap. For example, if Fa was
the only model face whose extent overlapped with face Ft’s extent, then Fj ’s FOD would con
sist entirely of @g1 = {Fa}. On the other hand, if the extent of face Fg overlapped with the

-63 andress/kak

fb

.. ^

FIGURE 6.9 The left and right panels of this figure show the model and data panels of the blackboard,

respectively. This figure is used in the example in text which describes how the labeler KS initializes

and updates the belief in the labels of face-level elements.

extents all of the model faces, then its FOD would be @p6 = {Fa, Fb, Fc, Fd}•

After the initial FODs for the face elements have been determined, the belief function of
each element is initialized by measuring the percentage that the face’s extent overlaps with the
extent of each model element in its FOD. For example, the following probability masses could
result ffoni measuring the percentage of overlap between face Fg and the model faces.

Fi/-\Fa
ES_overlap(FA, F6) =————== 0.05

fiUfa

fiP>fb .
ES_overlap(FB, F6) = —-----— = 0.1

fiUfb

• ■ FmFc
ES_pverlap(Fc,F6) = c _ =0.1

F ^\FES_overlap(FD, F6)=- -1- ° =0.35
... fiUfd

The following probability masses are obtained by using the process described in appendix B.

-64- andress/kak

mF6 {FA} = ES_overlap(FA, F6) = 0.05

mp6{Fb}= ES_overlap(FB, Fg) = 0.1

mF(. {Fc} = ES_overlap(Fc, F6) = 0.1

mF6 (Fd } = ES_overlap(FD, F6) = 0.35

mp6 {@f6 } = 1.0 - 0.05 - 0.1 - 0.1 - 0.35 = 0.4

mp6 (-) = 0.0 for all other subsets of ©p6

Thus face Fg would be assigned label Fd with belief 0.35. The same process is used to initial
ize the belief functions of the other face elements on the data panel. Assume for the example
that the other faces received the following labels.

Face Label Belief

Fi Fa 0.30
f2 Fa 0.42
f3 Fb 0.72
f4 Fa 0.33
f5 Fc 0.67
f6 fd 0.26
f7 fd 0.31
f8 Fb 0.20

After each face’s belief function has been initialized, the grouper KS is allowed to group
compatible faces into objects. If we assume that one of the groups formed by the grouper KS
consists of faces Fj, ..., F7, then these faces Can be used to update the belief in each other’s
labels. For our example, we will concentrate on the process used to update the belief in the
label of face Fg. For each face in the group, excluding face Fg, we measure the
(in)compatibility of the face with face Fg using the colocate() and noncolocate() metrics and
appropriate transformations. For example, since Fg and F7 have the same label, the updating
evidence provided by measuring their consistency is computed as follows (assuming that
SFface is equal to 1.0)

mu^date({FD}) = mF7({Fd}) x colocate(F7, Fg) x SFface

= 0.31 x 0.4x1.0

= 0.13

-65- andress/kak

mu?datc({-FD }) = mp7({FD}) x noncolocate(F7, F6) x SFface

= 0.31 x 0.6 x 1.0

= 0.18

mu^te({®F6 }) = 1.0 - 0.13 -0.18

= 0.69

However, since the other faces in the group do not have the label Fd, face Fg must be
transformed before the metrics are applied. For example, the updating evidence for face Fg’s
label generated by checking its consistency with the label of face F5 can be computed as

mUpdatc({FD}) = mp5 ({FD}) x colocate(F5, TFd^Fc(F6)) x SFface
3->6

= 0.67 x 0.8 x 1.0

=0.53 ;

mu^date({-'FD}) = mp5({FD}) x noncolocate(F5, TpD_>Fc(F6)) x SFface

= 0.67 x 0.2 x 1.0

0.14

mu^date({®F6}) = 1-0 - 0-53 - 0.14

0.33 .

Updating evidence can be generated by checking face Fg’s consistency with the other faces in
the group in a similar manner. After the all of the faces in the group have been used to provide
evidence on the validity of face Fg’s label, the resulting updating bpa is combined with Fg’s
bpa using Barnett’s formulas to yield a new belief function.

Note that, in this example, we have not addressed the effects other KSs would have on the
processing. For example, the merger KS would most likely merge the following groups of
faces at some point in the processing because the elements in each group are adjacent and have
the same label.

(Fi, F2, F4}—>Fp

{F6,F7}—»F10

The composite faces formed by the merger would then be labeled and updated in the manner
described above. In the next chapter, we will describe the methods used by the splitter, merger
and grouper KSs to create and modify groups.

CHAPTER 7

EVIDENTIAL ASPECTS OF
THE GROUPER, SPLITTER AND MERGER KNOWLEDGE SOURCES

PSEIKI’s low-level preprocessors produce data only for the lower levels of the black
board; thus, the system needs to generate data elements on higher levels. Furthermore, data
presented to PSEIKI by its low-level preprocessors is often far from optimal. Many times,
image structures that should remain separate are merged into a single Structure (i.e. the image
is undersegmented) or a structure is incorrectly broken into a number of smaller ones (i.e. the
image is oversegmented). In fact, it is common for a single image to be undersegmented in
one section and oversegmented in another. The grouper, splitter and merger KSs are designed
to compensate for these deficiencies by building objects on upper levels of the blackboard
from elements on lower levels and by correcting segmentation errors.

It is the grouper KS’s task to create data-elements on the upper levels of the hierarchy by
forming groups of elements on lower levels. Many previous systems that performed element
grouping used perceptual organization principles descended from Gestalt Theory [Koh47].
Gestalt theory is a psychological tenet which states that perception occurs as a whole process
not the combination of a number of more elemental processes. One of the main products of
the Gestalt school was a catalog of a large number of phenomena that produced perceptual
grouping. Fig. 7.1 shows some of the grouping phenomena categorized by the Gestaltists.
Although this initial thrust into perceptual organization offers little help to computer vision
systems, some vision systems are able to discover perceptual groups based on the related prin
ciples of "transformations" [WitTen83a], [WitTen83b] and "interestingness" [LawMcC87].
The use of perceptual grouping in computer vision systems is also discussed in [Mar82],
[Low85].

The splitter and merger KSs are designed to correct grouping errors produced by the
low-level preprocessors, by the grouper KS and by each other. The merger KS tries to correct
oversegmented images by merging elements on one level of the blackboard into a single group
on the same level. The splitter KS’s task is to break an element into smaller elements all of
which reside on the same level of the blackboard as the original element. This splitting is done
to correct an undersegmented image. These two KSs use many of the classic splitting and
merging techniques described in [BriFen70], [HorPav74], [Zuc76], and particularly those
expressed as rules in [NazLev84].

7.1. The Grouper Knowledge Source

The grouper KS builds data elements on the upper levels of the hierarchy from data ele
ments deposited by the low-level vision system. It does this in a data-driven manner by

-66- andress/kak

-67- andress/kak

Proximity

Closure

■ ■ . . ■ ■ Similarity

Symmetry

FIGURE 7.1 These are some examples of the grouping phenomena cataloged by the Gestaltists.

grouping objects on the lower levels of the hierarchy into progressively higher levels. For
example, if an edge-based preprocessor is used to generate input data, the grouper first groups
edge-elements into faces and then groups the faces into objects, and so on.

Fig. 7.2 shows a simple example of how the grouping is performed; panel (a) shows the
expected scene, panel (b) shows the edges presented to PSEIKI by an edge-based preprocessor,
and panel (c) shows the initial labels for those edges. The grouper KS is triggered by the
monitor when the monitor detects an element on the data panel that has no parents. These
orphan elements can have a number of origins: The low-level preprocessor deposits a large
number of orphan elements onto the data panel at the beginning of processing; in fact, all
edge-level elements deposited by an edge-based preprocessor are orphans, as are all face-level
elements deposited by a region-based preprocessor. Any data element created by the grouper
KS, splitter KS or merger KS also is an orphan initially. When the KS is triggered by the mon
itor, a knowledge source activation record (KSAR) is built indicating that the orphan element
W ! ‘ :

The labels shown in Fig. 7.2 are intended only for the purpose of explanation here. In actual
practice, even for simple imagery, the initial label map may be much more chaotic, depending
upon the extent to which an image is degraded by noise and other artifacts.

-68- andress/kak

B

D

20 21

c
: ' F

M
O

(C)

FIGURE 7.2 This figure shows an expected scene in panel (a), the edges produced by an edge-based preprocessor

in panel (b), and their initial labels in panel (c).

should be used as a seed-element of a group. For example, if we assume that all of the edges
shown in Fig. 7.2(b) are orphans deposited on the data panel by an edge-based preprocessor at
the start of processing, then a KSAR is built for each edge indicating that it should be grouped.
After the monitor triggers the KS by building the KSAR, it is up to the scheduler to determine
when the KS will fire and form the specified group.

The scheduler fires the grouper KS when a new data element with a particular label is
needed. At this point, the scheduler determines all of the grouper KSARs whose seed-
elements can be a child of an element with the desired label and ranks them based on the ele
ments’ belief, size and strength. For example, in Fig. 7.2, at some point in the course of black
board processing, a new data element with label Fq may be desired. To form an element with
this label, the scheduler would rank the grouper KSARs for edge elements with labels E^, En»
Eo and Ep, because these are the only elements that could be the children of a face with label
Fo- The scheduler then chooses the highest ranked KSAR and fires the grouper KS, When the
grouper KS is fired, it creates a parent-element one level up on the blackboard from the seed-
element with the seed-element as the parent’s only child. It then determines the set of all ele
ments that could possibly be the siblings of the seed-element, based on their labels. In the
example, suppose that edge E^ was chosen as the seed-element, then the only edges that could
possibly become its siblings are edges Ejg, Ejg and E22 because these are the only edges
whose model elements are siblings of edge E^’s model element. After the set of candidate
siblings have been determined, the (in)compatibility metrics discussed in chapter 6 are used to
determine which candidates get grouped with the seed element. A candidate element will be
grouped with the seed-element only if the compatibility metric yields a value above a user-
specified threshold. For example, if the compatibility threshold has been set to 0.5 and the

-69- andress/kak

following compatibility measurements were made

collinearity(E16, Tem_>eo(e19)) = 0^5

colIinearity(E18, (El9)) = 0.55

collinearity(E22, Tej^^EpCE^))- 0.43

then the grouper could construct the following initial group of data edges.

Ei = (Ei6, E18, E19)

The same process can also be used to find the following initial groups of edges

F2 = (E3* e4> E8, Ejo, En}

F3 =•■{Ei, E2, Ej4, E^, E20, £21, E23, E24}

F4 = {E5, Eg, E7, E9, Ei2}

Note that the blackboard monitor would trigger the grouper KS as soon as these face elements
were created because each of them would be an orphan initially. Also note that the grouper
KS may incorrectly group some edges into the face. For example, small edges generated by
noise may be accidentally included in a group. Also, the grouper may incorrectly include
competing elements into a group; two elements are said to compete if they cannot both be
present in a consistantly labeled scene interpretation. For example, in F3, edges Ei and E24
compete with each other. Obviously, the grouper KS should include only One of these compet
ing edges in any group. It is the job of the splitter KS to remove the incorrectly grouped edges
from a face. The splitter KS also has the duty to generate multiple faces from a face contain
ing competing edges; the faces that the splitter generates retain only one competing edge at a
time. The actions performed by the splitter KS will be explained in greater detail later in the
chapter.

The grouper KS groups faces into objects using a sitnilar procedure; however, the grouper
uses the colocate metric introduced in the last chapter to determine if a candidate face should
be grouped with the seed face. We will use the face elements created by the grouper in the last
example to explain the processing used by the grouper KS to group face-elements into objects.
Assume that labeler KS assigned the following labels and belief values to the above faces.

Face Label Belief

Fi FD 0.40
f2 Fa "" 0.42
f3 v; Fc ; 0.72
f4 Fb 0.53

If a data element on the object level with label Oa, which is composed of faces Fa and Fg, is
desired at some point in the blackboard processing, then the scheduler would rank the

appropriate KSARs based on their face’s size arid belief Values. The scheduler would then fire
the grouper KS with the highest ranked KSAR. For this example, assume that the scheduler
fired the grouper with F4 as the seed-element. After the KS is fired, the grouping process
proceeds as follows: First, the grouper creates an object level data-element and assigns the
seed-element as its only child. It then collects a set of candidate sibling faces based on the
their labels. In this example, face F2 would be the only candidate face because it is the only
face with one of the labels, Fa of Fg. If the compatibility threshold was set to 0.5 and the
grouper measured the following compatibility measurement

cblocate(F2, TFb^Fa(F4» = 0.69

then F2 would be grouped with F4 to create the following face

Oi = {F2,F4)

7.2. The Merger Knowledge Source

The merger KS also performs a grouping process; however, this process does not build
elements on higher levels of the hierarchy from elements on lower levels, as does the grouper
KS. Instead, it combines multiple elements on the blackboard into a single, larger element on
the same level as the original elements. It combines elements if it is believed that they all can
be represented by a single element on the model panel. This combining process can be used to
correct grouping errors produced by the low-level preprocessor and the grouper KS. For
example, the low-level processor sometimes produces artifacts that break edges into smaller
line segments. The merger KS tries to correct this error by joining broken line segments with
the same label if they are close together and highly collinear. The merger KS also combines,
into a single edge, highly collinear edges that are joined at a degree-two vertex and that have
the same label. On the face level, the merger KS will combine two faces with the same label if
they are adjacent and grouped in the same object. It will also combine two faces if they have
the same label and one completely surrounds the other. Some of the merger KS’s actions are
shown in Fig 7.3.

The first step in the merging procedure consists of determining if the elements under con
sideration really need to be merged. For example, it is not feasible for the monitor to check the
coilinearity of two edges before it builds KSARs to merge them; thus, the merger KS needs to
determine if two edges are sufficiently collinear before it merges them. The KS will not merge
two edges if the coilinearity metric described in chapter 6 yields a value below a user set thres
hold when applied to the two edges in question. This threshold is usually set to a relatively
high value (above 0.75) to keep the KS from merging two edges that should remain separate.
For two faces to be merged, it is sufficient that they have the same label, be grouped together
and be adjacent. Two faces are said to be adjacent if they contain at least one edge in com
mon.

-70- andress/kak

-71- andress/kak

(a)f ■ . (h) ■/ (c). : ;;

FIGURE 7.3 This figure shows the actions performed by the merger KS. Panel (a) shows how two close,

collincar edges can be joined together. Panel (b) demonstrates how two collinear edges can be merged

into a single edge. Finally, panel (c) shows how two adjacent face-elements with the same label can be

merged if they are grouped together.

Once it has been decided that the elements should be merged, a level-specific procedure
is used to merge them. When two edges are to be merged, the KS deposits a new edge element
on the blackboard with one vertex from each of the two old edges; these vertices are chosen to
give the new edge maximal length. When two faces are to be merged, the merger deposits a
new face element On the blackboard whose list of children is the exclusive-or of the lists of the
two old edges. That is, an edge is include in the new face’s list of children only if it is the
child of only one of the old faces. Forming the new face’s list of children in this manner
prevents the edges that form the border of the two old faces from being included in the new
face’s list of children. The new element’s parameters are also initialized when it is deposited
on the blackboard. For example, the strength of a new edge is set to the weighted average of
the strengths of the two old edges; likewise, the grey-value of a new face is set to the weighted
average of the grey-values of the two old faces. After the new element is created by the
merger, any references to both of the old elements is replaced by a reference to the new ele
ment. Finally, if the two old elements were always referenced as a pair, a flag is set in the ori
ginal objects indicating that they should be ignored in further processing; this flag is used
because the newly created element superseeds the elements from which it was created.

7.3. The Splitter Knowledge Soured

The splitter KS also tries to correct the grouping of incorrectly grouped elements. How
ever, it performs the opposite action of the merger KS; its task is to split data-elements into
smaller elements if it is believed that they were incorrectly grouped.

The KS will split an element if it is thought that the element corresponds with more than
one element on the model panel. It is possible to determine that an element should be split by
examining its belief function; an element that corresponds to more than one model element

-72- andress/kak

will have high belief values that are nearly equal for two or more members of its FOD. For
example, if two edges are configured as shown in Fig. 7.4 (a), and the nearly vertical one is
believed to correspond with two model-elements because two of the members in its FOD have
high belief, then the splitter KS will split it near the vertex of the other edge. In this example,
the preprocessor did not form a junction between the upper and lower halves of the edge
because it failed to detect the edge’s intersection with another edge. On the face level, the
splitter KS severs a "peninsula" from a face-element if the two edges on either side of the pen
insula have the same label. This is shown in Fig. 7.4 (b).

FIGURE 7.4 This figure shows the actions performed by the splitter KS. Panel (a) shows how an edge can be

split to join it with another edge. Panel (b) demonstrates how a "peninsula" can be split from a face.

The splitter KS also corrects elements that were incorrectly formed by the grouper KS.
For example, one or more of an element’s children may not belong with the rest of the group.
These elements are relatively easy to spot because the belief in their labels is usually suspi
ciously low when compared to the belief in their siblings’ labels. Once the incorectly grouped
children are discovered, it is an easy task for the splitter KS to duplicate the old parent element
with the exception that the incorrectly grouped children are omitted from the duplicate’s list of
children. The original element is then flagged to be ignored.

It is also common for an initial grouping to be contaminated by competing children. For
example, when grouping edges into a face, the grouper may include multiple renditions of the
same edge in the same group. If the gray level variations corresponding to a scene edge do not
exhibit a monotonic variation in directions perpendicular to the edge, the edge may be detected
as multiple parallel edges in close proximity to one another. Edges 1 and 24 in Fig. 7.2 could
be an example of such an artifact. An important job assigned to the splitter is the detection of
such parallel edges. It does this by measuring the angle and the extent of the overlap between
two grouped elements with the same label. The overlap is measured by projecting the shorter
of the edges onto the longer one. When such competing parallel edges are found, multiple
groupings are formed from an initial group by retaining only one competing parallel edge at a
time.

-73- andress/kak

In the above example, edge 24 will compete with edges 1 and 2 in F3; the same will be
the case with the edges 6 and 9 in F4. So, the above initial groups lead to the following
groups:

Fi = {E16, Ei8, E19}

^2 = {E3, E4, Eg, E10, En)

F3 = {Ei, E2, Ei4, E^, E20, E21, E23}

F 3 = {E14, E15, E2o, E2i, E23, E24}

F 4 - {E5, E7, E9, E12}
f"4 = {E5, e6, e7, e12}

Note that the splitter KS and the merger KS do not delete elements that they believe to be
incorrectly grouped; instead they create new elements and set a flag in the old element indicat
ing that the element is no longer in focus. The old elements are not destroyed so that the KSs
may check to see if a newly created element is identical to an Older element that is no longer in
focus. The new element is deleted immediately if it is determined to be identical to such an
element. The older elements are also allowed to remain on the blackboard because, at some
later time in the processing, it may be decided that they were correct and should be used.

-74- andress/kak

CHAPTER 8

BLACKBOARD IMPLEMENTATION mOPS83

Philosophically, all blackboard (BB) systems are alike in that they all contain three main
components. First, they all contain a collection of knowledge sources (KSs) into which the
domain knowledge is partitioned; that is, each KS is able to solve a small portion of the total
task. Furthermore, blackboard systems are so named because each contains a blackboard, a
hierarchical database containing the data for the specific problem on which work is being done.
To keep the KSs independent, communication between them is allowed to take place only
through the blackboard database. Finally, each of the systems contains a control mechanism,
commonly called the scheduler, that can respond opportunistically to data residing on the
blackboard in order to optimize control flow.

Although all blackboard systems are conceptually similar, implementation details affect
control strategies, KS granularity, etc. This chapter will address PSEIKI’s implementation in
OPS83 and the effects of the rule-based programming language on design decisions. The
chapter will show the working memory data structures used for representing the data-elements
and the knowledge source activation records . Subsequently, the current implementation of
the scheduler and the monitor will be described. Finally, KS implementation will be
described; the operation of the grouper KS will be described in detail and die operation of the
labeler KS, the splitter KS and the merger KS will also be discussed.

8.1. OPS83 Data Structures Used By PSEIKI

PSEIKI uses the working memory of OPS83 for the BB data structure; each working
memory element (WME) corresponding to the BB data structure describes a data-element at
some level of the BB. In addition to being a host for the BB data structure, the working
memory also stores the knowledge source activation records (KSARs). A KSAR is created by
the BB monitor when the trigger conditions for a KS are satisfied by some data-element. (It is
the job of the monitor to keep track of the data on the BB and to constantly check whether a
newly created data-element satisfies the triggering conditions for a KS.) KSARs also can be
created by KSs, allowing KSs to trigger other KSs explicidy. Each KSAR holds the identity
of the data-element that meets the triggering conditions of a KS, the relevant KS, and other
pertinent information such as the cycle during which the KSAR was created. This information
w~—1—:------- :—■ "

If not already familiar with terms like "working memory," "production memory," etc. the reader
is referred to [BroFar85] for a nice exposition on the architecture of a production system. The
GPS83 used for PSEIKI is a direct descendent of the OPS5 system described in [BroFar85]. Much
more so than OPS5, OPS83 allows functions and procedures to co-exist with rules and working
memory elements.

indicates to the KS the object on which work should be performed and aids the scheduler in
choosing a KSAR to activate.

8.1.1. Working Memory Elements for Representing Data

A single WME class is used to store all data-elements, regardless of the BB level at
which the data-element resides. In other words, the same WME class is used for edgeSj faces,
objects and scenes. The distinctions between different types of data-elements are introduced
by using appropriate values for the level attribute. Using the same WME class allows generic
functions to be applied to elements from all of the data levels.

-75- andress/kak

Fig. 8.1 shows the definition of the WME class for representing data. Most of the WME
fields are self-explanatory. The element’s id number is a unique identifier used to keep track
of individual data-elements; data-elements are always referenced via their id numbers. The
panel and level fields specify the element’s location on the BB. The type field is used to
specify the type of data from which the element is derived; the values that it can assume are
two d, three d and model.

The next two fields specify the sub-elements from which an element is built. The chil
dren field is used to store the list of id numbers of the element’s children. The madeof field
has a number of uses. If the element is on the data panel and was built by the splitter KS or
merger KS, then this field stores the id number of the element(s) that were split or merged to
form this element. However, if the element is on the model panel, then this field is used to
store the id numbers of all data elements whose labels are equal to this element’s id number.

The next few fields are parameters of the data-element. The value field is a generic attri
bute in which a level specific value is stored. For example, it is used to specify the strength of
an edge or the average gray level of a face. The size parameter is also generic; this parameter
is used to specify the degree, length, area or volume if an element is a vertex, edge, face, or an
object, respectively. The near and far parameters are used to specify the two diagonal ver
tices defining the extent of the element.

The focus field has two functions. If the element is on the data panel, then this field is
used as a flag indicating if the element is in focus; a zero value indicates that the element is no
longer in focus and should not be used in further processing. If the element is on the model
panel, then this field is used to specify the desired number of competing data elements that
have this element as their model. For example, if the value of this field was set to three for an
element on the model panel, then there should be at least three in-focus elements on the data
panel that have this element as their model.

The next two parameters specify the data-element’s location if it is a vertex. The rowcol
attribute indicates a vertex’s coordinate on the image plane if it was obtained from 2D data.

-76- andress/kak

type Data=element (
id: integer; — unique id number
panel: integer; --panel in the BB
type: symbol; — type of panel (two_d, three_d, model)
level: symbol; — level in the panel (vertex, edge,...)
source: symbol; — source of the element (original, synthetic)

— Parameters defining the composition of element
children: list; — children of element
madeof: list; — list of elements that were split

— or merged to create this element

— General Parameters
value: integer; — edge strength, face grey-value, etc.
size: integer; — edge length, area of face, etc.
near: vector; — coordinate of extent
far: vector; — coordinate of extent
focus: integer; — flag set if element is in focus

— Parameters valid only for vertex-elements
rowcol: ivector; — (vertex) image coordinate of vertex
coord: vector; -- (vertex) world coordinate of vertex

— Parameters used fdr uncertainty management
frame: list; — frame of discernment
bpa: bpas; — basic probability assignment
positive: real; - updating bpa belief
negative: real; — updating bpa disbelief
label: integer; — label of element
belief: real; — belief in label

FIGURE 8.1 This is the WME class definition for data-elements.

Likewise, the coord attribute specifies the vertex’s location in the 3D world coordinate frame.

The remaining fields shown in Fig. 8.1 hold the uncertainty information about a data-
element and are used by the labeler KS. The frame attribute holds the list containing the
element’s frame of discernment and the bpa attribute holds the element’s basic probability
assignment. An element’s updating bpa is stored in the positive and negative attributes; these

values indicate the new belief and disbelief in the element’s label. Finally, the element’s label
and belief in that label are indicated by the next two attributes.

8.1.2. The WME Class for Representing KSARs

Fig. 8.2 shows the WME class definition for representing a KSAR. The id field is used to
keep track of the KSARs while the state of any KSAR is determined by its status field. The
KS and action fields of the KSAR specify what action is to be performed on its focal-element.
The object field is used to specify the id number of the KSAR’s focal element; the level and
panel fields specify the location of the focal element on the BB. The using field is used to
specify the secondary focal element; for example when the merger KS is to merge two ele
ments, the id number of the second element is stored in this field. PSEIKI’s scheduler uses the
priority field when ranking KSARs for firing; only the KSARs for the splitter KS and merger
KS have non-zero priority values for reasons to be discussed later in this chapter. The
trigger_cycle, the trigger_KSAR and the active_cycle fields are used as a log of the BB
activities; they are used to record the BB cycle that a KSAR was created, the KSAR that was
active when the this KSAR was created and the BB cycle on which this KSAR was run,
respectively. This information has proven useful for debugging the BB.

type KSAR=element (

-77- andress/kak

id: integer; - KSAR id#
status: symbol; — KSAR status

KS: symbol; — Knowledge source being triggered
action: symbol; *- action KS is to perform

object: integer; -- Object being focused on
using: integer; — Secondary object being focused on
level: symbol; -- Level being focused on
panel: integer; — Panel Being focused on

priority: real; — KSAR priority.

trigger_cycle: integer; — cycle KSAR was formed
trigger_KSAR: integer; KSAR which was active when

— this one was triggered
active_cycle: integer; - cycle during which KSAR was active

v;; -v-. ... ;;'V \:v:'

FIGURE 8.2 This is the WME class definition for KSAR.

The KSAR originally is created with its status marked as pending. This means that the
KS has been triggered but has not yet been run. When the scheduler decides to fire on a
KSAR, it marks the KSAR’s status to active. At this point, the KS’s precondition and poison
ing productions are allowed to fire; it is their job to mark the KSAR’s status to running if the
preconditions are met or poisoned if they aren’t. If the KSAR is determined to be poisoned,
the KS ’s body productions are not allowed to fire and control is passed back to the scheduler.
If the status has been set to running, the KS’s body productions are allowed to fire. After the
KS has accomplished its goal, it marks the KSAR’s status field to finished and returns control
to the scheduler.

-78- andress/kak

8.2. Scheduler and Monitor Operation

8.2.1. Scheduler Operation

The scheduler is the heart of any BB. It is the scheduler’s job to choose what action to
perform at any cycle of the BB operation. It carries out this job by selecting one of the pend
ing KSARs and activating the corresponding KS. PSEIKI’s scheduler, which consists of a set
of metarules, runs by default; that is, it runs automatically when no KSs are active. Initially,
when data is deposited on the BB, the scheduler is invoked to get the entire process started.

PSEIKI’s scheduling strategy can be broken into three phases. The first phase is called
the initialization phase. In this phase, the labeler KS is used to assign labels to the elements
deposited on the data panel by the low-level processor, the grouper KS and labeler KS are also
used to create and assign labels to elements on the upper levels of the data panel, respectively.
In the second phase, called the updating phase, the belief in the labels of the data elements are
updated using the techniques presented in chapters 5 and 6. The third phase is called the
incorporation phase; in this phase, the evidence passed up the hierarchy by the low-level ele
ments is incorporated into the upper-level elements’belief functions.

Although scheduling algorithm follows this three phase pattern in general, the actions
usually designated to one phase may be performed in another phase if the need arises. For
example, during the updating phase, if all of the elements with a particular label have their
label changed, then the grouper KS will be fired to try find another element that can be given
the desired label. The orderly flow of BB processing may also be interrupted by scheduling
the splitter KS or the merger KS because these two KSs take scheduling presidence oyer the
grouper KS and the labeler KS. That is, the scheduler will fire the merger KS or the splitter
KS as soon as one of their KSARs appears indicating that two elements should be split or
merged. It seems reasonable to fire these two KSs first because it is their duty to correct mis-
formed groups. If an element is composed of a misformed group, then any processing
resources spent labeling that element or including that element in a group will most likely be

-79- andress/kak

wasted. Thus, it makes sense that we try to correct these misformed groups as soon as possi
ble. ■': V ^ ^/

Two actions are performed during the initialization phase of BB processing: data ele
ments on the lower levels of the BB are grouped into elements on the upper levels by the
grouper KS and the labels and belief functions of unlabeled data elements are initialized by the
labeler KS. Backward chaining is used extensively to guide KSAR scheduling during the ini
tialization phase. Scheduling is started with the goal of finding a prespecified number of com
peting scene elements. The number of scene elements that the scheduler tries to find is
specified by the value of focus field of the only scene-level model element; the value of this
field is set by the user at the start of processing. To find the competing scene elements, the
scheduler creates the sub-goal of finding a prespecified number of objects in the scene in order
to group them into the desired elements; once again, the number of competing object-level ele
ments is specified by the focus field of the appropriate model element. The rule shown in Fig,
8.3 is used to chain down the expected scene creating goals and sub-goals to find elements and
their children.

: schedule_init_children
: We are trying to find an elements on a label that has nb
: data-elements on it
: create sub-goals (contexts) to find the element’s kids

rule schedule Jnit_children {
&contxt (ContextbiOTent=schedd|itit_eleiMent);. v-::
&model (Data id=&contxt.object);

(KSAR KS=label; action=initialize; level=&model.level);
&kid (Data in_list(@.id, &model.children));

make (Context current=sched_initielement; object=&kid.id);

FIGURE 8.3 This is the rule that chains down the model hierarchy creating goals to find the children of a model

■ element.

- RULE
« IF

- THEN

This rule works as follows: The first two CEs are used to match the model element for the
current goal. The third CE checks to see if there is an element on the same level as the Current
goal element; the rule will not fire if there is such an element. If there is data element on the
current level, then the labeler KS should be fired to label it and this rule need not fire. When
the rule fires, the RHS merely creates a context element (sub-goal) to find the child.

-80- andress/kak

Sub-goals are created to find the elements on successively lower levels of the BB until a
level is reached that contains the data elements deposited by the preprocessor. If an edge-
based preprocessor was used to generate PSEEKTs input data, then the edge level will be the
highest level with data elements on it; if a region-based preprocessor was used, then the face
level will be the highest level with data elements on it. When a sub-goal is created to find an
element On a level that contains data elements, the rule shown in Fig, 8.4 becomes enabled and
fires the labeler KS to initialize the labels of the elements on this level. This rule fires once for
every data element on that level of the BB.

--RULE : schedule_init_label
— IF : The is a goal to find a model element that lies on a level
-- : that contains data elements
— THEN ; Fire the labeler KS to initialize the label

rule schedule_init_label {
&contxt (Context current=sched_init_element);
&model (Data id=&contxt.object);
&ksar(KSAR level=&model.level;

KS=label; action=initialize; status=pending);
~ (KSAR priority > PRIORITYTHRESHOLD);

-->

modify &ksar(status=active; active_cycle=¤t_cycle);
};

FIGURE 8.4 This rule is used to schedule the labeler KS to initialize the labels of data elements.

The LHS of this rule is very similar to the LHS of the rule in Fig. 8.3; the main difference
between the two is found in the third CE. In this rule, the third CE is used to match a labeler
KSAR; in the previous rule, the third CE was used to prevent the rule from firing if it matched
a labeler KSAR. The last CE is used to prevent the rule from firing if there is a pending KSAR
for the splitter KS or the merger KS; we will describe the scheduling algorithm used to fire
these two KSs later. This rule’s only action is to fire the labeler KS on the element specified
by the matched KSAR. Note that only the highest level elements deposited onto the data panel
are labeled at this time (e.g. faces for a region-based preprocessor); the labels for elements on
the levels lower than this are not initialized until the updating phase of BB processing.

After all of the labels for these elements have been assigned, the grouper is scheduled to
group them into elements on higher levels of the BB. As soon as the grouper KS forms an ele
ment, the labeler is fired to label it. The grouper is not allowed to be fired to form a new ele
ment on the data panel until each child of that element has the prespecified number of compet
ing elements (as specified by their focus fields). The rule shown in Fig. 8.3 is used to schedule

the labeler KS and one like it is used to determine that the grouper KS should be fired. After it
has been determined that the grouper should be fired, a number of rules fire that determine the
child element that will be used as its seed-element. These rules rank the grouper KSARs based
on the product of the element’s size and the belief in its label. One of the rules used to rank
the grouper KSARs is shown in Fig. 8.5.

: find_group_candidate
: there is a context to find a candidate for the seed element
: with a particular label
: Choose, as the candidate, the element with the largest product of
: Size and belief

rule find_group_candidate {
'.'.';v&eontxt- (Context current=sched_find_candidate);

&model (Data id=&contxt.object);
■ v . (Datalabel=&mckleLid)i

“ (Data children[2]=&el.id);
&ksar(KSAR object=&el.id; KS=group; action=initialize;

status=pending);
[&el.belief * &el.size];

--> ./ . ;
!.:V'modify;..--’ &ksar(status=candidate);

remove &contxt;

FIGURE 8.5 This is one of the rales used to rank grodper KSARs.

This rule is used to find candidate seed elements that may be used as the seed element of the
group. It finds one of these candidate elements for each of the children of the model element
being formed. The firs^ two CEs guarantee that a candidate element with a particular label is
found. The third CE matches the data element that will become the candidate seed element.
The fourth CE guarantees that the candidate has not been used as the seed element for another
group; in effect, this prevents an element from being the seed element for more than one
group. Finally, the last CE matches the grouper KSAR with the designated seed-element. The
structure on the hext line uses a feature of (DPS83 to choose, as the candidate, the element with
the largest product of size and belief. OPS 83 uses the value in the square brackets to rank
instantiations in the conflict set; everything else being equal, OS 83 selects the rule instantiation
for firing that yields the greatest value for the expression in the brackets. Thus the construct
will force the rule to fire on the data element with the largest product of size and belief. When
this rule fires, it flags the KSAR as a candidate and deletes the context so that the rule will not

-81- andress/kak

- RULE
- IF

- THEN

fire again. Other rules are also used to in the grouper KSAR ranking and selection process;
they are not shown here for brevity ’s sake.

The following scheduling scheme is used during the updating phase of BB processing.
First, the labels of all of the children of the in-focus scene-level elements ape updated (all of
which will reside on the object-level). Next, the labels of all of the children of the object-level
children are then updated (all of these elements will reside on the face-level). This updating
process proceeds down the data-panel hierarchy in a depth-first manner until the edge level is
reached. If an edge-based preprocessor was used to provide the input data, then labels will
have been assigned to the edges during the initialization phase; in this case, the edges’ belief
functions are updated normally. However, if a region-based preprocessor was used to provide
the input data, then the edges on the data panel will not have been labeled during the initializa
tion phase. In this case, labels are assigned to the edges and then the belief in these labels is
updated.

The following rule (Fig. 8.6) fires the labeler KS to update the belief in an element’s chil
drens’ labels. The first two CEs in the LHS of this rule are used to match the KSAR to fire.
The last CE of this rule is used to prevent the rule from firing if there is a pending splitter
KSAR or merger KSAR. The RHS of this rule changes the status of the labeler KSAR to
active, causing the KS to fire.

-82- andress/kak

— RULE : fire_on_update_element
— IF : There is a context to update the children of an object

— : AND there is also a KSAR to update the children
- THEN : fire the KSAR

rule fire_on_update_element {
&contxt (Context current=sched_update_element);
&ksar(KSARobject=&contxt.object;

KS=label; action=update; status=pending);
(KSAR priority> PRIORITY_THRESHOLD; status=pending);

modify &ksar(status=active);
};

FIGURE 8.6 This rule is used to Are the labeler KS during the updating phase of BB processing.

Note: the labeler KS does not update the belief in the focus element’s label; rather, it updates the
belief in the labels of the focus element’s children.

The following rule (Fig. 8.7) will fire after an element’s childrens’ labels have been
updated; this rule generates a context to force the scheduler to fire the labeler KS on the
element’s grandchildren. The first CE of this rule allows the rule to fire only if the BB is in the
updating phase of processing. The second CE makes sure that the labeler has fired on an ele
ment before it fixes On the element’s children. The third and forth CEs match the element and
one of its children, respectively. The last CE makes sure that the rule fires only once with any
element/child pair. When the rule fires, it creates a context to fire the labeler KS on the child
found by the forth CE. The context WME matched by its first CE is then modified so that it
will be the most recent WME in the working memory. Making the context the most recent
WME forces the rule to generate the update context for all possible element/child pairs before
any other rule is allowed to fire.

- RULE : schedule_update_children
— IF ... : An element’s children have been updated
- THEN : Generate contexts to update the children of the children

rule schedule_update_children {
&contxt (Context current=sched_update_element);
&ksar(KS AR object=&contxt.object;

KS=label; action=update; statusopending);
(Data id=&contxtobject);

&kid (Data in_list(@.id, &el.children));
(Context current=sched_update_element; object=&kid.id);

-> : . - ■

-83- andress/kak

— Make the context to schedule the child
— also modify the current context last so that this rule
— will fire next (because of recency) to find any other kids.

make (Context current=sched_update_element; object=&kid.id);
modify &contxt ();

}; '

FIGURE 8.7 This rule makes the scheduler fire the labeler KS to update the labels of elements on the lower levels

of the BB.

The incorporation phase of BB processing is used to accumulate, into an element’s belief
function, the evidence that was generated by checking the consistency of the element’s descen-
dents. The scheduling scheme used in this phase of processing is identical to that used in the
updating phase. That is, the labeler KS is fired first on the in-focus scene elements, and then

their children, followed by their children’s children, etc. The similarity of the two scheduling
schemes is reflected in the similarity of rules implementing the strategies; in fact, the rule used
in the incorportaupn phase is identical to the rule shown in Fig. 8.6 except that the context is
called "sched_incorp_elemerit" instead of "sched_update_element" and the KSAR’s action is
now "ineqip_update." Because, the rules used to perform the scheduling in this phase of BB
processing are so similar to the rules used in the updating phase, they will not be shown here.

Scheduling the firing of the splitter KS and the merger KS is viewed as an exceptional
event which is not part of the normal KSAR selection process. These two KSs are viewed in
the exceptional manner because they are used to correct misformed groups; thus, they would
not be needed if the low-level preprocessors always produced error-free results and the grouper
KS always produced correct groupings. Because the splitter and merger are used in this
manner, PSEIKI’s overall scheduling scheme can best be thought of as the
label/update/incorporate process described above with opportunistic interruptions made by the
splitter and merger to correct misformed groups. We will now describe the process used by
the scheduler to interrupt the normal label/update/incorporate flow of control when the grouper
or splitter needs to be fired. The orderly flow of BB processing is interrupted as soon as a high
priority splitter KSAR or merger KSAR appears in the working memory and does not resume
until all of these exceptional KSARs have been fired upon. When one or more splitter KSARs
or merger KSARs appears in the working memory, the scheduler ranks them based on the
value oftheir priority field and chooses the highest ranked KSAR for firing. The priority field
is used specify the degree to which it is believed that the elements need to split or merged. If
two or more KSARs have the same maximum priority value, then one is selected at random.
The scheduler will continue to fire these KSARs until there are no pending splitter KSARs or
merger KSARs left in working memory that have a priority greater than a predefined threshold.
Note that the priority field is always zero for labeler KSARs and grouper KSARs because they
are scheduled using the scheme described above. The rule shown in Fig. 8.8 selects the splitter
or merger KSAR with highest priority and fires on it.

■-84- ... 'andress/kak

8.2.2. Monitor Operation

The monitor is the watchdog of the BB. It is the monitor’s job to keep track of the data
on the BB and trigger the KSs when specific conditions are met. It also is up to the BB moni
tor to watch the BB and determine if the status of any poisoned KSARs should be reset to
pending. This resetting of a KSAR’s status occurs if the KS action on the specified data-
element once again becomes valid. It also is up to the monitor to determine if any poisoned
KSARs should be deleted; deletion occurs if there is no chance that the KSAR could once
again become valid.

The BB monitor makes extensive use of OPS83 demons. A demon in OPS83 is a rule
whose first CE is not a context, goal or KSAR. Because of the OPS83 rule selection strategy,

-85- andress/kak

— RULE : schedule_fire_interrupt
— IF : If there is splitter or merger KS AR with priority greater than
— : the priority threshold and there is no KS AR with higher priority
-- THEN : Fire on the KSAR

rule schedule_fire_interrupt {
&ksar(KSAR priority > PRIORITY_THRESHOLD);

(KSAR priority > &ksar.priority);

modify &ksar(status=active);
■■■■ :

FIGURE 8.8 This rale is used to fire the splitter KS or merger KS.

these rules take precedence over ordinary rules (e.g. rules inside of KSs or scheduler rules) and
fire as soon as they become completely instantiated. Thus a demon in OPS 83 can be thought
to operate outside of any context, KS or goal search.

As an example of a monitor rule, consider Fig. 8.9. This rule, used to trigger the grouper
KS, fires when it finds a data-element without any parents (an orphan element). The rule then
creates a KSAR that directs the grouper KS to find the element’s parents. This rule works as
follows: The first CE matchs any new data-element if it has a label; this data-element is the
focus-element of the rule. The second GE allows the rule to fire only if the focus-element is an
orphan. This CE uses the function injistf) to match any WME that has the first CE’s id
number in its list of children. The tilde in front of the CE acts as a negation symbol; that is, it
allows the rule to fire only if no WME matches the CE. Thus the tilde in front of the second
CE of this rule keeps the rule from firing if the focus-element has a parent. The last CE keeps
the rule from firing if the grouper KS already has been triggered on this data-element; the rule
is fired if a pending grouper KSAR focused on the same element can not be found.

8.3. Operation of the KSs

Even though the various KSs perform very different tasks, many common subtasks are
performed by all of them during KS operation. These subtasks start when the scheduler marks
a KSAR’s status to active. After a KS becomes active, its poisoning rules are allowed to fire;
these rules make sure that the KS’s preconditions have not become invalid since the KS was
triggered. If a poisoning mle does fire, it sets the KSAR’s status to poisoned and returns con
trol to the scheduler. If none of the poisoning rules fire, a rule that marks the KSAR’s status to
running fires by default.

-86- andress/kak

’-- RULE : group_trigger
— IF : There is a labeled element that is being focused on but
— : has not yet been placed in a group

: AND a KSAR saying that it should be grouped has not yet been created
— THEN : Create a KSAR that indicates that the element should be grouped

rule group_trigger {
&el (Data typeomodel; labeloO; focusoO);

(Data in_list(&el.id, children));
(KS AR KS=group; action=initialize; object=&el4d);

——>

make (KSAR KS=group; action=initialize;
trigger_cycle=¤t_cycle;
id=&next_KSAR_id; status=pending;
object=&el.id; panel=&el.panel; level=&el.level;
priority=0.5);

&next_KSAR_id = &next_KSAR_id + 1;
■. };

FIGURE 8.9 This is a monitor demon that is used to create a KSAR for the grouper KS.

After the KS starts running, the control flow becomes more KS specific, but it still fol
lows the same pattern. The first few rules that fire after the KS starts running usually are
driver rules. These rules don’t contribute directly to the solution of the KS’s task; instead,
they initialize, in working memory, the elements that the KS needs to solve the task. These
driver rules can generate contexts needed by the KS in its problem solving activity. They also
can put on the BB dummy data-elements that will be "fleshed out" during the course of the
KS’s processing. After the KS’s driver rules are fired, the control flow becomes very KS
specific. In the next few sections, the control flow inside each KS will be demonstrated
through the use of a few examples.

8.3.1. Grouper KS Operation

To illustrate the flow of control inside a KS, the grouper KS’s formation of a face from
edges will be examined. The example in Fig. 8.10 will be used to make the explanation more
concrete. Assume for the example that the grouper KS has been activated with a KSAR
focused on the element E9 of Fig. 8.10. As previously described, the KS’s poisoning rules are
allowed to fire when it is first activated. Fig. 8.11 is an example of a poisoning rule used by
the grouper KS. This rule is meant to poison a KSAR if the grouper KS fires on an element

-87 andress/kak

FIGURE 8.10 This figure shows an example of data on the BB and is used to explain KS operation.

- RULE : edge_group_poison
-- IF : The active KSAR focuses on an edge that is already the seed of a group
— THEN : Poison the KSAR

rule edge_group_poison {
&ksar(KSAR KS=group; action=initialize; status=active);
~ (Data level=face; children[2]=&ksar.object);

—> ’ '■ . ;

modify &ksar(status=poisoned);
}; : ^

FIGURE 8.11 An example of a poisoning rule.
*

has already been used as the seed of a group . This rule works in the following manner: The
first CE matches the active KS AR if its action is to initialize a group. The second element
determines if there is a face-element that has the focus element as its seed. The seed element
of a group is always stored in the second position the element’s list of children (the position of
W---------———:——

This does not imply that a data-element can participate only in a single group. An edge-element,
for example, is allowed in two or more groups if it is on the common boundary between them.
However, an edge-element can serve as a seed for only one group. Therefore, an edge-element
that belongs to two or more groups can trigger the formation of only one of them; other edges
would have to act as seeds for the other groups.

the last element in a list is stored in its first position). If this CE matches a WME^ then the
focus-element already was used as a seed; the rule fires, and the KSAR is marked as poisoned.
If no poisoning rules fire, another rule fires by default and marks the KSAR’s status to running.
Thus if it is assumed that element E9 has hot been used as the seed for another group, then the
active KSAR’s status is set to running.

The grouper KS uses a driver rule to initialize internal processing; this rules fire immedi
ately after the KS starts running. The driver rule is used to deposit an element on the BB that
will be used as the focus element’s parent. The grouper KS then finds other elements on the
BB that can become siblings of the focus element and groups them into the focus element’s
parent. Fig. 8.12 shows the driver rule for group initialization.

The rule in Fig. 8.12 works as follows: The first two CEs match the running KSAR and
the focus-element. The third CE prevents the rule from firing if it detects the focus-element’s
parent. Because this rule creates the focus element’s parent, the third CE prevents the rule
from firing more than once during any KS activation. The last CE is designed to find a possi
ble model for the parent-element by finding the parent of the focus-element’s label-element.

The rule performs two actions when it fires. First, it builds the parent-element. As men
tioned previously, the KS’s focus-element and its siblings will be grouped into this element.
The parent-element is initialized with appropriate parameters: panel, data type, level, id
number, size, etc. The parent-element’s seed element is set to the focus-element. This is done
to prevent the driver rule from firing twice and to allow the remaining KS body rules to find
both the focus and parent-elements easily. The rule also builds a KSAR that requests that the
parent-element be labeled.

-88- ahdress/kak

Because edge E9 is an orphan in the example, this driver rule would fire. When the rule
fires, a new element, say element F3, is created and depositied on the BB. This new element
lies on the face level of the data panel with label Fc and, initially, has element E9 as its only
child. Now it is up to the rest of the KS body rules to find element E9*s siblings and group
them into face F3.

After the driver rule initializes the parent-element, the remaining KS body rules can fire.
Only one KS body rule needs to fire to group edge-elements into the face-element. This rule
(shown in Fig. 8.13) fires at least once for every edge that can be grouped into the face.

The first four CEs of the rule in Fig. 8.13 find the active KSAR, the parent-element, the
model of the parent-element and the focus-element, respectively. The fifth CE finds a candi
date to group into the parent. This CE makes sure that the candidate is on the same level and
panel as the focus-element and that it has not yet been grouped into the parent. Furthermore,
this CE makes sure that the label of the candidate allows it to be grouped into the parent by
checking to see if the candidate’s label element is a child of the parent’s label element. The
rest of the CEs merely obtain data needed in the right hand side (RHS) of the rule. The sixth

-89- andress/kak

- RULE : group_driver v- start up grouping process by creating parent element
- : — also make KSAR to label parent element

— IE : There is a running KSAR that says to initialize a group
— : AND there is no element with the KSAR’s object as its main child

-- THEN : Make the parent element and a KSAR to label it

rule group_driver {
&ksar(KSAR KS=group; action=initialize; status=running);
&el (Data id=&ksar.object);
~ (Data children[2]=&ksar.object);
&model (Data in_list(«&el.labeL@.children));

&max_id = &max_id + 1;
make (Data id=&max_id; source=synthetic; label=&model.id;

type=&el.type; panel=&el.panel; level=&model,level;
size=&el.size; value=&el.value; focus=l;
near[1] =&el. near[1]; near[2]=&el.near[2];
near[3] =&el.near[3]; near[4]=1.0;

- '■ far[l]=&el.fajtl];'ferE2]=&eLfari;2];
far[3]=&el.far[3]; far[4]=1.0;
children[l] =2; children[2] =&el.id);

write () initializing I, &model.level, 11, &max_id, ’0;
write () I grouping I, &el.level, 11, &el.id, ’0;
make (KSAR KS=label; action=initialize;

trigger_cycle=¤t_cycle;
id=&next_KSAR_id; status=pending;
level=&model.level; object=&max_id; priority=0.5);

&next_KSAR_id = &next_KSAR_id + 1;
V' : v;. -v:'/’ -vr ■■■ ■ . .V' ■

FIGURE 8.12 An example of a driver rule.

CE, one of the CEs used to obtain data for the RHS, matches a WME that holds a homogene
ous transformation matrix. The transformation matrix is defined to transform the focus-
element’s label-element so that it is compatible with the candidate’s label-element.

When the rule fires, the compatibility between the candidate and a transformed version of
the focus element is computed as described in chapter 5. If this value is greater than a thres
hold, then the add_list() function is used to add the candidate’s id number to the parent’s list of
children. Notice that if the candidate-element doesn’t meet the criteria to be grouped, then

-90- andress/kak

group_ihto_face - group edge-elements into a face-element
We are grhuping edges into a face and there is a compatible edge
that is hot yet in the face
IF the xformed version of the edge is collinear with the focus
element, put it into the group

rale group Jnt6_face {
&ksar (KSAR KS=group; action=initialize; status=runnirtg);
&face (Data children [2] =&ksar. object);
&model (Data id=&face.label; level=face);
&edgel (Data id=&ksar.object);
&edge2 (Data typeomodel; level=edjge; ido&edgel.id;

in_list(@.label,&model. children);
(~in__list(@.id, &face.children)));

— get parameters needed in rhs computations
&xfrm (Model_xfmifrdm=&edge2.1abel; to=&edgei.label);
&sl (Data id=&edgelxhildren[l]);
&el (Data id=&edgelxhildren[2]);
&s2 (Data id=&edge2.children[l]);
&e2 (Data id=&edge2xhildreii[2]);

&slop (Constant name=max_dist);
&dist (Constant name=group_threshold);

local &compat, &incompat: real;
local &belief, &disbelief: real;

call edge_cdmpatibility(&sl.coord, &el .coord; &s2.coord, &e2.coord,
&xfrm.xfrms, &slop.real_value,
&compat, &incompat);

&belief = &compat * &edge2.belief * &xfrm.scale_fact;
&disbelief = &incompat * 4&;edge2.belief * &xfrm.scale_fact;

-RULE:
- IF :

-THEN:

if (&Compat > &dist.real_value) {

modify &face (call add_list(&edge2.id, children);

siie = @.size + &edge2.size;

call update_belief(@, LEVEL_SCALE * &belief,
LEVEL.SCALE * &disbeiief));

write 0i grouping edge I, &edge2.id, *0;
");

FIGURE 8.13 This rule is used to group edges into faces.

nothing in the working memory is changed and refraction prevents the rule from firing again
with the same instantiation.

In the example, any edge that has one of the labels Ed, Ep, Eq or E[is a candidate to be
grouped with edge E9 into face F3. Edges E7, Eu, E13, E^ and E15 meet this criterion. Thus
any of these edges that was compatible with the transformed version of the focus-element

would be grouped into the parent. If all but Eu were compatible with the transformed E9 then
the children of F3 would be edges E7, E9, E13, E^ and Ex5.

-91- andress/kak

8.3.2. Labeler KS Operation

The labeler KS can perform three actions: It can initialize a data element’s label, update
the belief in the labels of an element’s children and incorporate, into an element’s belief func
tion, the updating belief generated by the element’s descendants. These three actions are
specified by setting the action field of a KSAR to initialize, update and incorporate, respec
tively. In this section, we will use the previous example to demonstrate the processing per
formed by the labeler KS to update the belief in the labels of an element’s children. Using this
example, we will show how the belief in the labels of the children of face F3 are updated.

If we assume that no poisoning rules fire after scheduler activates the labeler KS, then the
driver rule shown in Fig. 8.14 fires and generates context elements specifying that every child
of the focus element should be used to update the belief in the label of every other child. This
rule is easily understood. On the LHS, the first two CEs are used to match the KS’s focus ele
ment and the third CE is used to keep the rule from firing more than once for any KS invoca-
tion. The RHS of the rule contains a set of nested for loops that index through the focus
element’s list of children and generate the desired contexts. After the driver rule has fired, the
contexts are used to specify the elements that can be used to update the belief in other ele
ments. In the example, two contexts would be generated for each pair of elements in
{E7, E9, E13, E14, EX5} specifying that each element should be used to update the belief in the
label of every other element.

The rule shown in Fig. 8.15 is used to generate the updating evidence for edge elements.
This rule fires once for every context generated by the previous rule if the belief in the edge
providing the evidence is above a user specified threshold. If the belief in the edge is below
the threshold, then the context is removed automatically. The first two CEs of this rule match
the edge whose belief is being updated. The third CE matches the edge providing the updating
evidence and also keeps the rule from firing if the belief in that edge’s label is below a thres
hold. The remaining CEs are used to obtain the data needed by the RHS of the rule. The
fourth CE is used to obtain the homogeneous transformation matrix needed to determine the
compatibility of the two edges. Finally, the last four CEs are used to obtain the endpoints of
the two edges. The RHS of this rule uses the edge_compatibility() function to measure the
compatibility of the transformed version of the first edge with the second edge based on their
collinearity. After the compatibility is measured, the update bpaf) function is used to accu
mulate the new evidence into the updating bpa. Finally, the context WME is removed to
prevent the rule from firing again with the same context.

-92- andress/kak

-- RULE : update_certainty_driver
-- IF : The labeler KS was just activated

— THEN : Generate a context to update the label of every child using
-- : the label of every other child.

rule update_ceftainty_driver {
&ksar(KSAR KS=label; action=update; status=running);
&el (Data id=&ksar.object);

(Context current=incorporate_belief);

local &i, &j, &kids: integer,

write () lupdating children of I, &ksar.level, 11, &ksar.object, ’0;
make (Context current=incorporate_belief; object=&ksar.objeCt);

&kids = &el.children[lj;
for &i = (2 to &kids)

for &j = (2 to &kids)
if (&i <> &j)

make (Context current=update_certainty;
object=&el.children[&i];
using =&el.children[&j]);

FIGURE 8.14 This is the driver rule for the labeler KS.

8.3.3. Splitter KS and the Merger KS Operation

We will illustrate the flow of control inside the splitter KS by examining the rules used to
split a face with competing edges into multiple faces with one competing edge apiece. The
splitter KS uses a driver rule to initialize processing; this rule is used to generate a context that
directs the KS to examine the focus element for competing edges. After the driver rule fires, a
level-specific body rule is allowed to fire that finds all the competing children of an element;
this rule fires at least once for every pair children that could possibly compete. For example,
the splitter KS uses the rule shown in Fig. 8.16 to find competing edges that the grouper has
included in a face. When it finds a pair of competing edges, it creates two new faces each with
only one of the competing edges; it also resets the focus flag in the original face to prevent its
use in further BB processing. The rule works as follows: The first two GEs are used to match
the newly created face element; they also keep the rule from firing more than once. The
second two CEs are used to match two edges from the face’s list of children if they have

-93- andress/kak

— RULE : update_edge_certainty
- IF : there is a context to use one edge to update the belief in another’s label
— : AND the belief in the one providing the evidence is > BELIEF_THRESH

— THEN : update certainty based on the (in)compatibility of the two edges

rule update_edge_certainty {
&contxt (Context current=update_certainty);
&ell (Data id=&contxt.object; level=edge);
&el2 (Data id=&contxt.using; belief > BELIEF_THRESH);
— get parameters needed in rhs computations

;V.:&niodel (Model_xfrmfrom=&ell.label; to=&el2.1abel);
&sl (Dataid=&ell.children[2]);
&el (Data id=&ell.children[3]);
&s2 (Data id=&el2.children[2]);
&e2 (Data id=&el2.children[3J);

-->

•, local &sl_xfrm, &el_xfrm: vector;
local &pos, &neg: real;

call edge_compatibility(&s2.coord, &e2.coord,
&sl.coord, &el.coord,
&model.xfrms, distance(&s2.coord, &e2.coord),
&pos, &neg);

&pos = &pos * &el2.belief * &model.scale_fact;
&neg = &neg * &el2.belief * &model.scale_fact

* scale_certainty(&el2);
write () I new evidence for I, &ell.level, 11, &ell.id;
write () I using I, &el2.1evel, 11, &el2.id,’0;
modify &ell (call update_belief(@, &pos, &neg));
remove &contxt;

v- ^ V; - ■

FIGURE 8.15 This rule is used to update the belief in an edge’s label.

identical labels; these edges could possible compete. When the rule fires, the function
edge_overlap() is used to determine the overlap of the two edges using the technique described
in chapter 7. If the overlap is found to be greater than a preset threshold, then the two edges
are considered to be competing and the face is split into two faces with one competing edge
apiece. Finally the rale generates a context to cheek each of the new edges for other

-94- andress/kak

— RULE : faCe_split

— IF : There is a face with two edges that have the same label
— THEN : Check to see if they are competing. If so, create two

: faces with one competing edge apiece. Also reset the original
: face’s focus flag.

rule face_split {
&contxt (Context current=find_competing);
&face(Data id=&contxt.object; focusoO);
&edgel (Data in_list(@.id, &face.children));
&edge2 (Data label=&edgel.label; in_list(@.id, &face.children);

ido&edge 1 .id; length<&edge 1 .length);

1;

if (edge_overlap(&edge 1, &edge2) > OVERLAP_THRESHOLD) {
— remove the face from the focus set
modify &face (focus = 0);
— initialize the first face (
&max_id = &max_id + 1;
make (Data duplicate_Data(&face);

&id = &max_id;
call delete_list(@.children, &edgel.id);
madeof[l]=2; madeof[2]=&face.id);

make (Context current=find_competing; object=&max_id);
&max_id = &max_id + 1;
— initialize the second face
make (Data duplicate_Data(&face);

&id = &max_id;
call delete_list(@.children, &edge2.id);
madeof[l]=2; madeof[2]=&face.id);

make (Context current=find_competing; object=&max_id);
};

FIGURE 8.16 This rule is used to split a face with competing edges into multiple faces with one of the competing

edges apiece.

competing edges.

The merger KS does not require any driver rules. When the KS is activated by the
scheduler, a level-specific rule is fired to merge the KS’s focus element with the secondary
focus element. For example, the rule shown in Fig. 8.17 is used to merge two faces. The LHS
side of this rule is used to match the two focus elements and guarantee that the rule will fire
only once. The RHS of the rule builds an element on the face level of the data panel into
which the two focus elements are merged. The children of this new element is set to be the
exclusive-or of the children list of the two focus elements. The focus flags of the original two
faces are also reset to prevent their use in further BB processing.

-95- andress/kak

— RULE : face_merge
— IF : The active KSAR indicates that two faces should be merged
— THEN : merge them

rule face_merge {
&ksar(KSAR KS=merge; status=running; level=face);
&elL (Data id=&ksar.object; focusoO);
&el2 (Data id=&ksar.using; focusoO);

—>
&max_id = &max_id +1;
make (Data id=&max_id; source=synthetic;

type=&ell.type; panel=&ell.panel; level=&ell.level;
size=&el 1. size+&el2. size;
value = weighted_average(&el Lvalue, &ell.size,

&el2.value, &el2.size);
label=&el 1.label; focus=l;
call near_vert(&ell.near, &el2.near, @.near);
call far_vert(&ell.far, &el2.far, @.far);
call xor_list(&ell. children, &el2.children, children);
madeof[l]=3; madeof[2]=&ell.id; madeof[3]=<feel2.id);

modify &ell (focus=0);
modify &el2 (focus=0);
write () Imerging into I, &ell.level, 11, &max_id, ’0;
write () I merging I, &ell.level, i I, &ell.id, ’0;
write () I and I, &el2.1evel, 11, &el2.id,’0;

' ’};

FIGURE 8.17 This rule is used to merge two faces into a larger face.

-96- !! andress/kak

CHAPTER 9

COMPLEXITY ISSUES IN BLACKBOARD PROCESSING

In the most general sense, PSEIKI’s geometric matching activity can be expressed as the
problem of finding subgraph-isomorphisms, a known NP-complete problem [GarJoh79]. It is
well known that artificial intelligence’s use of hueristics can greatly improve the computational
efficiency of the solution to a problem solving task; in fact, it has been shown that some
heuristics can beat the exponential explosion associated with NP-complete problems [Pea84].
It is hoped that the heuristics encoded into the PSEIKI’s Opportunistic control flow and
geometric constraints, when combined with the hierarchical structure of the matching task, will
enable PSEIKI to perform matching as scene complexity grows.

There are a number of ways that a system’s time and space complexity can be analyzed.
If the system’s solution to a task can be expressed in a simple, algorithmic fashion, then its
complexity often can be calculated theoretically [AhoHop74]. If a system’s solution can not
be expressed in a way that allows its complexity to be analyzed directly, then the system’s
major components can be modeled and the model analyzed. Petri net theory [Pet81], one tech
nique for modeling systems, will be explored in this chapter. Particular attention will be
focused on stochastic Petri nets, an extension to Petri net theory created by associating an
exponentially distributed firing time with each transition in the net [Mol82]. Stochastic Petri
nets can be analyzed by mapping the state-space of the net to a Markov-chain and by using
concepts from queuing-theory to analyze the system. Currently, stochastic Petri nets can
model only small-scale systems because the state-space of a Petri net grows exponentially with
the size of the net, (hence, so do the nodes in the Markov-chain).

If a system is too complex to be analyzed theoretically or modeled effectively, as is
currently the case with blackboard systems, the only resort is to determine empirically the
system’s computational complexity. In the past, experimental investigations have been used to
study how control flow [GarCor87] and data locking [FenLes77] affect blackboard perfor
mance. Note, since PSEIKI’s hierarchical structure and geometric constraints have been fixed,
PSEIKI’s computational efficiency can be increased mainly by optimizing its control flow. At
this time, PSEIKI’s scheduler is evolving too rapidly to justify an empirical performance
analysis. However, as PSEIKI’s scheduler becomes more stable, an empirical performance
study will be undertaken to determine how PSEIKI’s matching scheme scales with problem
size.

9.1. System Modeling with Petri Nets

Petri Net theory is a graph based modeling technique that has proven very powerful for
modeling concurrent, synchronous and asynchronous systems. Since their introduction by C.

A. Petri in his Ph.D. dissertation [Pet66], Petri nets have been used to model complex systems
in many diverse domains, some of these domains include the modeling of production systems,
chemical reactions and legal systems (see [Pet81] for a bibliography of some domains of appli
cation). Because Petri nets have been used to model such a wide variety of systems and have
been used by researchers with a wide range of backgrounds, they have been formulated in
many different ways. The definition and development of Petri nets in this report will follow
that found in [PetSl]; the reader is referred there for a more complete introduction to Petti net
theory and some typical applications.

Formally, a Petri net graph is a directed, bipartite multigraph, G = (V, A). Vis the set of
vertices, V={vi, V2, • • •, vs} and A is the set of arcs, A -{af, a2, • • •, ar} where an arc, aj
from vertex vj to vertex v^ is expressed as aj = (vj, v^) with vj, v^eV. Since the graph is
bipartite, the set of vertices, V, can be partitioned into two disjoint parts,
P= {pi, P2, * • •, pm} and T = {ti, t2, • • •, tn} such that each arc in A contains exactly one
vertex in P and one vertex in T. Using the normal terminology, the set P is called the set of
places and the set T is called the set of transitions.

A Petri Pet structure, C, is a four-tuple C = (P, T, I, O). P and T are places and transi
tions as described previously. The input and output functions, I and O, respectively, map tran
sitions, tj, to collections of places. The collection of places I(tj) and O(tj) are called the input
and output places for transition tj. The multiplicity of the arcs between a transition and one of
its input places is equal to the number of arcs from the place to the transition. Likewise, the
multiplicity of the arcs between a transition and one of its output places is equal to the number
of arcs from the transition to the place . The marking of a Petri net is a mapping, p, from the
set of places to the non-negative integers, N.

, ji:P-4N

ji(-) defines the state of the net. During execution of the Petri net, the marking of the net may
change; that is, the function |i(-) may change reflecting the evolving state of the net. The for
mal definition of a marked Petri net structure (hereafter merely called a Petri net) is
M = (P, T, I, O, |i) where the components previously have been defined.

Although Petri nets are defined in abstract, graph-theoretic terms, it is often helpful to
draw the mafkbd Petri net graph. When drawing Petri nets, a tar I represents a transition and
a circle O represents a place. Tokens, drawn as small dots • in a given place, pj, are used to
represent the value of |i(pj). An input place of a transition is indicated by an arrow from the
place to the transition. Conversely, an output place of a transition is indicated by an arrow

Note that the input and output multiplicities between a transition and a place need not be equal if
the place is both an input place and an output place for the transition. The multiplicities will differ
if the number of arcs from the place to the transition is different from the number of arcs from the
transition to the place.

-97- andress/kak

-98- andress/kak

from the transition to the place. Fig. 9.1 shows an example of a simple Petri net; Fig. 9.2
shows its associated graph.

P= (Pi> P2, P3> P4»P5 }

T= {ti, t2, t3, t4}

I(tl)=(Pl}

I(t2)= (P2VP3. P4)
I(t3) = {p4, p4}

1(4) = (P5 }

M-(pi) = 1; |x(p2) = 0; li(p3) = 0;

FIGURE 9.1 This figure shows an example of a simple Petri net.

0(ti)={P2, p3, p4, p4}

o(t2) = {p2)
0(t3) = {p5 }

0(4) = {p3,p4}

^t(p4) = 2; M-Cps) = 1

FIGURE 9.2 This figure shows the marked Petri net graph for the Petri net given in Fig. 9.1.

A transition is said to be enabled when the number of tokens in each of the transition’s
input places is greater than or equal to the multiplicity of the arcs between the transition and
that input place. For example, if there are two arcs from an input place to a transition, then the
transition will not be enabled until there are at least two tokens in that input place. An enabled
transition is fired by removing tokens from the transition’s input places and adding tokens to
the transition’s output places. The number of tokens removed from or added to the transition’s
input places or output places, respectively, is equal to the multiplicity of the arcs between the
transition and the places. If more than one transition is enabled at any time, then the transition
that is fired is picked at random. In general, the state of the net will change when a transition
fires. Thus some transitions that were previously enabled may no longer be enabled and some
new transitions may become enabled. The process of successively firing enabled transitions is

andress/kak

called executing the Petri net. When there are no enabled transitions, the execution of the Petri
net halts, Fig. 9.3 shows the execution of the Petri net shown in Fig. 9.1. Panel (a) in this
figure shows the net’s initial marking. Panel (b) shows the net’s marking after t4 fires and
panel (c) shows the net’s marking after ti fires.

A marking of a Petri net is said to be reachable from another marking if there is a
sequence of transition firings that transforms the state of the net from the initial marking to the
desiredmarking. The reachability set of a marking is defined to be the set of all states reach
able from the initial marking. Note that the reachability set of a Petri net is dependent on the
original marking. Also note that the reachability set of a Petri net will grow exponentially with
the number of places, transitions, and tokens present in the net. Both of these effects limit the
usefulness of Petri nets in the modeling of blackboard systems.

Fig. 9.4 is a simple example of a Petri net that could be used to model PSEIKI’s flow of
control. The places in this net correspond with the blackboard scheduler and knowledge
sources. The token represents the locus of processing in the system; a process is considered
active when its corresponding place contains the token. Notice that the configuration of the net
forces the control of the system to return to the scheduler between each knowledge source
activation. The net can be extended to model concurrent blackboards by adding a token for
each processing thread. Obviously, the model shown here is over-simplified and cannot be
used in any realistic analysis.

Petri net theory has been extended in a number of ways to make it a more powerful
modeling tool. Stochastic Petri Nets, an extension first proposed by Molloy [Mol82], are
created by associating an exponentially distributed firing time with each transition. The firing
time of a transition specifies the average amount of time that the transition takes to fire. Thus
the transitions in a stochastic Petri net will fire a random amount of time after they become
enabled (unless another transition fires first and disables the first transition). If another transi
tion fires but does not disable the first transition, then the timing of the first transition does not
change (the first transition does not have to be "reset" because of the memoryless property of
the exponential distribution).

A stochastic Petri net is formally defined as S = (P, T, I, O, |i, X) where X is the mapping
from the transitions to the real numbers that defines the mean firing time of the exponentially
distributed random processes. The rest of the components of S have been defined previously.
Note that the transitions’ firing rates are completely specified by X because an exponential dis
tribution is completely specified by its mean value.

Stochastic Petri nets are useful tools for analyzing complex systems because they are iso
morphic with homogeneous Markov processes but have all the expressive capabilities of the
original Petri nets [Mol81]. The isomorphic properties of a stochastic Petri net and a Markov
process can be seen with the help of the following example. In this example, the simple Petri
net shown in Fig. 9.5 will be converted into an equivalent Markov chain. The first step in the

-99-

-100-

FIGURE 9.3 This figure shows the execution of the Petri net from Fig. 9.1.

andress/kak

andress/kak

Scheduler

Labeler KS Grouper KS Splitter KS Merger KS

FIGURE 9.4 This figure shows a simple Petri net that can be used to model PSEIKI’s control flow.

FIGURE 9.5 This figure shows a simple Petri net that is used in the textual explanation of the isomorphism

between stochastic Petri nets and Markov processes.

-102- andress/kak

conversion process is the determination of the reachability set of the net given an initial mark
ing. The reachability set of the example Petri net is given in table 9.1. Each row in this table
represent a distinct state of the net. The entries in the table represent the number of tokens in a
place for a given state.

Pi P2 P3 P4 P5

Hi 1 0 0 0 0
M-2 0 1 1 0 0
M-3 0 0 1 1 0
M-4 0 1 0 0 1
H5' 0 0 0 1 1

TABLE 9.1 This table shows the reachability set of the Petri Net shown in Fig. 9.5.

If the mean firing times of the transitions in the stochastic Petri net shown are A,i = 2, = 1,
A.3 = 1, A4 = 3, ^5 = 2, then the following procedure can be used to map the state-space of the
net to a Markov chain. A state in the chain is created for every distinct marking in the net. A
state-transition is created between two states in the chain if the firing of a single transition in
the Petri net will transform the marking of the net from the first state to the second. The mean
transition time of the state-transition is set to the mean firing time of the transition that must
fire to transform the state of the net from the first state to the second state. For example, mark
ing |J-2 will be transformed into marking 114 if transition t3 fires; thus, in the Markov chain,
there is a state-transition from state p.2 to p.4 with an average transition time of 1 second, the
mean firing time of transition t3. Fig. 9.6 shows a Markov-chain that is isomorphic to the net
shown in Fig. 9.5. In this figure, the mean transition times between states of the chain are indi
cated by the numbers shown above the state-transitions. The numbers shown below the state-
transitions are the transition-probabilities of the chain.

1

FIGURE 9.6 This figure shows the Markov equivalent to the stochastic Petr net shown in Fig. 9.5.

Once an equivalent Markov chain is constructed from a stochastic Petri net, classical
queuing theory techniques [Tri82] may be used to determine the performance of the system by
analyzing the chain. For example, the throughput of a system can be estimated by determining
the average amount of time that the system needs to transform from a starting state to an end
ing state and then reset back to the starting state. Queuing theory techniques also can be used
to determine the the steady-state marking probabilities of the system (the probability that the
net will have a particular marking at a given time) by determining the equivalent Chain’s limit
ing state probabilities. By finding the limiting state probabilities of the Markov-chain in Fig.
9.6, the steady-state marking probabilities of the net in Fig. 9.5 can be shown to be

P[pi] =0.1163

P[p2] =0.1860

P[p3]= 0.0465

P[|i4]= 0.5349

P[p5] =0.1163

In their current state of development, stochastic Petri nets have a number of drawbacks
that limit their use for modeling blackboard systems. First, the reachability set of the net
depends on the initial marking. Thus if tokens are used to represent data elements on the
blackboard or other problem dependent information, then a new analysis is needed for each
problem instantiation. Second, the current formulation of stochastic Petri Nets requires that
every transition have an exponentially distributed firing time. When modeling complex sys
tems, such as blackboards, it may be neccessary to model transitions that fire immediately on
enabeling, require a fixed amount of time to fire, or fire in an amount of time that is a function
of the net marking. In addition to these limitations, a final drawback prohibits the use of sto
chastic Petri Nets for modeling large-scale systems. In general, the size of a Petri net’s reacha
bility set will grow exponentially as the number of tokens, places, or transitions in the net
increases. Since most queuing theory techniques require the determination of the eigenvalues
and eigenvectors of an N x N matrix when solving a Markov-chain with N states; the problem
quickly becomes intractable as the problem size increases. Although stochastic Petri nets Can
not currently model systems as complex as blackboards, most researchers are optimistic about
the prospect of extending them to handle such large-scale systems. See [RamHo80], [Mar-
Con84], [Zub85], [DugBob85] for some recent work on extended stochastic Petri nets.

-103- andress/kak

CHAPTER 10

EXPERIMENTAL RESULTS

PSEIKI was run on a number of images typical of what would be seen by a sidewalk-
navigating mobile robot with downward-slanted cameras. Figs. 10.1 - 10.4 show the results
for one such run; Fig. 10.1 shows the edges representing the expected scene and Fig. 10.2 the
actual image. Note that the expected scene and the observed image are significantly misre-
gistered. Two of the major edges in the expected scene, in the lower left, are missing entirely
in the observed image. The reader should also note the presence of shadow edges in Fig. 10.2.
The output of the edge-based preprocessor described in chapter 3 is shown in Fig. 10.3.

The final result produced by PSEIKI consists of labels with associated belief values
attached to entities at the edge level and higher levels on the data panel on the blackboard. For
example, in Figs. 10.1 - 10.3, if the element at the scene level (the highest blackboard level)
with maximum belief is selected and its component edges are displayed, Fig. 10.4 results. This
figure shows the edges, their labels, and associated belief values for the scene interpretation
that PSEIKI found most believable. In line with the earlier chapters, the percentage value
associated with a label indicates PSEIKI’s belief in the correctness of the label. For example,
PSEIKI has a belief of 0.53 that the lower right edge can be matched with the right-bottom
edge of the expected scene. This amount of belief indicates that, at a belief level of 0.47,
PSEIKI believes that the edges were mismatched or that the system is ignorant about the vali
dity of the match made.

-104- andress/kak

andress/kak

Left top

top fight

hot right

right hotleft hot

-106- andress/kak

R:R:R-::::::::::::RW::::::::::R::::::::::‘::i:::::::;::::::::::;:::s,:::::::::R::::::::::'!:^‘::‘:::::s,:x^,::x::::::::::‘::.‘:.'::v:v

FIGURE 10.2 A sidewalk image used for illustrating PSEIKFs processing is shown here.

-107- andress/kak

FIGURE 10.3 This figure shows the input to PSEIKI from the preprocessor.

-108- andress/kak

left

APPENDIX A

ABRIEF REVIEW OF DEMPSTER-SHAFER THEORY

In this appendix, we will present a short review of some relevant terminology from the
Dempster-Shafer (D-S) theory of evidence accumulation. For a detailed presentation of the
theory, the reader is referred to Shafer [Sha76],

In a random experiment, th $ frame of discernment {FOD),©, is the set of all possible out
comes. For example, if we roll a die, © is equal to the set of possibilities, "the number show
ing is i," where 1 < i< 6; therefore, © may be set equal to the set { !, 2, 3,4, 5, 6}. The 2101
subsets of © are called propositions and the set of all the .propositions is denoted by 2®. In the
die example, the proposition “the number showing is even" would be represented by the set
{2,4,6}.

-109- andress/kak

In the D-S theory, probability masses are assigned to propositions, meaning to some of
the sets in 20, and therein lies a major departure of this theory from the Bayesian formalism in
which probability masses must be assigned to the individual elements of ©. These probability
masses must add up to one, and the probability mass assigned to © represents ignorance. The
interpretation to be given to the probability mass assigned to a subset of © is that the mass is
free to move to any element of the subset; this interpretation being in consonance with the pro
bability mass assigned to © representing ignorance, since this mass may move to any element
of the entire FOD. When a source of evidence assigns probability masses to the propositions
discerned by ©, the resulting function is called a basic probability assignment (bpa). Formally,
a bpa is function m:20-»[0,1] where

0.0<m(-)<1.0, m(0) = 0 artd £ m(X) = 1.0
Xc0

A belief function, Bel(X), over 0 is defined by

Bel(X) = £ m(Y)
YcX

In other words, our belief in a proposition X is the sum of probability masses assigned to all
the propositions implied by X. Dempster’s rule of combination, also known asDempster’s
orthogonal sum, states that given two bpa’s, ni] (•) and m2(-), corresponding to two indepen
dent sources of evidence, we may combine them to yield a new bpa m(-) via

m(X) = mi@m2 = K ££ mi (X])m2(X2) where
x, x2

xinx2=x

K-1 = 1 — £2 m1(X1)m2(X2)
XiX2

xanx2=0

APPENDIX B

CONVERSION OF CONFIDENCE VALUES TO BASIC PROBABILITY ASSIGNMENTS

Many systems face the problem of converting raw evidence to a form that is usable by the
Dempster-Shafer theory of evidence. Garvey, et. al. were the first to investigate the process of
converting raw evidence, such as image feature values, into belief functions [GarLowSl];
other work on the conversion of sensor readings to belief functions can be found in
[LehRey86], [ReyStr86] and [SafGot87J. In this appendix, a scheme to convert confidence
values into a bpa is described. In this scheme a confidence value for any subset of an
element’s FOD is required to be a value between 0.0 and 1.0. A confidence value of 1.0 for a
subset of © indicates that the evidence source has conclusive evidence that the element’s iden
tity is in that subset. Conversely, a confidence value of 0.0 indicates a lack of evidence that
the element’s identity is in the subset. To formalize the notion of confidence values, a
confidence function, Conf, is defined.

Cbnf: 2e —» [0, 1]

The idea is that the value of this function for any subset represents the amount of evidence pro
vided by a source suggesting that the element’s identity is in the subset. Note that this notion
is related to the concept of a probability mass in a basic probability assignment; however, a
bpa has other properties that are not required of a confidence function. Although a confidence
function may not have all the necessary properties of a bpa;, a bpa can be defined in terms of an
underlying confidence function. To define a bpa, m(-), in terms of a confidence function, it
must be defined so that it satisfies three properties.

1) 0.0 <m() <1.0
The confidence function meets this criteria by definition.

2) m(0) = 0.0
This property is obtained by setting the probability mass of the null set to zero. This
action makes intuitive sense because the null set represents the case in which the
element’s identity is not a member of the FOD. If this were the case, the FOD would be
incomplete and a new, more complete one would be needed.

3) x m(y) = 1.0
\|IC©
This requirement states that the evidence source generating the bpa has unity total-belief.
When forming a bpa with this property, the concept of the source’s total confidence is
helpful. A source’s total confidence is defined to be

Conftot = X Conf(\|/)
\|/c 0
\|/*0

This concept can be used to break the problem into three cases.

-110- andress/kak

-Ill- andress/kak

1) Conftot = 1.0
In this case, the confidence function is a bpa. Therefore, define
m(x) = Conf(x) for all x e 2s, x # 0.

2)

3)

Conftot <1.0
In this case, Conf incompletely specifies the source’s belief. A bpa can be defined
by assigning the uncommitted portion of the source’s belief, its ignorance about the
identity of the element, to the entire FOD, ©.

m(x)
1.0 - Conftot

* 0.0
Conf(x)

x = ©
x = 0
else

Conftot > 1.0
In this case, the evidence source has over-specified its belief. A bpa is defined by
normalizing all the confidence values by its total confidence.

m(x) = Conf(x)
Conftot

for allxe 20, x^0

After the preceding operations are applied to the confidence function, a bpa for the
evidence source, m(-), results. Note that defining the bpa in this manner does not
affect the validity of the first two requirements for a bpa; this is apparent because
Conftot ^ Conf(-) > 0.

To see more clearly how the conversion process works, consider the following example.
Assume for this example that an evidence source is being used to determine the identity of an
object with FOD © = {0a, 9b > 9c, 9d1- If the evidence source provides non-zero weights
only to members of ©, then the following confidence function might result :

Conf(0A) = 0.7

Cohf(0B) = 0.1

Conf(0c) = 0.4
Conf(0D) = 0.05

If the total confidence exceeds unity, as in this example, the confidence values are normalized
by the summed value resulting in the following bpa over ©:

Note that, in general, an evidence source could provide values to any element of 2®, not just
elements of 0.

ixi(0a) = 0.56
m(0g) = 0.08

m(0c) = 0.32

ni(0D) = O.O4
m(-) = 0-0 for all other subsets of 0!

Qn the other hand, the evidence source could have produced values that sum to less than one,
as in the following case:

Conf(0A) = 0.7

Conf(0B) = 0.1

Conf(0c) = 0.0
Conf(0D) = 0.05

Since the measures now sum to loss than unity, there is no reason to normalize. Instead, they
are converted directly into a bpa in the following manner:

m(0A) = 0.7

m(0B) = O.l

m(0c) = 0.0

iuCQd) = 0.05

m(©) = 0.15
m(-) = 0.0 for all other subsets of 0

Note that the amount of belief assigned to 0 is equal to 0.15; this is the difference between
unity belief and the evidence source’s total confidence. Setting the probability mass in © to
the difference seems intuitively correct for the simple reason that Conf(0j) is a good measure
of the confidence that the object’s identity is 0j. Clearly if the object is not thought to
correspond to any of the elements in its FOD to a sufficiently high degree, then some belief
may be uncommitted. In the above assignment, m(0) = 0.15 represents the uncommitted por
tion of the belief.

-112- andress/kak

-113- andress/kak

ACKNOWLEDGEMENTS

We would like to thank Dr. Lynn Garn, Team Chief of the Image Understanding and
Artificial Intelligence Group, and Mr. Tim Williams, both of the Army Center for Night Vision
and Electro^ Optics, for many fruitful discussions that educated us on the limitations of the
existing methodologies for automatic target recognition. Furthermore, the work described in
this report would not have been possible without the help of many people at Purdue’s Robot
Vision Lab. Specifically, we would like to thank Tom Underwood and Yura Kim for their
input on the low level processing needed by PSEIKI. We would also like to thank Richard
Coe for his work on the design and development of PSEIKI’s debugging software. Jeffery
Lewis also played a large role in the development of PSEIKI’s software; his development of a
general image processing environment was much help. Finally, Matt Carroll played a large
role in the evolution of PSEIKI with his help in data collection.

-114-

BIBUOGRAPHY

[AhoHop74] Aho, A. V., J. E. Hopcraft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, Mass., 1974.

[AndKak87] Andress, K. M. and A. C. Kak, “A Production System Environment for
Integrating Knowledge with Vision Data,” Proc. of the 1987 AAAI
Workshop on Spatial Reasoning and Multi-Sensor Integration, pp. 1-12,
Morgan-Kaufmann Publishers, Inc., 1987.

[AndKak88] Andress, K. M. and A. C. Kak, “Evidence Accumulation and Flow of
Control in a Hierarchical Spatial Reasoning System,” The AI Magazine,
vol. 9, no. 2, pp. 75-95,1988.

[BakBin81] Baker, H. H. and T. Q. Binford, “Depth from Edge and Intensity based
Stereo,” Proceedings IJCAI, vol. 6, pp. 631-636,1981.

[BalBro82] Ballard, D. H. and C. M. Brown, Computer Vision, Prentice Hall,
Englewood Cliffs, New Jersey, 1982.

[BarTho81] Barnard, S. T. and W. B. Thompson, “Disparity Analysis of Images,”
i IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.

PAMI-2,pp. 333-340,1981.

[Bar83] Barnard, S. T., “Interpreting Perspective Images,” Artificial Intelligence,
vol. 21, pp. 435-462,1983.

[Bar81] Barnett, J. A., “Computational Methods for a Mathematical Theory of
Evidence,” Proceedings IJCAI, pp. 868-875,1981.

[BarTen81] Barrow, H. G. and J. M. Tenenbaum, “Interpreting Line Drawings as
Three-Dimensional Surfaces,” Artificial Intelligence, vol. 17, pp. 75-116,
1981.

[BesJai85] Besl, P. J. and R. C. Jain, “Three-Dimensional Object Recognition,” ACM
Computing Surveys, vol. 17, no. 1, pp. 75-144,1985.

[Bes88] Besl, P. J., “Geometric Modeling and Computer Vision,” Proceedings of
the IEEE, vol. 76, no. 8, pp. 936-958,1988.

[BinLev87] Binford, T. O., T. S. Levitt, and W. B. Mann, “Bayesian Inference in
Model-Based Machine Vision,” Proceedings AAAI Workshop on
Uncertainty in Artificial Intelligence, Seattle, July 1987.

[BriFen70] Brice, C. R. and C. L. Fennema, “Scene Analysis Using Regions,”
Artificial Intelligence, vol. 1, no. 3, pp. 205-226,1970.

[Bro81] Brooks, R. A., “Symbolic Reasoning Among 3-D Models and 2-D
Images,” Artificial Intelligence, vol. 17, pp. 285-348,1981.

-115-

[BroFar85] Brownston, L., R. Farrell, E. Kant, and N. Martin, Programming Expert
Systems in OPS5, Addison-Wesley, 1985.

[ConMun87] Connolly, C. I., J. L. Mundy, J. R. Stenstrom, and D. W. Thompson,
“Matching from 3-D Range Models into 2-D intensity Scenes,”
Proceedings on 1st International Conference on Computer Vision, pp. 65-
72,1987.

[CorGal87] Corkill, D. D., K. Q. Gallagher, and P. M. Johnson, “Achieving Flexibility,
Efficiency, and Generality in Blackboard Architectures,” Proceedings
AAAI, 1987.

[CroSan87] Crowley, J. L. and A. C. Sanderson, “Multiple Resolution Representation
and Probabilistic Matching of 2-D Grey-Scale Shape,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. PAMI-9, no. 1, pp.
113-121,1987.

[CroRam87] Crowley, J. L. and F. Ramparany, “Mathematical Tools for Representing
Uncertainty in Perception,” Proc. of the 1987 AAAI Workshop on Spatial
Reasoning and Multi-Sensor Integration, pp. 293-302, Morgan-Kaufmann
Publishers, Inc., 1987.

[DavHwa85] Davis, L. S. and S. S. V. Hwang, “The SIGMA Image Understanding
System,” Proceedings of the IEEE Workshop on Computer Vision,
Representation and Control, pp. 19-26,1985.

[DubPra85] Dubois, D. and H. Prade, “Combination and Propagation of Uncertainty
with Belief Functions,” Proceedings 1JCAI, 1985.

[DubPra86] Dubois, D. and H. Prade, “Set-theoretic Operations on Bodies of
Disjunctive or Conjunctive Evidence,” Proceedings of the North American
Fuzzy Information Processing Society, pp. 107-124, New Orleans, 1986.

[DudHar73] Duda, R. O. and P. E. Hart, Pattern Classification and Scene Analysis,
Wiley, New York, 1973.

[DugBob85] Dugan, J. B., A. Bobbio, G. Ciardo, and K. Trivedi, “The Design of a
Unified Package for the Solution of Stochastic Petri Net Models,”
Proceedings of International Conference on Timed Petri Nets, 1985.

[DurLes87] Durfee, E. H., V. R. Lesser, and D. D. Corkill, “Coherent Cooperation
Amoung Communicating Problem Solvers,” IEEE Transactions on
Computers, vol. Vol C-36, no. 11, pp. 1275-1291,1987.

[Ebe76] Eberlein, R. B., “An iterative Gradient Edge Detection Algorithm,”
Computer Graphics and Image Processing, vol. 5, pp. 245-253, Acedemic
Press, 1976.

[ErmHaySO] Erman, L. D., F. Hayes-Roth, V. R. Lesser, and D. R. Reddy, “The
Hearsay-II Speech Understanding System: Integrating Knowledge to
Resolve Uncertainty,” ACM Computing Surveys, pp. 213-253,1980.

-116-

[ErmLon81] Erman, L. D., P. E. London, and S. F. Fickas, “The Design and an Example
Use of Hearsay-Ill,” Proceedings Joint Inf l Conference on Artificial
Intelligence, 1981.

[FauPra79] Faux, I. D. and M. J. Pratt, Computational Geometry for Design and
Manufacturing, Ellis Horwood, Ltd., New York, 1979.

[FenLes77] Fennell, R. D. and V. R. Lesser, “Parallelism in Artificial intelligence
Problem Solving: A Case Study of Hearsay II,” IEEE Transactions on
Computers, vol. Vol C-26, no, 2, pp. 98-111,1977.

[FolVan82] Foley, J. D. and A. VanDam, Fundamentals of Interactive Computer
Graphics, Addison Wesley, Reading, Mass., 1982.

[For86] Forgy, C. L., OPS/83 User’s Manual and Report, Production Systems
Technologies, Inc., 1986.

[GarJoh791 Garey, M. R. and D. S. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness, W. H. Freeman and Company, New York,
1979.

[GarCor87] Garvey, A., C. Cornelius, and B. Hayes-Roth, “Computational Costs
versus Benefits of Control Reasoning,” Proceedings AAAI, 1987.

[GarLow81] Garvey, T. D., J. D. Lowrance, and M. A. Fischler, “An Inference
Technique for Integrating Knowledge from Disparate Sources,”
Proceedings IJCAI, pp. 319-325,1981.

[GorSho85J Gordon, J. and E. H. Shortliffe, “A Method for Managing Evidential
Reasoning in a Hierarchical Hypothesis Space,” Artificial Intelligence, vol.
26, pp. 323-357,1985,

[Gri81al Grimson, W. E. L., “A computer implementation of a theory of human
stereo vision,” Phil. Trans. Roy. Soc. Lon., vol. B 292, pp. 217-253,1981.

[Gri81b] Grimson, W. E. L., From Images to Surfaces: A Computational Study of the
Human Early Visual System, MIT Press, 1981.

[HanRis78] Hanson, A. R. and E. M. Riseman, “VISIONS: A Computer System for
Interpreting Scenes,” in Computer Vision Systems, ed. E. M. Riseman, pp.
303-333, Academic Press, 1978.

[HarSha85] Haralick, R. M. and L. G. Shapiro, “SURVEY: Image Segmentation
Techniques,” Computer Vision, Graphics, and Image Processing, vol. 29,
pp. 100-132, Academic Press, 1985.

[HarMar85] Hartquist, E. E. and H. A. Marisa, “PADL-2 Users Manual,” Production
Automation Project, The University of Rochester, UM-10/2.1,1985.

[Hay85] Hayes-Roth, B., “A Blackboard Architecture for Control,” Artificial
Intelligence, pp. 251-321,1985.

-117-

[HayLes77] Hayes-Roth, F. and V. R. Lesser, “Focus of Attention in the Hearsay-II
Speech Understanding System,” Proceedings IJCAI, 1977.

[HofJai87] Hoffman, R. and A. K. Jain, “Segmentation and Classification of Range
Images,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. PAMI-9, no. 5, pp. 608-620,1987.

[HorPav76] Horowitz, S. L. and T. Pavlidis, “Picture Segmentation by a Tree Traversal
Algorithm, ” Journal of the ACM, vol. 23, no. 2, pp. 368-388, April 1976,

[HuSto87] Hu, Gongzhu and George Stockman, “3-D Scene Analysis Via Fusion of
Light Striped Image and Intensity Image,” Proc. of the 1987 AAAI
Workshop on Spatial Reasoning and Multi-Sensor Integration, pp, 138-147,
Morgan-Kaufmann Publishers, Inc., 1987.

[HunJay87] Huntsberger, T. L. and S. N. Jayaramamurthy, “A Framework for Multi-
Sensor Fusion in the Presence of Uncertainty,” Proceedings of the 1987
AAAI Workshop on Spatial Reasoning and Multi-Sensor Fusion, Morgan-
Kaufmann Publishers, Inc., 1987.

[JohHay87] Johnson, M. V. Jr. and B. Hayes-Roth, “Intergrating Diverse Reasoning
Methods in the BB1 Blackboard Control Architecture,” Proceedings AAAI,
1987.

[KakRob87] Kak, A. C., B. A. Roberts, K. M. Andress, and R. L. Cromwell,
“Experiments in the Integration of World Knowledge with Sensory
Information for Mobile Robots,” Proceedings IEEE International
Conference on Robotics and Automation, vol. 2, pp. 734-741,1987.

[Kim88] Kim, W. Y. and A. C. Kak, “A Cross Scanning Structured Light System
for 3-D Robot Vision,” School of Electrical Engineering, Purdue
University, Technical Report (in preparation), 1988.

[Koh47] Kohler, W., Gestalt Pshychology, Livenight, Ney York, 1947.

[Kui77] Kuipers, B., “Representing Knowledge of Large-Scale Space,” MIT AI
Lab Technical Report AI-TR-418, July 1977.

[Kyb87] Kyburg, H. E. Jr., “Bayesian and Non-Bayesian Evidential Updating,”
Artificial Intelligence, pp. 271-293,1987.

[LawMcC87] Lawton, D. T. and C. C. McConnell, “Perceptual Organization Using
Interestingness,” Proc. of the 1987 AAAI Workshop on Spatial Reasoning
and Multi-Sensor Integration, pp. 405-419, Morgan-Kaufmann Publishers,
Inc., 1987.

[LehRey86] Lehrer, N. B., G. Reynolds, and J. Griffith, “A Method for Initial
Hypothesis Formation in Image Understanding,” Proc. of the 1st IEEE
Conference on Computer Vision, 1986.

-118-

[LesErm77] Lesser, V. R. and L. D. Erman, “A retrospective View of the Hearsay-II
Architecture,” Proceedings Joint Inf l Conference on Artificial
Intelligence, 1977.

[LesErm80] Lesser, V. R. and L. D. Erman, “Distributed Interpretation: A Model and
Experiment,” IEEE Transactions on Computers, vol. Vol C-29, no. 12, pp.
1144-1289,1980.

[LevLaw87J Levitt, T. S., D. T. Lawton, D. M. Chelberg, and P. C. Nelson, “Qualitative
Navigation,” Proc. of DARPA Image Understanding Workshop, Los
Angeles, Febuary 1987.

[Law85] Lowe, D. G., Perceptual Organization and Visual Recognition, Khmer
Academic . Boston, 1985.

[MarPog79] Marr, D. and T Poggio, “A Theory of Human Stereo Vision,” Proc. R.
Soc. Land., vol. B, no. 204, pp. 301-328,1979.

[Mar82] Marr, D., Vision, W. H. Freeman and Co., 1982.

[MarCon84] Marsan, M. A., G. Conte, and G. Balbo, “A Class of Generalized
Stochastic Petri Nets for the Performance Evaluation of Multiprocessor
Systems,” ACM Transactions on Computer Systems, vol. 2, no. 2,1984.

[Mas87] Mashbum, T., “A Polygonal Solid Modeling Package,” M.S. Thesis,
School of Mechanical Engineering, Purdue University, 1987.

[MatHwa85] Matsuyama, T. and S. S. V. Hwang, “SIGMA: a Framework for Image
Understanding - Integration of Bottom-up and Top-down Analysis,”
Proceedings IJCAI, pp. 908-915,1985.

|MckHar85] McKeown, D. M. Jr., W. A. Harvey, Jr., and J. McDermott, “Rule-Based
Interpretation of Aerial Imagery,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. PAMI-7, no. 5, pp. 570-585,1985.

[MedNev84] Medioni, G. and R. Nevada, “Matching Images Using Linear Features,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.
PAMI-6, pp. 675-685, 1984.

[MitHar87] Mitchell, D. H., S. A. Harp, and D. K. Simkin, “A Knowledge Engineer’s
Comparison of Three Evidence Aggregation Methods,” Proceedings of
Uncertainty in Artificial Intelligence Workshop, pp. 297-312, 1987.

[Mol82] Molloy, M. K., “Performance Analysis Using Stochatic Petri Nets,” IEEE
Transactions on Computers, vol. C-31, no. 9,1982.

[Mor85] Mortenson, M. E., Geometric Modeling, John Wiley & Sons, New York,
1985.

[Mor66] Morton, G. M., “A computer oriented geodetic data base and a new
technique in file sequencing,” unpublished, IBM, Ottawa, Canada, 1966.

-119-

[NagMat80] Nagao, M. and T. Matsuyama, A Structural Analysis of Complex Aerial
Photographs, Plenum Press, 1980.

[NazLev84] Nazif, A. M. and M. D. Levine, “Low Level Segmentation; An Expert
System,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. PAMI-6, no. 5, pp. 555-577,1984.

[NavBab80] Nevatia, R. and K. R. Babu, “Linear Feature Extraction and Description,”
Computer Graphics and Image Processing, vol. 13, pp. 257-269,1980.

[NuFei78] Nii, H. P. and E. A. Feigenbaum, “Rule-based Understanding of Signals,”
in Pattern Directed Inference Systems, ed. F. Hayes-Roth, pp. 53-68,
Academic Press, 1978.

[Nii86b] Nii, P. H., “Blackboard Systems from a Knowledge Engineering
Perspective,” The AI Magazine, pp. 82-106, August 1986.

[Nii86a] Nii, P. H., “Blackboard Systems: The Blackboard Model of Problem
Solving and the Evolution of the Blackboard Architectures,” The AI
Magazine, pp. 38-53, Summer 1986.

[Pea84] Pearl, J., Heuristics, Addison Wesley, Reading, Mass, 1984.

[Pea86] Pearl, J., “Fusion, Propagation, and Structuring in Bayesian Networks,”
Artificial Intelligence, 1986.

[PetSl] Peterson, J. L., Petri Net Theory and the Modeling of Systems, Prentice-
Hall, Englewood Cliffs, NJ, 1981.

[RamHo80] Ramamoorthy, C. V. and G. S. Ho, “Performance Evaluation of
Asynchronous Concurrent Systems Using Petri Nets,’’ IEEE Transactions
on Software Engineering, vol. SE-6, no. 5,1980.

[ReyStr86] Reynolds, G., D. Strahman, N. Lehrer, and L. Kitchen, “Plausible
Reasoning and the Theory of Evidence,” COINS Tech. Report 86-11,
University of Massachusetts, 1986.

[RosKak82] Rosenfeld, A. and A. C. Kak, Digital Picture Processing, Vols. 1 & 2,
Academic Press, Orlando, 1982.

[SafGot87] Safranek, R. J., S. Gottschlich, and A. C. Kak, “Evidential Reasoning
Using Binary Frames of Discernment for Verification Vision,” Submitted
for publication, 1987.

[Sam84b] Samet, H., “A Tutorial on Quadtree Research,” in Multiresolution Image
Processing and Analysis, Springer-Verlag, 1984.

[Sam84a] Samet, H., “The Quadtree and Related Hierarchical Data Structures,”
ACM Computing Surveys, vol. 16, no. 2, ACM, June 1984.

-120-

[Sha76] Shafer, G., A Mathematical Theory of Evidence, Princeton University Press,
1976.

[ShaLog87] Shafer, G. and R. Logan, “Implementing Dempster’s Rule for Hierarchical
Evidence,” Artificial Intelligence, vql. 33, pp. 271-298, 1987.

[ShaHar81] Shapiro, L. G. and R. M. Haralick, “Structural Descriptions and Inexact
Matching,’ ’ IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. PAMI-3, no. 5, pp. 504-519, 1981.

[Snie76] Smets, P., “Combining Non-Distinct Evidences,” Proceedings North
American Fuzzy Information Processing Society, pp. 544-548, New
Orleans, 1986.

[Tri82] Trivedi, K. S., Probability & Statistics with Reliability, Queuing, and
Computer Science Applications, Prentice-Hall, Englewood Cliffs, NJ, 1982.

[VoeReq77] Voelcker, H. B. and A. A. G. Requicha, “Geometric Modeling of
Mechanical Parts and Processes,” IEEE Computer,1911.

[Wat70] Watkins, G. S., “A Real-Time Visible Surface Algorithm,” Univeristy of
Utah Computer Science Department, UTEC-CSc-70-101, 1970.

[WatArv84] Watson, L. T., K. Arvind, R. W. Ehrich, and R. M. Haralick, “Extraction
of Lines and Regions From Grey Tone Line Drawings,” Pattern
Recognition, voh 17, no. 5, pp. 493-507,1984.

[WatArv871 Watson, L. T., K. Arvind, R. W. Ehrich, and R. M. Haralick, “Extraction
of Lines and Regions From Grey Tone Line Drawing Images,” Pattern
Recognition, vol. 17, no. 5,1987.

[WitTen83a] Witkin, A. P. and J. M. Tenenbaum, “On the Role of Structure in Vision,”
in Human and Machine Vision, ed. Rosenfeld, pp. 481-543, Academic
Press, New York, 1983.

[WitTen83b] Witkin, A. P. and J. M. Tenenbaum, “What is Perceptual Organization
Forir Proceedings IJCAI,pp. 1023-1026,1983.

[YanKak86] Yang, H. S. and A. C. Kak, “Determination of the Identity, Position and
and Orientation of the Topmost Object in a Pile.,” Computer Vision,
Graphics, and Image Processing, vol. 36, pp. 229-255, Academic Press,

' 1986-

[Yen86] Yen, J., “A Reasoning Model Based on an Extended Dempster-Shafer
Theory ” Proceedings AAAI, pp. 125-131,1986.

[Zis78] Zisman, M. D., “Use of Production Systems for Modeling Asynchronous,
Concurrent Processes,” in Pattern Directed Inference Systems, ed. F.
Hayes-Roth, pp. 53-68, Academic Press, 1978.

[Zub85]

[Zuc76]

Zuberek, W. M., “Performance Evaluation Using Extended Timed Petri
Nets,” Proceedings of International Conference on Timed Petri Nets, 1985.

Zucker, S. W., “Region Growing: Childhood and Adolescence,” Computer
Graphics and Image Processing, vol. 5, pp. 382-399,1976.

	Purdue University
	Purdue e-Pubs
	7-1-1988

	The PSEIKI Report—Version 2. Evidence Accumulation and Flow of Control in a Hierarchical Spatial Reasoning System
	K. M. Andress
	A. C. Kak

	tmp.1542052450.pdf.d50Ru

