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The PSEIKI Report - Version 2

ABSTRACT

A fundamental goal of computer vision is the development of systems capable of carrying
out scene intérpretation while taking into account all the available knowledge. In this report,
we have f,o'cussed on how the interpretation task may be aided by expected-scene information
which, in most cases, would not be in registration with the perceived scene. ’

In this report, we describe PSEIKI, a framework for expectation-driven interpretation of
image data. PSEIKI builds abstraction hierarchies in image data using, for cues, supplied
abstraction hierarchies in a scene expectation map. Hypothesized abstractions in the image
data are geometrically compared with the known abstractions in the expected scene; the
metrics used for these comparisons translate into belief values. The Dempster-Shafer formal-
ism is used to accumulate beliefs for the synthesized abstractions in the image data. For accu-
mulating belief values, a computationally efficient variation of Dempster’s rule of combination
is developed to enable the system to deal with the overwhelming amount of information
present in most images. This variation of Dempster’s rule allows the reasoning process to be
embedded into the abstraction hierarchy by allowing for the propagation of belief values
between elements at different levels of abstraction. The system has been implemented as a 2-
panel, 5-level blackboard in OPS83. This report also discusses the control aspects of the black-
board, achieved via a distributed monitor using the OPS83 demons and a scheduler. Various
knowledge sources for forming groupings in the image data and for labeling such groupings
with abstractions from the scene expectation map are also discussed.
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CHAPTER 1
INTRODUCTION

This report is an expanded version of the discussion published earlier on PSEIKI, a sys-
tem for expectation-driven scene interpretation [AndKak88]. In addition to elaborating upon
some of the points that were only tersely mentioned in the earlier publication, this report also
presents an upgraded version of PSEIKI that can handle both region-based and edge—based
symbolic representations of images. The acronym PSEIKI stands for a Production System.
Environment for Integrating Knowledge with Images. '

PSEIKI can be used for expectation-driven interpretation of vision data in any domaln
where a good estimate of the expected scene is available. For example, for the navigation of a
self-guided munition, PSEIKI could be used to compare an image of the terrain with a map of
the terrain; the results produced by PSEIKI could then be used to yield an updated fix on the
location of the munition. In more industrial applications, PSEIKI could be used to verify the
location and orientation of an object by comparing its 2-D image with a description of the
expected scene generated from CAD data. Such verification systems are expected to play an
important role for monitoring the progress of assembly robots. I

PSEIKI was originally developed for integrating the global map 1nformat10n with v151on
data to aid navigation for an autonomous mobile robot [KakRob87]. In this problem, the
robot’s task is to traverse a known network of sidewalks. The primary source of information
on the location of the robot is a set of encoders mounted on the wheels; however, due to slip-
page in the wheels, there is always an uncertainty in the exact location of the robot. PSEIKI’s
task is to ’eompare the visual image of what the robot sees with the stored map knowledge and
‘obtain an updated position fix on the robot. To simplify this problem of self-location, the cam-
eras on the robot were aimed such that the robot could only see in its immediate vicinity, mak-
ing for a near-31ghted robot. '

As a simple illustration of PSEIKI’s integration of image and expected scene information
in the context of self-location of a mobile robot, consider Fig. 1.1. If panel (a) of this figure is
a graphic rendition of an expected scene and panel (b) a depiction of the edges found in the
vision data collected for the scene, then PSEIKI would produce an output similar to the one in
panel (c), where the labels attached to some of the edges and their corresponding belief values
are shown. For example, the label ’right:35%’ means that PSEIKI has found the expected-
scene edge labeled ’right’ in panel (a) to be compatible with the lower right edge in panel (b)
with a belief of 35%. In this case, the rest of the belief, 65%, would be apportioned either to
this particular label being incorrect or to the system professing ignorance on the subject of
assigning a label to this edge in the vision data. The reader might note that the edge labeled
"top:38% actually corresponds to two edge segments in panel (b). This merger of nearly com-
patible edges in the vision data is one consequence of various tests PSEIKI makes for internal
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FIGURE 1.1 This ﬁgure shows typical i unages used by PSEIKI The 1mage in panel (a) shows an example ofa
graphic rendition of an expected scene with edges labeled. Panel (b) shows a simple example of the
output of an edge based preprocessor which PSEIKI would use as-input data. Panel (c) shows the final
- output of PSEIKI, with labeled edges and the labels’ belief values in the most plausible interpretation of
the scene. The conﬁdence value attached to the overall mterpretauon of the scene is-also shown

geometric consistencies in the visi_on data. -
The match information generated by PSEIKI is ekpfessed by labeling the image-elements
with the identities of 'the ’ncorresponding model-elements; a belief value indicating the
‘confidence of the match found is attached to each label. The Dempster-Shafer theory of evi-
“dence is used to accumulate evidence about the certainty of the matches made, a particular
- advantage of us1ng this formahsrn being that if a grouping from the image data is too distant or
too dissimilar from its correspondent in the expected scene, the system is capable of expressmg
: 1gnorance for such unhkely ass001auons “To overcome the exponential explos1on usually '

e
. A Bayesian would - probably 1nS1st one could use low belief values when one - is companng
“ dls_sumlar__o_r _yd;stal groupmgs in the image data on the one hand and.the expected scene on the .
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associated with the Dempster-Shafer formalism, a computationally efficient variation of
Dempster’s rule is used to combine evidence about the labels. This variation of Dempster’s
rule also allﬂoWs' the reasoning process to exploit the hierarchical nature of the integration task.
For example, the belief value associated with the top level of the hierarchy is considered to be -
the confidence in the entire matching process; if this belief value does not exceed a thrcshold
the matchcs found are rejected.

Although the original version of PSEIKI, as reported in [AndKak88], was edgc based
meaning that both the input image data and the expected scene data had to consist of edge
descriptions, the newer version reported here can also handle region-based image_ inputs
directly.. HoWéver, even when the an image is input into PSEIKI in a region based form, the
system still exploits edge level information by treating the boundaries between regions as
. edges and matching them with edges in the expected scene. We believe that if the edge level
information was completely ignored for region based inputs to PSEIKI, the rcsulting evidence
accumulation processes would become weaker, meaning that the system would make weaker .
assertions about labeling the image regions with entities from the expected scene. As a
- perhaps poor analogy, given blurry images of, say, a horse and a cow, it may be hard to make a
distinction between the two. What we are trymg to say is that even in reglon -based processing,
edge level information is not ignored. :

PSEIKI groups low-level image-elements into higher level constructs by taking cues from
the supplied abstractions in the expected scene. For example, if PSEIKI’s low-level preproces-
sor provides edge information to the system, then PSEIKI would group compatibly labeled,
adjacent edges into faces. Once these higher level image-elements are formed, PSEIKI can
then match them with high-level model-elements. The following list enumerates the levels of
data abstraction present in PSEIKI and describes the data residing on each level. '

Level 5:
Scenes -- The entire scene (cxpected or observed) is represented on this level. The scene
is defined as the union of all objects in level 4 of the hierarchy. This level provides a way
of labeling multiple objects that otherwise would not be possible. The conﬁden'cevof the
match made on this level is interpreted as the confidence in the entire matching process
and is used to determine if the matching process has succeeded.

Level 4; ; 7 .
Objects -- Each element on this level corresponds to a distinct physical object.” An object
is defined as the union of its boundary faces from level 3. '

other. We do not dispute that. However, our experience has shown, and as will be illustrated by
the discussions in the report, when belief values must be generated from the rather ad hoc
measures of geometric compatibility and when such belief values must be normalized for obvious
reasons, expressing: ignorance by withholding belief becomces a convenient aspect of ¢vidence
accumulation -- something that is not allowed in a Bayesian formalism.
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Level 3: :
~ Faces -- The elements on this level represent the polygonal faces that form boundary
representatlons of the observable portions of objects. In image data, a face corresponds to
a reglon in the image; in range data, surfaces are stored on this level. :

Level 2: : R
Edges -- These elements represent edges detected in the sensor data they are used to

form the boundanes of the faces in level 3 of the hierarchy.

Level l : 2 :
‘ Vertlces -- The vertices are the endpoints of the edges from level 2 They can be

~expressed either in world or image -coordinates- depending on the type of _data they
represent ' ’ ' R

F1g 1.2 shows how a simple scene, ‘a s1ngle block can be broken down hlerarchlcally
Each element in this hierarchy is defined by its parts on lower levels. This. figure demonstrates
how an obJect can be defined in terms of i its boundmg faces and how a face can be deﬁned by
the group of edges wh1ch form its border :

v PSEIKI exploits geometric relat1onsh1ps between data—elements at the above levels of
abstraction in the. reasonmg process. - Initial matches between image data and model data are
formed by noting geometric relationships between 1mage-elements and model-elements For
- example, an image-edge will be matched with the model-edge that comes the closest (in some
sense) to lying along the same line in the world coordinate frame. To find the match partner of
an image-edge, PSEIKI measures the degree of collinearity between the edge and all the
model-edges in the vicinity in the world frame; it then chooses as the match partner the
model- edge with which the image- edgeis most collinear. The belief of the match made then is
then made: proportronal to the degree of collrneanty between the two edges

After the initial matches are made the extent to which i 1mage elements satlsfy spatial con-
straints, dictated by the model information, is used to update the beliefs _ass001ated with: the
assignment of particular model labels to image data. In general, two metrics are required to
measure the degree to which image-elements meet these constraints. The two metrics must
provide measures of compatibility and mcompanbllzty between i image- -elements given the spa-
- tial relat1onsh1ps amongst their matched model elements. The compatibility metric provides
evidence that an element’s label is correct, and, conversely, the incompatibility metric pro-
vides ev1dence that an element’s label is incorrect, both from the standpomt of how well the
model generated constraints are satisfied. For example, two edges that have the been matched
with the same model-edge should lie approximately along the same line. Thus the compatibil-
ity metnc for edge elements with the same label, collinearity(edgel, edge2), measures the
degree to ‘which the two edges lie along the same line. This collinearity ‘metric is closely
relatedi to the measure used to establish 1n1t1al edge labels, but it is not identical to that meas-
ure. The fedge-level incompatibility metric, noncollinearity(edgel, edge2), measures the
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FIGURE 1.2 This figure shows how a simple scene can be broken down hierarchically into objects, faces, edges
- and vertices. '
degree to which two edges do not lie along the same line. Of course, '_ different
(in)compatibility metrics must be used at each level of abstraction. For example, the metrics
that are used to compute the (in)compatibility between two faces on the data panel aré based
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- on the distance between the two faces’ centroids. The metrics used to determine matches and
the mechanisms for updatmg the belief of those matches are discussed in detarl in chapters 5

and 6.

‘ An important aspect of evidential reasoning in PSEIKI is the propagation of beliefs up
and down the abstraction hierarchy. The propagation of belief values towards the higher
abstraction levels is based on the rationale that any evidence conﬁrming a data element’s label
should also provide evidence that its parent’s label is correct. Propagation of beliefs to lower
levels is based on the intuitive idea that if, say, a face is mislabeled, then all its constituent
edges are also most likely mislabeled. ' ' .

Although PSEIKI currently is restrrcted to performing expectation-driven processing on
image data, it can also be extended to perform expectation-driven processing on range data.
This extendibility stems partially from the independent nature of the blackboard knowledge-
sources; the system can be extended by updating or adding a few knowledge sources without
worrying about the effect of the extension on the operation of the ex1st1ng knowledge sources.
The system s extendlbllrty also stems from the generic way that PSEIKI treats its data; the data
structure that is used to store data-elements can be used to store elements generated by range
sensors. Furthermore, the opportunistic nature of blackboard processing can be exploited to

tune PSEIKI’s flow of control for particular sensors or applications. At the present time, a lim-

itation of PSEIKI is that the expectated scene must be described as an abstraction hierarchy
over piecewise- “linear edge segments. This implies that any curved boundaries in the scene
must be approxrmated by piecewise linear forms.

- In its present configuration, PSEIKI has been 1mplemented in OPS83 as a 2-panel /5-
level blackboard, as shown in Fig. 1.3. The left panel, called the model panel, holds the
abstraction h1erarchy for the expectated scene, and the lower levels of the right panel called
‘the data-panel, are supplied with the image data after it is reduced to a symbolic level. For
region-based implementations of PSEIKI, the region level symbolic information from the input
image is fed directly to the face level of the data panel. Each level in,the blackboard
corresponds to one of the levels of data abstraction discussed earlier. Thus each blackboard
panel contains the followmg abstraction levels: scenes, objects, faces, edges and vertices.
~ Each element on the blackboard except for vemces is deﬁned by a ﬁnlte collection of lower-

level elements. ' '

PSEIKI has four main knowledge sources (KSs) that it uses 1o establish correspondences

. between irnageéeler_nents and model-elements: labeler, grouper, splitter, and merger.' The

- grouper KS'determines which data_?elements at a given level of the hierarchy should be
grouped to form a data-element at a higher level. The merger KS also groups elements; how-
~ever, its _]Ob 1s to merge multiple elements ata grven level and retain the grouped information
- atthe same level For example, the grouper KS may group together a set of edges 1nto a face;
i whrle the merger KS may group together a series of short edge segments into a longer
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FIGURE 1.3 ffhis.ﬁgure shows the current configuration of PSEIKI’s architecture.

segment, or a set of faces into a single larger face. The splitter KS performs the opposite
action of the merger KS; it splits a single element on the blackboard into multiple smaller ele-
ments . The labeler KS has the responsibility of establishing model to data correspondences at
all levels of the blackboard, and to accumulate evidence on the validity of those correspon-
dences.. Each of these KSs can operate at any level of the blackboard by using level-specific
actions.

As was mentioned before, the input image is first preprocessed and then deposited into
the lowest two or three levels of the data panel. The type of preprocessing performed by a
low-level systems determines the blackboard levels on which the data is deposited. The sym-
bolic information produced by edge based preprocessors is deposited directly at the vertex and
edge levels of the data panel. On the other hand, for preprocessors that are capable of

For those familiar with our earlier publications on PSEIKI, the merger and the splitter KSs in the
current implementation are a ‘generalization’ of the data-reduction KS in the earlier version of the
system. The data-reduction KS could only operate at the edge level of the blackboard and its’
function was to merge edge segments into longer edges and to delete short segments. On the other
hand, the merger and the ‘splitter KSs can merge and split information at all levels of the
blackboard.
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_ producﬁng tegion type outputs, the additional information is fed directly into the face level of
the data panel. This additional input has been depicted by a dashed line in Fig. 1.3. Some
low-level systems that can be used to generate input data for PSEIKT are presented in chapter
3. Model data is deposited onto all levels of the blackboard because we assume that perfect
knowledge of the expected scene is available.

Work related to PSEIKI will be discussed in the next chapter; a survey of some previous
~ knowledge-based computer vision systems will be presented there. In Chapter 3 we will talk
about the type of preprocessing that must be carried out before an image can be fed into
PSEIKI; in this chapter, we will also show the data structures used for descnblng the image
elements (the same data structures are used for model elements). Chapter 4 will focus on the
generation of expectated scene information and will briefly discuss a couple of CAD systems
we have used for this purpose. Chapters 5, 6, 7 and 8 are used to describe PSEIKI in detail.
Chapters 5 and 6 are used to present the techniques used in the labeler KS to generate and
accumulate evidence for correspondences between the data and the model elements. In partic-
ular, chapter 5 is used to describe a hierarchically based evidence accumulation scheme based
on the Dempster-Shafer framework; chapter 6 demonstrates how geometric constraints can be
- used to generate evidence about the matches found between elements. The grouper, splitter
‘and merger KSs are discussed in chapter 7. Chapter 8 is used to discuss the implementation of
the blackboard in OPS83; the data structures and the flow of control on the blackboard will be
examined. Complexity issues of blackboard processmg are addressed in chapter 9 Fmally,
© some prehrmnary experimental results are presented in chapter 10. L
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CHAPTER 2

RELATED WORK ON SPATIAL REASONING

It is now realized that for a computer vision system to be able to make scene interpreta-
tions in complex environments, the spatial reasoning involved must utilize domain knowledge.
Yet, systems that are too domain specific tend to solve problems that are rather narrow in their
scope, and given the amount of effort it takes to program such systems, their payoffs tend to be
rather limited. In designing PSEIKI, our aim was to create a spatial reasoning tool that would
be as domain independent as possible. Clearly, what we have in mind is that a powerful tool
like PSEIKI would be used by a higher level, but more domain specific, system for comparing
scene expectations with vision data. The higher level system could also guide the inference
mechanisms by controlling the various policies used by PSEIKI, such as the policy regarding
the priority given to the different KSs, etc. Since our current efforts are focussed on PSEIKI
itself, we have not yet addressed how PSEIKI would be embedded in higher level systems that
are more domain specific.

In this chapter, ‘we will briefly survey what has been done to date in the deVelopmént of
knowledge based systems for image understanding.

\
An early model-based image understanding system is described by Brooks in [Bro81]; the
task of this system, ACRONYM, consists of finding instances of known objects in thevimage.
To perform object identification, the system first builds an Observability Graph that specifies
information about objécts that could be in the image; generalized cones are used to represent
these model objects. The system then builds a Picture Graph of the image and identifies
instances of objects in the image by matching nodes of the Observability Graph with sets of
nodes in the Picture Graph. The objects in the Observability Graph are represented in slot -
filler structures where any slot that can accept numeric values can also accept algebraic con-
straints expressed as inequalities. The system then can manipulate these constraints and deter-
mine if they are met by properties of objects detected in the image. ACRONYM uses only
backward chaining in the matching process and does not incorporate inexact reasoning.

The SIGMA image understanding system for aerial interpretation was first described in
[MatHwa85] and later developed in [DavHwa85]. The system represents its object classes
hierarchically using frames and uses both forward and backward chaining to arrive at an
interpretation of a scene. Furthermore, the system is able to integrate hypotheses about
specific objects in the scene. The system does not use uncertain reasomng, but 1nstead is able
to control its focus of attent1on based on the strength of a situation.

Another aenal interpretation system is described by Nagao and Matsuyama [NagMat80];
the system is based on the blackboard architecture and uses multispectral images in the
interpretation process. To accomplish the interpretation task, the system first performs a global
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survey of the entire image and labels regions without using domain specific know1edge The
characterlstzc regions that it finds, such as water, vegetation, roads, etc., are then used to gen-
erate context information for further blackboard processing. This processing: cons1sts of a
detailed analy51s of local areas in the scene using context information provided by the charac-
teristic reg1ons and applying context specific object detection subsystems. :

SPAM a system designed by McKeown, Harvey and McDermott also is an aenal nnage :
1nterpretauon system [MckHar85]. The system originally was constructed to 1nterpret a1rport :
scenes but has been expanded with a rule generator so it now can interpret scenes. from other
- domains. SPAM uses confidence values to aid in labeling and can man1pulate these values '
based on the cons1stency of the vanous labels. '

VISIONS (Hanson and R15eman) is another blackboard- expert system des1gned to
analyze color 1mages [HanRis78]. The system uses a flexible control scheme, - h1erarch1cal
scene representation, and a number of knowledge sources to accomplish the scene interpreta-
tion task. VISIONS is domain. independent, but schemas can be used to tune the system for a
particular apphcatlon S '

Naz1f and Levine describe an expert system based i 1mage segmenter in- [NazLev84], the
system was des1gned to prov1de a framework that would allow the combination of edge, region
and area based segmentation techniques. With these- segmentat1on techniques, the segmenter
can split'and merge reglons link and break edges and operate on image areas- based on features

‘of the elements. The system is rule-based and stores its rules in a global long term memory;
the image data undergoing segmentatlon is operated on in a short term- memory ‘The expert
system, Wthh contains a set of metarules, can focus its attention on interesting areas of the
image.. Many of the processes descnbed in this work are used by PSEIKI to group, spllt and

' merge elements on 1ts blackboard.

- PSEIKI d1ffers from the above knowledge -based systems in the follow1ng three main.
areas: First, PSEIKI’s task differs from those of previous systems. Most of the other systems
. were designed to find object instances in the image and, through such discoveries; to 'an‘iy_e ata
global interpretation of the image. PSEIKI’s task is limited to integrating image data with

~expected scene information -- it generates consistent labels, with associated belief values for
the data- elements. Of course since PSEIKI is limited to matching data- elements a hlgher'
level system 1s requlred to make a global 1nterpretat10n of the scene content. ‘

_ PSEIKI differs from SPAM and SIGMA, and to a certain extent VISIONS, in not rely1ng
~~on domain- dependent 1nformat10n . For example, SPAM uses airport design knowledge when

In the context of this report, a system is called domain dependent when domain- spemﬁc
knowledge ‘is embedded in various components of the inference engine, such as the rules or the -
knowledge-sources. | PSEIKI is domain independent in this sense; the context 1nformauon that -
" PSEIKI uses is encoded enurely in the form of the graphic rendition of the expected scene.
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1nte1pret1ng a1rport scenes. Context—cues also have been used extenswely in past computer
vision systems For example, if SIGMA detects a driveway i in an image, it then would search
for a house and for roads connected to the driveway. Because PSEIKI is prov1ded w1th a good
, estlmate of the expected scene, it does not have to perform inferences of this type. Although it
nnght be said that context-cues are indispensable for scene interpretation because they make
deductions more powerful, their use necessarily introduces some domiain dependence. There-
fore, it is our philosophy to separate the generation of the mapping from the formation of an
overall interpretation of the scene. If the use of context-cues is des1red by 4 system using
PSEIK]I, then it is up to the higher level system to provide PSEIKI with 4 graphic rendition of
the expect scene 1ncorporat1ng the 1nformat10n contained in the cues.

PSEIKI also differs from prev1ous systems in its method of performmg inexact reasoning.
: Many systems, mcludlng ACRONY M, SIGMA and the system by Nazif and Levme use no
uncertain reasomng in the image interpretation process. Because of the overwhelmlng amount
of data in an image, most of the inexact reasoning schemes used in the past have employed
simple combination schemes in order to keep from becommg bogged down in certainty value
computations. On the other hand, inexact reasoning in PSEIKI is based on the Dempster-
Shafer formalism in a tangled hierarchical space. The use of a hierarchy curtail$ the number of
uncertainty calculations and is made possible by the use of the blackboard architecture.
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CHAPTER 3

PREPROCESSING OF INPUT VISION DATA

The image to be interpreted must first be converted into a symbolic form before it can be
deposited on the lowest two or three levels of the data panel of the blackboard. This chapter
will focus on the preprocessing steps that we use for this conversion to symbolic form. In this
chapter, we will also describe the the format in which PSEIKI expects to see the input sym-
bolic data. The same format is also used to pass expected scene information to PSEIKI, more
on that in Chapter 4. '

‘The chapter will describe two image segmenters, one is edge-based and the other region-
based. The former is used for generating edge-based symbolic descriptions of the input image,
and the latter for region-based symbolic descriptions. The two segmenters described here are
presented onIy as examples of systems that can generate input data; because they both use well
known techniques, they will not be described in any great detail. Furthermore, no claim of
optimality for any of the presented systems is made. In fact, for PSEIKI to be a truly general
expectation- -driven vision system, it should be robust enough to overcome any pecuhantles of
these or most other low-level preprocessors. Thus, if improved low-level preprocessmg tech-
niques become available in the future, PSEIKI should be general enough to use the segmenta—
tion produced by the new preprocessors.

3.1. Format of Input Data

PSEIKI expects to see its input data as an ASCII text file with each line corresponding to
a separate data element, as shown in Fig. 3.1. The fields used in the data files are self-
explanatory. The first field on a line following the ‘+’ specifies the level of the blackboard
onto which the element is deposited. All other fields are specified by keyword - data pairs; the
data part of some fields can hold multiple values. For example, the data part of the children
field can specify that an element has more than one child. The id field is used to specify a
unique identification number for a data element; each element on the blackboard is referenced
via its id number. The element’s children field specifies the sub-elements that are used to
build it; for example, an edge has two children -- its end vertices. If an element is a vertex, its
location may be specified in one of two ways. If the vertex is on an image plane, its location
must be specified via the row and col fields. However, if the vertex is to be specified in three-
space, the coordinate field is used to specify its location in world coordinates; the data part of
this field holds three values -- the x, y and z values of its location. Any text appearing after a
semicolon is considered to be a comment and is ignored. Besides the fields shown in Fig. 3.1,
there are a number of optional fields that the low-level systems can use to provide additional



+ object

- + face
 +face
‘ + face

+ edge
+ edge
+edge
+ edge
+ edge
 +edge
+ edge
- +edge
~ +edge

+ vertex
+ vertex
+ vertex -

+ vertex
+ vertex
+ vertex
- + vertex

id 1

id2
id 3
id 4

ids
id6

id7

id 8

id9

id 10
id 11

id12°

id 13

id 14
id 15
id 16

id 17

id18
id19
id 20
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 children 2 3 4

children 56 7 8
children 7 9 10 12
children 81011 13

children 14 15
children 14 16
children 15 17
children 16 17
children 15 18 -
children 17 20

“children 16 19

children 18 20
children 19 20

coordinates 1.0 1.0 1.0
- coordinates 1.00.0 1.0
_coordinates 0.0 1.0 1.0

coordinates 0.0 0.0 1.0
coordinates 0.0 1.0 0.0

- coordinates 1.0 0.0 0.0
coordinates 0.0 0.0 0.0 -

- FIGURE 3.1 Sample data file demonstrating PSEIKT’s input data file format
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; ebjec; A

; face A
;faceB
;faceC

;edge A -
;edge B

; edge C

; edge D

; edge E
;edgeF
; edge G -
;edgeH
;edgel

; vertex A

; vertex B
;vertex C
;vertexD
;vertex B
; vertex F |

; vertex G

- information to PSEIKI. The value field can be used to provide PSEIKI with a level specific
value; for example, this field can be used to indicate an edge’s average strength or a region’s
average grey level. L1kew1se the size field can prov1de PSEIKI with level specific size 1nfor-
mation (e.g. reglon area, edge length, degree of a vertex). '

- The input data presented by the edge- ~based preprocessor is dep051ted on the edge and
_vertex levels, in ‘this description the vertices may be described by either the image based coor-
dinates or their 3-D world coordinates. On the other hand, in addition to the edge and vertex -
level information, the region-based preprocessor also.feeds information at the face level. The
data on the face level represent the regions extracted by the segmenter; the borders between
these regions would be represented as edges, and would be described at the edge level. Finally,
the vertices associated with the edges would be input at the vertex level.
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3.2. An Edge Based Image Preprocessor For PSEIKI

‘Edge detection is a common technique used in image segmentation and other low-level
image processirig [RosKak82], [BalBro82]. However, the most common edge detection pro-
cess, which consists of thresholding the output of a gradient type window operator, is incapa-
ble of generating input data directly for PSEIKI. This is due to the difficulty encountered
when converting thick edges produced by this process to the symbolic form required by
PSEIKI. Although iterative methods are available to reduce the widths of these edges, they are
prohibitively- time-consuming [RosKak82], [Ebe76], [BalBro82]. Ridge-tracking is another
method that can be used for edge detection [WatArv87]. A variation of the ridge-tracking
algorithm described in [Kim88], which lends itself to the conversion of edges into a form
~ usable by PSEIKI, will be described in this section. A modification of the original algorithm
was necessary due to PSEIKI’s requirement that all of its input data be represented symboli-
cally. The original algorithm’s inability to find edge intersections also has been corrected in
PSEIKI’s preprocessor. There are a number of steps to the modified segmentation process.

1) First, a window-based gradient operator is applied to the image; the Sobel operator is
used in the current system [RosKak82]. Since the ridge-tracking algorithm uses only gra-
\dien,t. magnitude information, the direction of the gradient is not computed.

2)  After the gradient operator is applied to the image, every pixel above a user-specified
- - threshold is stored in a list; this list of pixels is called the threshold list. Since the system
only works on pixels in this list (usually between 5% and 10% of the total number of pix-

els), the required amount of work is drastically reduced.

3) To reduce the algorithm’s noise sensitivity, all pixels in the threshold list are averaged
with their eight closest neighbors. :

4) The next step in the process consists of finding all edge endpoints; eventually, these pix-
els correspond to vertices on PSEIKI’s blackboard. To find these elements, the notion of
the degree of one dimensional maximum (DODM) is used. Each pixel has four pairs of
neighbors -- horizontal neighbors, vertical neighbors, and neighbors in two diagonal
directions. The DODM of a pixel is the number of pairs of neighbors in which both
neighbors have lower values than the pixel itself. Fig. 3.2 demonstrates this concept; the
DODM for the center pixel, ‘‘C’’, is defined to be the number of cases in which it is
larger than both of its two neighbor pixels, ‘“N’’. The center pixel of the image ~nei_ghbpr-.
hood shown in Fig. 3.3 has DODM 2 since it is larger than its four neighbors in the hor-
izontal and vertical directions. All pixels in the threshold-list with DODM of three or
four are considered to be edge endpoints.

5) Itis in the next step in segmentation that the ridge-tracking process actually occurs. Two
image structures are used to aid in this ridge-tracking process; these image structures are
- called the edge and mark arrays. The edge array is used to record the pixels that have

A
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~FIGURE 3. 2 Thrs ﬁgure demonstrates the concept of the Degree of one Dimensional Maxrma (DODM)
The DODM for the center plxels is defined to be the number of cases (1-4) in wh1ch the center
pixel “C” is larger than both adjacent pixels “N? along a line,

89 57 52

V.

= oB
76 /A 39|

: ; FIGURE 3 3 The DODM of this example 1mage nerghborhood is 2 because the center p1xe1 has a larger

5‘a)

5b)
5¢)

v va]ue than its honzontal and vertical nerghbors

been determined to be endpoints or parts of an edge. If the value of a pixel is nonzero in
the mark array, then the pixel is said to be marked and the tracker will not follow the edge
onto that pixel. This technique is used to keep the tracker from backtracking onto pixels

'recently determined to be part of the edge Another concept that is used in the tracking

process is called the current( i) pixel; this i is the ridge pixel that was determmed at time i,

“to be part of the edge ‘The tracking: process is described below.

Let i=0. Obtain an endpoint vertex found in step 4 of the process and designate this as
the current(0) pixel. In the edge array, label this pixel as an endpoint and mark thlS pixel
in the mark array (by setting the value of the p1xe1 in the mark array to nonzero)

In the edge array, label the current(l) p1xe1 (if i ¢ 0) as an edge pixel and let i 1 - 1 + 1.

Choos_e the cu_rren__t(r) p1xe1~ in the followmg manner: If there s an unmarked_ endpolnt or
edge pixel adjacent to the current(i —1) pixel in the edge array, choose this unmarked

~pixel as the current(i) pixel, deS1gnate it as an endpornt in the edge array, and stop the

‘ o -_trackmg process Otherwrse find the next pixel in the edge by ﬁndmg the largest
. ‘_unmarked p1xe1 Wthh is adjacent to the current(i — 1) pixel and has DODM > 2. Label
o thlS plxel as current(l), add it to a list of pixels that denote the edge, and de51gnate itasan
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ed;ge in the edge array. If there exists no pixel fitting this description, thén : t-hé’ edge
"died;" designate the current(i — 1) pixel as an endpoint and stop the tracking process.
Unmark the current(i — 2) pixel and its eight neighbors.

Mark the _éurrent(i — 1) pixel and its eight neighbbrs.
Go to step (5b).

The -original algorithm never unmarked pixels after they weré marked; this
prevented the system from finding junctions between edges. By unmarking pixels when
there is no possibility of the ridge-tracker backtracking onto freshly labeled edge pixels,

- these vertex pixels can be found. If the number of pixels in an edge is less than a user

specified threshold, then the list is deleted and all pixels in the edge matrix are reset to
their on'ginal state. :

A few iterations of the tracker at step (5e) are shown in Fig. 3.4 to demonstrate how the

tracking algorithm works. In this illustration, the pixels in boldface have been labeled as
belonging to the edge.. The shading denotes pixels that have been marked on the current itera-
tion of the tracklng algorithm.

6)

The final step of the segmentation process is the fitting of piecewise-linear s¢gménts, to
the lists of edge pixels. This step is based on a process described in [DudHar73] and also
used in [NavBab80]. This step also requires a user-specified parameter -- the maximum

fitting error, Eyg«. In this process, a line, called the model line, is drawn between the two

endpoints of an edge; then the edge pixels are followed (by traversing the list of e‘dge. pix-
els) and the distance between the individual pixels in the edge and the model line is com-
puted. If the distance between every pixel and the line is less then E,,, then the edge
can be represented by the model line. However, if any pixels are greater than E,,, away
from the model line, then the pixel that is the farthest from the model line is considered to
be a new endpoint and the line fitting algorithm is called recursively (once for each edge
between the new endpoint and the old endpoints). The line fitting process is shown in Fig
3.5; in this example, the line-ﬁtting process breaks the line into two piecewise linear seg-
ments.

The segmentation process, including the intermediate steps, is shown in Figs 3.6 and 3.7.

Fig. 3.6 demonstrates the process when applied to an image typical of those taken by a m_c‘;bi,le '
robot with b’do,W'nward pointing cameras. Fig. 3.7 demonstrates the process when ap'pﬁéd to an
industrial scene. In each of these two figures, panel (a) shows the original image; panel (b)
shows the magnitude of the gradient as found by the Sobel operator, and panel (¢) shows the
edges that were traced by the ridge-tracking algorithm. Panel (d) shows the final output of the
segmenter after it has converted the edges in panel (c) into piecewise-linear segments.
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FIGURE 34 ThlS ﬁgure demonslrates the markmg of pixels in the rrdge-trackmg algonthm The boldface pixels:
o represent edge pixels and the shaded pixels are marked ' o

. This process is fa1r1y efﬁc1ent due to the use of 11nked lists to represent the edges The -
' segmenter ‘was apphed toa set of 5 12><480 test images; the system was able to segment an
~ image (perform the Sobel operation, threshold smooth, ndge-track and convert to symbohc
‘form) inan average of 45 seconds ona hghtly loaded SUN/3 ' ‘

33. A Reglon Based Image Preprocessor For PSEIKI

‘ As was menuoned before, _PSEIKI can be driven 1n two modes in the ﬁrst mode the |
‘input 1mage is first: reduced to an edge-based description and the resultmg description used for
. derrvmg abstractlon h1erarch1es in the second mode abstractlon hlerarchles are built on top of N
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(a) original image (b) image after applying sobel operator
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(c) edge found by ridge follower (d) edges after conversion to piecewise-linear segments

FIGURE 3.6 This figure shows the intermediate and final output of the edge-based preprocessor when applied to

an image typical of those gathered by a mobile robot with downward pointing cameras.
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FIGURE 3.5 This figure demonstrates how a sample edge could be broken into two piecewise-linear
' segments by the line fitting algorithm. Since the edge falls outside the Emax boundarles in (a),
the line is split into two in (b) where the edge lies within the Emax boundaries.

region-based descriptions of the input image. For the second mode of opefation, We use a seg-
menter based on region growing ideas first advanced in [BriFen70] and later further developed
by Horowitz and Pavlidis in [HorPav76]. Our implementation differs from that described in
[HorPav76] in that we use the quadtree data structure that has become rather popular since the
original algorithm was published. The quadtree data structure, a well known tool for
representing binary images [Sam84a, Sam84b], has been extended in this application to
represent greyscale images. There are a number of steps that the region growing process uses -
to generate the final segmented image. o

1) The segmenter’s first step is to break the image into a data structure called a greyscale
quadtree. A greyscale quadtree is a simple extension of the binary quadtree in which
évery leaf is maximal and satisfies a constraint (a leaf is maximal if it is not part of a
larger leaf that satisfies the constraint). In this segmenter, a group of pixels is allowed to

~ be grouped into a leaf of a quadtree if
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{max f(x, y) - rrun f(x Y)} 2 : : j (3.1)

%y

' wheref(x; y) denotes the brightness function of the image and x, y are allowed to range

over the entire leaf; epsilon is a user-supplied parameter. In the original algorithm, this
proées‘s required an iterative . split-and-merge procedure. However, with the use of the

',Morton matrix [Mor66], [Sam84a] the quadiree can be built without any iterations. By

visiting the pixels in the order defined by the Morton matrix, the building of a leaf can be

- postponed until it is certain that no larger leaf node satisfying constraint (3.1) i is possible.
' Fig. 3.8 shows an example of an 8x8 Morton matrix. :

1l 20 5] 6|17 182122

31 4| 7| 8|19 |20 23|24

9 10|13 |14 |25 26|29 30

11|12 | 15| 16|27 |28 |31|32

33|34 | 37 38|49 |50 53 |54

35136 (39|40 | 51| 52 55| 56

41 | 42 | 45 | 46 | 57 | 58 | 61 | 62

43 | 44| 47 | 48 | 59 | 60 | 63 | 64

FIGURE 3.8 An example of an 8 by 8 Morton Matrix.

» Note that the Morton matrix does not have to be stored explicitly to guide the traversal of

the image in the order that it prescribes. An image can be traversed in the correct order
by recursively visiting the four quadrants of the image 1n the followmg order northwest,
northeast southwest and southeast

The segmenter s second step 1s,to~merge’ adjacent quadtree leaves into regions. Adjacent

‘leaves are merged into a region 0n1y if the region formed also satisfies constraint (3.1).

Reglons of the image are represented usmg the tree based UNION-FIND data structure

’ descnbed in- [AhoHop74]

The third step 1in the process is the merging of adjacent regtons whose average greyscale

‘values drffer by less then a user specrﬁed threshold.

At the. end of these processes there may exist very small regions that should be elim-

. inated; for example, many of. these regions are generated by shot noise and are only a sin-
. gle ptxel large Each small region is merged w1th the neighboring reglon whose average

grey level is closest to its own.
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5) The segmenter’s final step is to convert the segmented image into a format usable by
- PSEIKI. This is accomplished by first finding all the borders between regions; these
border-elements are then converted into piecewise-liner segments using the process dis-
cussed in the previous section. The endpoint pixels are output as vertex-elements for the

~ blackboard; likewise, the borders and regions are output as edges and faces respectively.

The segmentation process, including the intermediate steps, is shown in Figs. 3.9 and
3.10. These two figures demonstrate the region growing process when it is applied to the sam-
ple images described in the previous section. In each of these two figures, panel (a) shows the
original image; panel (b) shows the quadtree leaves generated by step 1 (the grey-levels in
these images are arbitrarily generated and are used to help the reader distinguish between adja-
cent regions). Panels (c), (d) and (e) show the regions after steps 2, 3 and 4 are used to gen-
erate and merge regions. Panel (f) shows the region borders after they are converted into
piecewise-linear segments. :

This segmenter is slightly less efficient than the edge-based process; howevcr, the sy‘sier'n
was able to segment 512x480 images in less than two minutes on a lightly loaded SUN/3.
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' () régions after max-min merging ' ‘ (d) regions after merging based on ayeté.geé

(e).ﬁn,aAl'rgsull after merging small regions ’ o ‘ (f) symbolic output -

,FIGURE'3.9Y This ﬁéure shows the intermediate and final output of the region-based preprocessor when applied to
o -an image typical of those gathered by a mobile robot with downward pointing cameras.
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(a) original image (b) greyscale quadtree

(c) regions after max-min merging . (d) regions after merging based on averages

(e) final result after merging small regions (f) symbolic output

FIGURE 3.10 This figure shows the intermediate and final output of the region-based preprocessor when app]ied

lo-a typical imagc of an industrial scenc.
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CHAPTER 4

| EXPECTED SCENE GENERATION

"Comput_érr graphics systems and CAD systems are two obvious methods of generating
' PSEIKI’s expected scene information; this chapter will present two systems used to generate
model information for PSEIKI. A computer graphics interface is used to generate the éxpected
scene information for mobile robotic applications, while a solid modeling package is used for
more industrial domains. Any modeling tool that is used for expected scene generatiqn must
possess the capability for hidden line removal. Also, the modeling tool must output its infor-
mation in the same format that was described in Section 3.1. Note that while the symbolic
information that is input on the data panel has at most two or three levels initially, the expected
scene has to be described as a hierarchy containing descriptions at all levels.

4.1. Expected Scene Generation for Sidewalk Navigation Applicatidns'

For sidewalk-navigation applications, a simple 2D graphics program is used to génerate
'PSEIKI’s expected scene information from stored sidewalk maps. In this system, the sidewalk
maps are stored in a graph data structure. The links in this graph represent straight sections of
the side_walk and nodes represent the endpoints of the straight sections. Associated_with each
node is an (x, y). pair designating the coordinates of the sidewalk junction cofre‘spondihg to the -
node; thus, the centerline of a straight section of sidewalk is the line that connects the coordi-
nates of its two junction nodes. Associated with each link of the graph is a nufnerical value
that specifies the width of the correspondlng segment of the sidewalk. ThlS is enough 1nforma-
tion to completely specify a sidewalk map. ’

Fig. 4.1 illustrates the steps involved in the generation of a symbolic description of the
expected scene from the graph data structure. The first step involved in generating the
expected scene information is the extraction of the edges of the sidewalk from the graph data
structure. Itis a trivial task to determine the lines defining the edges of a straight section of the
sidewalk because both the section’s width and its centerline are known. A more difficult prob-
lem is encountered when trying to determine the location of the vertices corresponding to the
intersection points of the edges of the sidewalk. These are determined by the following algo-
rithm. First, we associate four vertices with each link in the graph corresponding to the two
endpoints of each of its two edges. For example, we associate the vertices P, Q, R and S with
the link AB as shown in Fig. 4.2. Vertices P and Q are obtained by analyzing node B, whereas
vertices R and S are obtained by analyzing node A. Consider node B first. The graph is
searched for all the links that meet at B; the angle that each link subtends with the link AB,
measured in a counterclockwise fashion, is then calculated. We then retain only those links
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FIGURE 4.1 This ﬁgure shows a block dragaram of the processes used to generate PSEIKI’s expected scene
’ mformatron ina moblle roboue context : N

" ,that correspond to’ the minimum and maximum of these angles As shown in the ﬁgure 11nks
- BC and BE correspond to the minimum and maximum angles there, respectively. Now it is
rather simple matter to compute the location of the two vertices, P and Q, that correspond to
node B of link AB; for example, the computation of the location of vertex P can be found by
' ‘solvmg the equations of the stralght lines correspondmg to the edges SP and PT. S1rrnlarly, the
location of ‘vertices R and S can be computed by analyzmg node A. Note that at node A,
- where there is only -a bend in the sidewalk, as opposed to a junction, the minimum and the
* maximum angles correspond to the same link, that is the link AF. The pseudo code in Fig. 4.3
presents the algorithm more formally. The reader should note that this procedure 'will yield
~each vertex, such as point P in the figure, twice. - In this example, the vertex corresponding to
point P will be generated when node B is. con51dered as belonging to link AB, and then again
when the same node is considered as belonging to link BC. This duphcat10n at the vertex level
of the symbohc description is easily eliminated by comparing vertices and droppmg one when
two are found to be nearly identical in terms of their coordinates. '

After a symbohc descnptlon of the edges in the 51dewa1k map has been extracted from
the graph data structure, a ‘‘spotlight” function is applied to the description to delete all those
edges that can not be seen from the robot’s hypothesized location and orientation. To imple-
ment the spotlight function, we first generate two homogeneous transformation matrices, one
 that takes a world point into the robot base coordinate frame and the other that takes a point
from the Tobot base coordinate frame into the camera image plane The first matrix, which is
“ derived from knowledge of robot’s location and orientation, is used to transform end pomts of
edges, such as pomt P for edge PS in F1g 42 from the world frame into a robot base_
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FIGURE 4.2 This figure shows a part of a sidewalk map; it shows the process used to generate a sidewalk’s edges
from a graph description.

coordinate frame. A clipping operator is applied to the transformed data to delete all those
edges that are behind the robot. The middle panel of Fig. 4.4 illustrates the edges from the left
- panel that would remain after this clipping operation is applied. Now the second transforma-
tion matrix, which is derived from camera calibration parameters, is applied; this transforma-
tion is used to project the clipped edges onto the camera image plane. A second clipping algo-
rithm is now applied to delete the edges and parts of the edges that fall outside the boundaries
of the image. The edges from the middle panel of Fig. 4.4 that are not deleted by the final clip-
ping operatibn are shown in the right panel. Note that the edges of the sidewalk are still
described symbolically at this point; that is, they have not been converted into image form.

If the expected scene is to be expressed in world coordinates, the clipped edges are then
back-projected into the world coordinate frame. This vertex level and edge level information
is finally output in the format described in section 3.1. The project/clip/back-project process
just described has the desired affect of deleting all of the edges that are not visible from the
robot’s hypothesized location and orientation. If the expected scene is to be expressed in
image coordinates, then the system outputs the edges in the appropriate format without back-
projecting them. Although it would be possible to implement the world coordinate spotlight
function via a simple clipping operation performed in the world coordinate frame, using the
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get_both_edges(LINK, right_start, right_end, left_start, left_end) {
get_vertices(LINK, start_node(LINK), left_start, right_start)
get_vertices(LINK, end_node(LINK), right_end, left_end)

get_vertices(LINK, NODE, right_vertex, left_vertex) (
for each link in the graph not equal to LINK {
if (one of the link’s nodes is equal io NODE)
| add the link to the set of intersecting links

}

sort the intersecting links on the basis of the angle between them and LINK
min_link = link with minimum angle

max_link = link with maximum angle

right_vertex = intersect(edge(LINK, right), edge(min_link, right))
~ left_vertex = intersect(edge(LINK, left), edge(max_link, left))
} .

FIGURE 4.3 This figure shows the pseudo code for algorithm used to determine the location of the vertices of a

section of the sidewalk.

FIGURE 4.4 This figure shows how the spotlight function is used to delete from the expected scene all edges that
can not be seen from the robot’s hypothesized location and orientation. In the leftmost panei, the
triangle shows the expected location and orientation of the robot and the unshaded area shows the
region of the ground visible to the robot’s downward slanted cameras. The center panel shows the
clipping of the edges behind the robot The rightmost panel shows the edges remaining after the
blmage-coordmate clipping is performed

prOJect/chp/back-pro_]ect algorithm allows us to use a single spotlight function for both world
coordmate and i 1mage coordinate output.
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After the low-level information is generated by the graphics system, the model informa-
- tion on the face level, the object level and the scene level is hand entered by editing the output
file. On the face level, each connected section of sidewalk and each connected section of the
ground is considered to be a separate face. These faces are hand grouped onto the single
object in the scene. To help the operator enter this upper-level information, an image of the
expected -scene, with the grey values of each edge indicating its symbolic id number, is
displayed at the same time the low-level symbolic output is generated. Generating this image
is trivial because the spotlight function projects the sidewalk’s edges into the image coordinate
plane. Hand entering the upper-level information is usually not difficult because the sharp
down-look angle of the camera limits the complexity of the expected scenes.

As an example of the processing performed by this graphics system, consider the follow-
ing figures; Fig. 4.5 shows a simple sidewalk map to be used in this example. ‘ '

Position 4
>

>

Position 3

Position 1 ’ Position 2
» A

FIGURE 4.5 This figure shows the sidewalk map used to generate the expected scene images of figure 4.6. The
robot’s position for each of the four expected scenes is indicated in the drawing.



31- o e andress/kuk

F_igt 4.6 shows a sequence of expected-scene images that the system would produce for a
mobile robot traveling to the middle sidewalk section of the map, turning up that section and
then turning right. - ' ' '

4.2. Expected Scene Generation for Industrial Apphcatlons

A genenc solld modehng system is used to generate PSEIKI’s expected-scene data for .
industrial applications. Solid ‘modeling techniques have gained great popularity in the past
decade for representmg geometric objects in a complete and unambiguous fashion. Construc--
tive solid geometry (CSG) and boundary-representation (B-rep) are the two most popular'
SOIid-modeling techniques. In this section, we will first highlight the principles used in CSG
- based modeling and show an example of an ObJCCt constructed using CSG principles. We will
then describe the TWIN B-rep modeling system and describe how the system is used to gen-
erate PSEIKI’s expected scene information. : :

-~ Solid ObJCCtS are created in CSG systems by comblmng primitive Ob_]CCtS usmg the fol-
'lowmg boolean operators: union, intersection and difference. Fig. 4.7 shows how CSG can be
used to construct a simple object, a mug, by combining primitive solids using these operators.
CSG systems usually are restricted to working with regular solids; a set of pomts X,issaidto
be regular if it is equal to the closure of its mtenor that is '

X=ki (X)

~ where k and i denote the closure and interior, respectively. Because a solid produced by the
combination of regular solids using the set-theoretic boolean operations is not necessarily reg-
ular, CSG systems use regularized boolean operators when combining objects to guarantee
that the result of the combination will be regular. Fig 4.8 shows how a nonregular object can
result from the set-theoretic intersection of two regular objects; it also shows the object pro-
‘duced by the regulanzed intersection of the two objects. The set-theoretic intersection of the
two faces in panel (a) of Fig. 4.8 i is shown in panel (b); note that the result of the combination
is not.regular (because of the "dangling" edge). Panel (c) shows the valid face produced by
taking the regulaﬁzed intersection of the two faces in panel (a). The set-theoretic union and
difference operators have similar problems. The regulanzed operators, union (U ), intersec-
tion (m ) and difference (— ), of two sets, X and Y, are defined as :

| XU Y=kiXY)
Xh*'Y=ki(XmY)
X Y=hX-Y)

Most of the concepts used-in CSG modehng systems were ongmally developed for the PADL
“solid modehng system [VoeReq77] [HarMar85]



position 1 i position 2

.. position 3 position 4

FIGURE 4.6 This figure shows sorié typical expectéd scenes generated for a mobile robot with downwaid
~ pointing cameras. The scenes depicted in this figure were genérated with the map shown in Fig. 4.2.

4
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Difference

Cylinder

Cylinder . Torus

FIGURE 4.7 This figure demonstrates how objects are defined in CSG systems by the boolean eombiné_tion of
successively simpler objects. The coffee mug in this figure is defined in terms of two cylindrical

primitives and one toroidal primitive.

- Boundary-representation modeling is another common solid-modeling technique In this
scheme, objects are represented in terms of their boundary surfaces. In many B-rep systems,
- polyhedrons are used to approximate the boundary of the objects; thus, any curved surfaces,

- such as cylindrical or spherical surfaces, are only approx1mately represented. PSEIKI uses the -

TWIN B-rep solid modeling package [Mas87] to generate expected scene information in an
- industrial domain. TWIN was developed at the Computer Aided Design and Graphics Labora- -
~ tory (CADLAB) at Purdue Unlver51ty S Engmeenng Research Center [WIN is a 11brary of '
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()

FIGURE 4.8vThAis ﬁéure shows a shoricoming of the set-theoretic intersection operation. in two. dimensions. "The
. face in.ipanel (b). is the set-theoretic intersection of the two faces in panel (a); it is ndt a valid face
“(because of the dahgl_-ing edge). The face in panel (c), a valid face, is the regularized intersection. of

‘the two faces. : ‘

subroutines in the C language that contains routines to generate the primitive objects included
in most CSG systems; the set of primitives that TWIN can generate includes parallelepipeds,
wedg_és, cylinders, cones, toruses, sphercs,, fillets, elliptical cones, and ellipsoids. The library
also contains routines to perform regularized boolean operations on solid objects. Because the
TWIN library contains routines to generate the primitives used in CSG systems ahdf_r,outrinc‘s to
perform the operations used by CSG. systems, the same process. used to generate solid objects
in CSG syst‘emé can be used to generate objects with TWIN. That is, solid objects. can be
defined by regularized boolean combinations of primitive objects. ' ‘

A two step procedure is used to convert the TWIN models into a form usable by PSEIKI.
First, the Watkins scan-line rendering algorithm [Wat70], is used to generate an image of the
expected scene. The grey value of every pixel in the rendered image is set to the id number of
the model surface visible at that location in the image; thus, regions in the image with the same,
grey level all belong to the same surface in the TWIN model. After the model is converted:
into an image, the region-based preprocessor described in chapter 3 is then used to. extract. the |
imagé’s labeled regions and output the scene description on the vertex, edge and face levels.
The threshold values required by the segmenter are set to zero so that each region detected by
the segmenter will correspond to. a single model surface. The information: on the object and
scene l'evels_i is generated by assuming that there is only a single object in: the expected’ scene.
Thus, all of the faces detected-in. the image, with the exception of the background face (which |
has id number zero), are grouped into a single object. This object is then set to be the only -
object in the scene. If there is more than one object in the image, then the output file must be
hand edited to correct the object level and scene level information. Fig. 4.9 shows a graphic
output of the system for an industrial object, a piston connecting rod; this figure: shows three
orthogonal views and-one oblique view of the object. Fig 4.10 illustrates the process used to
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i

FIGURE 4.9 This figure shows some typical expected scenes generated in an industrial environment. It shows a
piston rod from three orthogonal views and one perspective view.




-36- andress/kak

generate the data file for the oblique view of the connecting rod shown in Fig. 4.9. The image
at the top of the figure represents the TWIN solid model. The image at the middle of the figure
shows the rendered image with uniquely labeled surfaces. A small portion of the -syinlic :
output is shown at the bottom of the figure. In reality, this data file contains the definition for
about 200 elements.

The current method of generating PSEIKI’s expected scene information has a number of
obvious flaws. The main deficiency of the technique is that all 3D information is lost when the
model is rendered. This deficiency has not been a problem to date because of the simple
scenes currently being used to test PSEIKI; this loss of information is expected to become
more limiting as PSEIKI is applied to more complex scenes in the future. Another deficiency
of the technique is the assuymption that there is only one object visible in the expected scene.
Although it is usually not difficult to correct this information by hand if there is more than a
single object in the scene, it would be convenient if the system was able to correctly generate
PSEIKI’s input data at all levels of abstraction. Future versions of the expected scene genera-
tor will avoid these problems by converting the expected scene information directly into a
form that PSEIKI can use without the intermediate rendering step. These future versions of
the expected scene generator will be able to easily convert curved borders of nonplanar sur-
faces into piecewise-linear segments for PSEIKI’s input because the curved borders are
already represented as piecewise-linear facet boundaries in the TWIN models.

l
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TWIN solid model

k ‘Watkins rendering algorithm

" Rendered lmage

l ~_ Region-based Segméntation

+ scene 1d 2194 children 2193

+ object id 2193 children 2174 2175 2176 2177 2178 2179 2180 21812182 2183
+. face id 2174 children 2149 2161 2162 2163 2164 size 684 value 2

+ face id 2175 children 2103 2145 2146 2147 2148 2149 size 924 value 255

+ _ff»a,ce id 2176 children 2106 2107 2108 2109 2142 2143 2145 2146 2155 '2_156 _
+ face id 2177 children 2084 2085 2086 2087 2088 2089 2090 2091 size 1098 value 5

FIGURE 4.10 This ﬁrgure, shows the processing performed to generate the syrﬁbolic expected scene data for
industrial objects. The top image represents the TWIN solid model infonﬁamn the middle panel
shows the rendered model image with every surface uniquely labeled. The lower part of the i lmage
shows a small portion of the symbolic output which would be presented to PSEIKI.
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CHAPTER §
AN EVIPENCE ACCUMULATION SCHEME FOR BLACKBOARD REASONING

The use of inexact reasoning in computer vision systems is certainly not new; however; -
most of the previdus schemes for evidence accumulation have been based only: loosely on. for-
mal uncertainty calculi [HanRis78], [MckHar85]. The main reason that these systems
employed ad-hoc schemes is the overwhelming amount of data in an image; the systems
needed a'fai'rly simplistic evidence accumulation scheme to avoid becoming bogged down in
confidence value computations. In contrast, the evidence accumulatlon scheme used in.
PSEIKI is based on the Dempster-Shafer (D-S) theory of ev1dence whose normally exponen-
tial computational complexity is controlled by a number of mechanisms to be discussed in this.
chapter. For example, one of the mechanisms consists of accumulating evidence over binary
sets of ‘hypotheses, meaning the evidence either supports that a data element from the image
should be given a particular label from the model or denies this supposition. Poolingi of evi-
dence in this fashion leads to a particularly efficient implementation of the Dempster’s rule.
Performance also is improved by exploiting the hierarchical nature of the blackboard system.
By performing a small number of computations on upper levels of the hierarchy, many“c'orvr‘lpu.-
tations on lower levels can be avoided. The hierarchical nature of the blackboard also is used
to constrain the matching process for elements on lower levels of the hierarchy; elements on
lower levels of the hierarchy are allowed to match only if their parents are matched. |

In the next section of this chapter, we will introduce Dempster’s rule of combination and
point to its exponential time complexity. Next, it will be shown how, in past systems, the com-
putational efficiency of Dempster’s rule was improved by making assumptions that the focus
of incoming evidence is limited to a small number of subsets of ©. Once these assumptions
are made, a computationally efficient form of Dempster’s rule can be derived. 'The evidence:
accumulation scheme employed by PSEIKI will be introduced in this context; the new accu-
- mulation scheme will first be introduced in general terms. Next, it will be shown that the accu-
mulation scheme can be embedded into a hierarchy if the reasoning task has the appropriate
structure. It also will be shown that the hierarchical structure allows the computational com-
plexity of the scheme to be improved by limiting the size of the elements’ FODs and by limit-
ing the number of evidence sources that are allowed to provide updating evidence. Further-
more, a method for passing belief values up and down the hierarchy will be introduced. After
the general scheme has been fully developed, its use by PSEIKI’s labeler KS will then be
presented as an application. Finally, to. show the enerality of our evidence accumulation
scheme, we will point out how it could be applied to the speech recognition domain. =

Y It is assumed. that the reader has. a. working knowledge of the Dempster-Shafer theory. of
evidence and. its associated terminology. For those not familiar with the theory, see [Sha76]; a.
brief review is also. presented in appendix A.
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§.1. Computationally Feasible Methods For Evidence Accumulation Based on the
Dempster-Shafer Theory

The Dempster-Shafer theory of evidence is gaining wider acceptance as an uncertainty
calculus. However in the general case the formula used to accumulate evidence in this theory,
Dempster’s sum, takes exponential time (in the size of the FOD) to combine evidence from
two independent sources. This is shown easily by observing the formula for Dempster’s sum
as shown in equation 5.1. ' |

mX) = m®m;, = K ¥ ¥ mX;)my(Xp) | (5.1)
} X, X, )
leX2=X

where

Kl=1- ¥¥ mEX)mXs)
, X, X,
leX2=®
The main reason for the exponential complexity is the requirement that the probability mass
for all 2'®! elements of the power set of © be evaluated when combining evidence from
independent sources. If N bpa’s are combined to form a data-element’s belief function, then
the total number of operations will be on the order of N X 2'8! (this will be denoted as
O(N x 2v|9| ). , ’ v

Barnett [Bar81] was one of the first to show that Dempster’s rule could be implemented
in better than exponential time if the focus for all evidence is restricted to a limited number of
~elements of 2®. Barnett was able to implement Dempster’s rule in linear time by assuming
that all evidence either confirms or denies members of the FOD. Although this assumption
places a fairly large restriction on the general D-S theory, many systems naturally provide evi-
dence in this form and are not hindered by the assumptibn. It can be shown that, in the general
case, O(Nx|©1) operations are required to combine N bpa’s when using Barnett’s equations.

Gordon and Shortliffe also were able to improve the cbmputa_tional complexity of the D-S
theory by making an assumption: about the type of evidence allowed to update beliefs
[GorSho85]. They formed what they termed a hierarchical hypothesis space, a hierarchical
partition of an element’s FOD, and assumed that all evidence either would confirm or deny
elements in the partition. An example of a hierarchical hypothesis space that could be used in
a computer vision system is shown in Fig. 5.1; it shows the partition that could be used by a
target identification system to classify tactical objects detected in a sequence of image frames.
The identification system could use the partition shown in this figure if it detected an object
that moved from frame to frame. If the system detected a moving oject, then it would be able
to use the hierarchy to provide evidence asserting that the object was a vehicle without needing
to specify which type of vehicle. A system using the formulas derived by Barnett would not be
able to provide evidence for the generic class of vehicles directly, because evidence is limited
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to focusing on the individual members of the FOD in that scheme.

{tank, jeep, truck, half-track, house, barn, school, church}

vehicles

_buildings

- {tank, jeep, truck, half-track) . (house, bam, church}

untracked

(tank)  (half-track} {jeep, truck)  (house}  f{bam} {church)

N\

{jeep} ' {truck}

FIGURE 5.1 Th1s ﬁgure shows a hierarchical partition of a hypothesis space that could be used 0 cIasmfy objects
* detected in atactical image. :

‘In order to.provide a computational gain, Gordon and Shortliffe were forced to approximate
Dempster’s ‘'sum; ‘the resulting approximation had a number of drawbacks. When presented
with highly- contradictory evidence, the approximation ’produc‘ed poor results. The approxima-
tion also prevented the computation of belief values for negations of €lements in the ' h1erarchy,
thus, plau51b111t1es for elements in the h1erarchy could not be computed.

' Shafer and Logan were able to formalize the problem of using Dempster’s rule t0 com-
bine evidence focused on elements of a hierarchical partition [ShaLog87]. By applying varia-
tions of Barnett’s formulas to elements in a hierarchical partition -of an element’s FOD, they
‘were able to compute Dempster’s sum for elements in the partition without any approx1ma— ‘
tions; thus, the results that their formulas provide are always valid. Their formulas also ‘are
slightly more general than those used by Gordon and Shortliffe in that they can comipute both
- belief values and plau31b111tles for elements in'the hlerarchy

Bmary frames of discernment (BFEODs) involve the most drastlc restncuon 10 the D-S .
theory, but they provide the greatest computational gain. As presented in [SafGot87], 2 BFOD
“is a FOD with 101 =2, Equivalently, any FOD with all of its probability mass.constrained to
two disjoint elements of 2® and {©) itself can be thought of as a BFOD. Obviously, since the -
size of the FOD is constrained to be 2, the time needed to combine two bpa’s is. constant. Thus
the t1me needed to-combine N-bpa’s is:O(N).
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Although  the above variations of Dempster?sb rule greatly improve its computational
efficiency, none of them areapplicable to the problem of accumulating evidence in PSEIKI.
Binary FODs are too restrictive to be used in a general matching procedure; their requirement
that all probability mass be constrained to three subsets of © severly limits their applicability.
Barnett’s scheme, while remaining general enough for use in PSEIKI, is still too inéfficient to
handle the overwhelmmg amount of data in an image. Finally, the use of hierarchical
hypothésis spaces is not possible because the hierarchy used in PSEIKI is not strlct (e.g. an
" edge can be the children of two faces -- the faces it separates). For this reason, a new pro-
cedure to accumulate evidence was developed by 1ncorporat1ng the concept of an element’s
label into the reasoning process.

5.2, A Computationally Efficient Evidence Accumulation Scheme using Labels

As has already been mentioned, Barnett was able to implement Dempster’s sum in linear
- time (with respect to the size of the FOD) by assuming that all evidence either confirms or
denies members of the FOD. Although this is a great improvement over the complexity of the
original formulation of Dempster’s rule, in the general case it still takes O(NX| © ) operations
combine the evidence contained in N bpa’s. We will show that it is possible to further reduce
the computational complexity of Dempsters rule by splitting the accumulation process into two
‘phases: initialization and updating. In the accumulation scheme introduced here, a single evi-
dence source is used to define the bpa during the initialization phase. This source is used to
provide confirmatory and disconfirmatory evidence focused on all members of the FOD, much
" as in Barnett’s scheme. Once the belief function has been established, the updating phase
commences and the focus of all new evidence is restricted to focus on only particular elements
in the FOD. We will show that by using this two phase accumulation scheme it 1s possible to
combine evidence from N sources in O(N+ 1eh operatlons :

In this accumulatlon scheme, assume that the1den_t1ty of an element, E;, is in questiyon‘ and

that its identity can be any one of M possibilities, 0, 62, <+, Oy. Therefore, the FOD for E;
®=(91Q92,"‘,9M) ‘ ’ ;
- Furthermore, assume that there are N evidence sources S, Sz, <, SN, that"'cah'prov'ide )

information about the element’s 1dent1ty The sources are assumed to prov1de bpa’s with evi-
* dence that is focused entirely on members of © or their compliment. This is exactly the same
assumption that Bamett uses to reduce the computational complexity of Dempster’s rule to
linear time.  However, we also assume that it is also possible to force the evidence sources to
| provid_e*bpa’s with evidence focused entirely on a single member of © and that element’s com-
pliment . Itis this ability to restrict the focus of the evidence produced by the: sources that

SIS
. One way forcing the bpa’s to. have this form is to mcorporate all the probablhty mass from
unwanted subsets of © to @ itself.
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enables the computational complexity of the accumulation scheme to be reduced.

‘During the initialization phase of the accumulation process, a single evideiice source is
used to provide evidence about E;’s label. This source is used to define the initial bpa by pro-
viding confirmatory and disconfirmatory evidence focused on all (singleton) mémbers of the
FOD, as in Barnett’s scheme. After the initial bpa for the element’s identity is computed, the
label of the element is determined. An element’s label is defined to be th¢ member of © with
the largest belief. (If two or more elements of the FOD yield the same belief, one is arbitrarily

selected). Thus, in some sense, the element’s label can be considered to be the current best

hypothesis for the element’s identity. As an example of the ease with which an element’s label
can be found, consider the process of determlmng the label for element E;. Remember that the
' FOD for E; cons1sts of M elements

'~" {919 62’ T, eM}
To determlne the E,’s label, the element of © w1th maximum behef must be found However
since only smgletons are being considered as labels, finding the element of ® with' greatest ‘

belief is equlvalent to finding the element of © with the largest probablhty mass (the belief of a - |

singleton is equal to 1ts probability mass) Thus, only the followmg elements of E;’ s bpa needf
be cons1dered ’ _ _ : : .

mE ({Ga}) for a=1,..,M

Let Gam be the element of @ for which the bpa takes a maximum value. That 1s, ,
mg, (80, ) 2 Mg (8)) for @=1, ... M

The label of element E; is defined to be Oam

Once the 1mt1ahzat10n phase of the accumulation scheme is complete and the 1n1t1a1 bpa
for Ei’s 1dent1ty has been computed and the label determined, the belief updating phase begins.
In this phase, all evidence is restricted to focus on the label-element and its compliment. That
is, the only elements in an updating bpa that are allowed to have non-zero probability masses
- are {0}, {—9y,_} and {©}. Thus at any time, all new evidence provided by the evidence
sources is focused on either trying to prove or trying to disprove that an elément’s label is
correct (i.e. that the element’s identity has been correctly determined). If the accumulated
dlsconﬁrmatory evidence about an element’s label is enough to force the belief in the label ele-
ment to fall below the belief in another member of ©, then the label will be changed to the ele-
ment with greater belief. The evidence sources then are allowed to provide conﬁrmatory or
dmconﬁrmatory evidence about the new label.

When mcorporatmg new evidence for an element’s label, the computat10na1 load can be
eased by making. use of the associative nature of Dempster’s rule. If an element’s bpa is
updated incrementally with every piece of new evidence, as is done in Barnett’ s scheme then
the new bpa will be computed as
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: Mpew = (((mo1g @ mupdate) @ mupdate) DD mu%date)

Where @ denotes Dempster s rule of comb1nat10n and mupdate is the updating bpa for the new

]-—)l

evidence that source S; is providing for element E;. Since Dempster’s rule of combmatlon is
invariant w1th respect to the order of combination, the new bpa can be expressed as

. Mpew = Mgld @ Mypdate
where
Mypdate = ((mypdate @ Mypdate) S <) muglate)
- 25 30

Now the fact that the updating bpa’s use binary frames of discernment can be exploited (if ele-
‘ment E; is labeled as E, then the only elements of E;’s bpa with nonzero probab111ty mass
correspond to the subsets {Ep}, {—Ea} and {©} itself). Because BFODs can be updated in
constant time, the time needed for N evidence sources to form an element’s updating bpa is
O(N) ‘Furthermore, Barnett’s formulas can be used to incorporate the updating bpa into the
initial bpa in O(101) time. Thus, the total amount of time for N evidence sources to update an
‘element’s belief in its label is ON+1@1) . Of course, if an element’s label changes during the
accumulation process then further computation is necessary because the ev1dence sources must
provide evidence to update the element s belief in the new label. ' -

It should be mentioned that if the updatmg belief for a number of elements is generated

by noting the degree to which their labels are mutually compatible, then the updating evidence

_ contained in their updating bpa’s should not be incorporated into their belief functions until all

of the updating bpa’s are formed. If the incorporation of the updating bpa’s is not delayed in

this manner, then it is possible for the updating bpa for an element to be influenced by its belief

in its own label.” An element could provide updating evidence to itself if it was used to gen-

erate updating evidence in another element’s label which in turn was then used to provide

updatmg evidence about the first element’s label.  Delaying the incorporation of updaung evi-

dence into elements belief funcuons unt11 all updatmg evidence has been generated prevents
this from occurrmg : : o

5.3. Hlerarchlcal Evidence Accumulatlon in PSEIKI

If the task of a. system is to deterrmne the identity of a number of elements Wthh are
arranged 1nto a part—of h1erarchy, then the evidence accumulation scheme 1ntroduced in the
previous secuon can be embedded into the hierarchy to prov1de further computat1onal gain. A
part-of h1erarchy is shown in panel (b) of Fig. 5.2; in this figure, as in most part-of hlerarchles,
elements on ‘the hlgher levels of the hierarchy are defined by groups of elements on lower lev-
els. For example in th1s figure elements E; ; through E; 4 are grouped to form element Ex
(E1J denotes the j J element on the i™ level of the hierarchy). Part-of h1erarch1es are a natural
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way to represent many types of objects. For example, this report contains a number of
chapters eaeh of which, in turn, contain a number of sections. As we progress down this struc-
ture, we find that the sections can be broken down into paragraphs, sentences, clauses, words
and letters. An automobile also can be represented hierarchically using a part—of hierarchy.
Panel (a) of Fig. 5.2 is a simple example of how an auto can be broken down into its major

assemblies (the frame, the body and the powertrain) and how each of these assemblies can be-

broken down into its main components. Of course, a part-of hierarchy that could be used to;
represent a real auto would be much more complex. Note that these hierarchies do not need to:
be strict; that is, an element can have more than a single parent if it is in more than one group.

(automqbile;.}, ‘ . - ) lil , ; ‘< s
{frame) . - ldﬁvct@inlz {body) - B B, .
{engine} {transhﬁssien}[driveshgft} {differential} {axle} I;J'l v I;:’2 };,3} 1;:.4 . | : l;:,s . I;:6
@ (b)

FIGURE 5. 2 (a) Hierarchical description of an automobile. (b) demonstrates. how a number of umdenuﬁed;
. elements can be grouped intg a part-of h1erarchy

The structure of a part-of hierarchy can be used to aid in the determination of the-identity.

of its elements For example, in many, cases, the label for an element will dictate: the possible:

labels that its children can assume. For example, in Fig. 5.2, if elements Ej ;. through Ej4 are
grouped to form element E, ; and if E; ; is thought to.be the drlvetram of an. auto, then: the:
possible labels for elements Ej,1 through E; 4 would be

= {engine, transmission, driveshaft, differential, axle}

Thus panel (a) of Fig. 5.2 can be thought of as a hierarchical arrangement of the possible:labels:
that the elements of panel (b) can assume (i.e. their frames of discernment). If the: hierarchy.
was not used to restrict certain possible labels from being included in an element’s FOD; then
the FOD might include all possible labels.on the same level-of the hierarchy. As:it stands; the.
FOD for an element is determined by its parent’s label-element and the children of itsvpare'nt’s;
label-element. Spec1ﬁcally, an. element’s FOD' is defined: to.be. the children.of: its. parent s
label- element

Because an. element s FOD-is determined by its parent’s label, the- FOD for the: element:
‘and all of its descendents must change if-the parent’s label changes -- a. computationally: inten-
sive operatmn Thus it is, advantageous to incorporate new. ev1dence on upper-levels: of the

on up_pery apd_.lqwe,r_ ley_,e,1s Qf the,hxerarehy,.can bethought to: co_rrespond to.,checkmg_ global.,and;;
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~ local consistencies respect1vely, generatmg updatmg evidence for elements on the upper levels
of the h1erarchy before generating updating evidence for elements on lower levels corresponds-
to perforrmng global consistency checks before local ones.

To further curtail the number of uncertainty calculations, elements are only used to gen-
erate updating evidence for their s1bl1ngs For example, only elements thought to be part of the
auto’s drivetrain. would be used to generate updating evidence for other elements in the

drivetrain. If the data were not arranged hierarchically, every element would be needed to
‘generate updatmg evidence for every other element. An element can be used to generate evi-
.dence for another element that is not a 51b11ng by propagating the first element’s confidence
value up through the hierarchy until a common ancestor is reached and then back down to the
second element. ' ’ ‘ o '

5.3.1. Evidence Propagation Between Levels in the Hierarchy
- Evidence from an element’s siblings is not the only source of knowledge used to updale

its belief function. A mechanism also is provided for passing behef values between different
levels of the hierarchy. This is done to satisfy the intuitive argument that says any evidence

- “ confirming: an element’s label also should provide evidence that its parent’s label is correct.

‘Disconfirming evidence also is required to be passed down to the lower levels of the hierafchy
Furthermore, it'is intuitively appealing to pass both confirmatory and disconﬁrinatory"inforrna-
tion up. the hierarchy if all updatmg evidence for an element is generated by measurmg 1ts con-
sistency w1th its s1b11ngs - : v :

The updatmg bpa, mupdate, is used when passmg evidence up the. h1erarchy To do this,
Mypdate 1S combl_ned_not only with the bpa for the element in question, but also with that for the
element’s parent. Combining the updating bpa with an element’s parent makes intuitive sense
because all new evidence generated on a level comes from the (in)compatibility between ele-

“ments on that level. If the children of an element have consistent (compatible) labels, then
these child-elements should provide evidence that the label given to the parent-element is
correct, Likewise chlldren with inconsistent labels provide evidence that- their parent’s label is
incorrect. Thus, by passing the updatlng bpa’s to.each parent- -element, new evidence i is pro-

, v1ded for those elements based on the cons1stency or the'i 1ncons1stency of their descendents

Ev1dence from an element cannot be applied dxrectly to its parent because the FODs of an
element and its parent are composed of different types of data elements. However, it will be
_ shown, w1th the help of the above example, that it is possible to build a FOD that can be used -
 to update the belief functions of elements on a higher level of the hierarchy. Assume that the |
data is as shown 1n panel (b) of Fig. 5.2 and that element Ej,; is a child of element E, ;.
- Furthermore assume that Ej,; is labeled as the transmission and Ej ;. is labeled as the
B _r_dnvetraln Because thc conﬁrmatory ev1dence for E1 1’s label derived from its s1blmgs arises



from the consistency of the label with its sibling’s labels, it may be considered as a weighted
vote of confidence that E; 1’s label is correct. Likewise, because the disconfirmatory evidence:
for E; ;’s label derived from its siblings arises from the inconsistency of the Iabel with its
sibling’s labels, it may be considered as a (weighted) vote of ne confidence in Ej ;’s Iabel.
Thus, mu% ate (@) can be considered to be the amount of ignorance in E; ;s label Using this |

rationale, an updating bpa for E;; with the following non-zero probab111ty MIasses. may be
defined asv

M ypdate ({drivetrain}) = mu%date( {transmission})
- E1,1-E21 1,1

M ypdate ({—Idl‘lVCtraln}) mugdate( —transmission})

© B1,1-E2,1

M ypdate (®E“) mu%date(G)El 1)

. E11-E21

Now it will be shown that m ypgae is a bpa for Ey1. As descnbed in the last secuon the FOD ‘

Ep1-E2)
for an element s updating bpa is binary in nature. Thus the only non-zero elements of the

updating bpa for E; are mug date ({ transmission}), mu%date({—'transmissi()n}.)‘ mugdm({ ®}) and ‘

they sum 0 1 Because M ypdare Das unity total mass and its null hypothesis has Zero mass it
Ef1-E2,1

is a bpa by deﬁn1t10n The total accumulated new belief for Ey  from its chlldren E1 1 E 1,4
now can be expressed as :
| =(m D...0Om
Mugre = (1 apie, )

i InfOrmation- is passed down the hierarchy only if it is disconﬁrmatoryi.' This downward.
propagation of information takes the form. of the reassignment of frames of discernment caused
by the ancestor of an element having its label changed. In the previous example, this could
happen if the hypothesized. identity. for E,y is changed to be the frame: of the auto. Using
information from the model panel, the FOD for E; would be reassigned to

= {carraige, front suspension, rear suspension}

It should be mentioned that there are two-cases that require special consideration. Fir:.st,a
data-element may have no siblings; in this. case, since the element’s consistency can not: be
checked: with its siblings, the only updating evidence that will be received about its label will
be generated by checking the consistency of its children’s labels. The other special case
occurs when an element’s label-element is an only child; in this case, there is only one member
of the element’s FOD. Therefore, the element’s label can not be changed no matter how small
the belief in this label becomes. Note that since the element has only one element in its FOD
(101=1), its bpa 1s a simple support function.
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. 5. 4 Use of the Hlerarchlcal Evndence Accumulatlon Scheme in PSEIKI

The ev1dence accumulatlon scheme 1ntroduced here was onglnally developed to a1d in
the matchlng of data-elements with model-elements by PSEIKI’s labeler KS. In this applica-
tion, the labeler KS uses the scheme to determine the identities of the elements on the data
panel of the blackboard. Their possible identities are the elements on model panel To illus-
trate how the scheme ‘used used by PSEIKI consrder the example in F1g 5. 3 :

FIGURE 5.3 The left panel of this figure shows a simple example of ,model-elements, derived from a graphics

‘source; the right panel shows image-elements from 2D vision data. The figure is used to aid the textual

' explanation of how PSEIKI’s labeler KS uses the evidence accumulation scheme‘ introduced here. Note

. ﬂ,,that the elements in this figure could represent only a small fraction of the data-elements ‘on the
blackboard panels o

~ This ﬁgure shows the edge- level and face-level of the data on the blackboard Model data is |
shown in the left panel; in this frame edges E4 through Ep are grouped into face Fa. The right
panel shows 1mage data, here edges E; through Eg are grouped into face F1 . : "

As was mentloned in the prev1ous sectlon the hierarchical nature of the matchmg task is
~ used to increase the efﬁc1ency of the matching process by restricting the model-elements
| allowed to be members of an image-element’s FOD. For example, in Fig. 5.4, if F1 is matched '
with Fa, then the frame of d1scerment for edges E; through Eg would be '

| 9 {EA, EB>EC,ED} o .
‘ VThese model elements are allowed be members of the FODs for edges E1 - Eg because they':

36_—_'— ) .
Note that in the followmg discussion the elements generated by the graphlcs source have cap1ta1 R
letters as subscrlpts whlle elements derlved from 2D vision data have numeric subscnpts L
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_ are the children of their parent’s model element, face Fa. ‘

The hierarchical nature of the task is exploited further by checking the consisténcy of an
element only with its siblings. In the previous example, the belief E; *s label would beé updated
only with evidence generated by noting its consistency with edges E, - Eg. These edges would
be used to pre'v'ide the updating evidence because they are grouped into face F; alerig with
edge E,. If the image-elements were not grouped hierarchically, then ¢very edge would be
needed to generate updating evidence in E;’s label. The method used to geherat'é updatingv
ev1dence for edges and faces based in their consistency with their 51b11ngs is d1scussed in
chapter 6. :

PSEIKI’s labeler KS also propagates updating bpa’s up the hiera'rehy in the préviouslty
“discussed manner. For example, if edge E;, one of face F;’s children, has label E, and face
F; has label Fp, then the following updating bpa for F; can be created from the updatmg bpa
for E; .

_ m%pdate({FA}) mupdate({EA})

1-F)

rnl;!pdate‘(@‘Fl )= m‘u‘pdate (@E1 )

The bpa s are propagated upwards for the reasons discussed earlier. Compatlbly labeled
siblings should prov1de confirmatory evidence about their parent’s label; conversely, mcompa—
- tibly labeled 51b11ngs should provide disconfirmatory evidence about their parent’s- label. Asin
the general scheme, changing the bpa for an e¢lement on an upper level of the hierarchy will
force all of its descendents to change their FODs. The FODs are changed to satisfy the heuris-
tic Wthh states, for example, that the constituent edges of a mislabeled face also are most
V hkely rmslabeled ' '

5.5. Another Application of the Hierarchical Evidence Accumulation Schemeé
It is also possible to use the hierarchical evidence accumulation scheme developed hete in
domains suitable for blackboard processing other then computer vision. The schéthe is appli-
cable to these domains because of their hierarchical nature. For example, the evrdence accu-
mulation scheme could be used in the domain for which the Hearsay-H [Erml] ‘f’ay80] black—
board system was developed: speech understanding. We will examine how the ev1dence accu-

mulation scheme could be used by a speech understanding system based on Hearsay-II

Speech is represented hierarchically in the Hearsay-II system on the following 6 levels |
phrases, word-sequences, words, syllables, segments and parameters. The lowest-level of the
representation, the parameter level, breaks the speech waveform into five classes: silence,
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sonorant peak, sonorant nonpeak, fricative and flap. The next higher level, the Segment level,
is used to label the elements on the parameter level with phoneme-like labels. These labels are
' generated us1ng statistical pattem recognition techniques and can assume 98 dlfferent values.
Hearsay-II forms the elements on the higher levels of the hierarchy (the syllable wo_rd word-
‘sequence and'phrase levels) by grouping compatible elements from the lower levels.

* To apply the accumulation scheme to Hearsay-II's task, the statistically-based classifier
eduld still be used to generate phoneme-like labels for the parameter elements. 'H_oweVer, ini-
tial belief values for the segments’ labels could be generated from the probabilities produced
by the segment classifier. Updating evidence for the elements’ labels could then based on the
_compatibility between the elements and their siblings, as is done in PSEIKI. For example, on
-the word level of the blackboard, if an adjective is followed by a noun then the two should lend

support to each other. - :

Updating evidence could be passed up the hierarchy as is done in PSEIKI (for example,

evidence that a word is correct would also be evidence that its parent phrase is cOrrect) Like-
wise, changing the label of an element on an upper level of the blackboard would cause all of

its descendents to change their FODs. '

5.6. Future Work

_ In this chapter, a new hierarchical evidence accumulation scheme based dn‘ aﬁstricted
form of Dempster’s rule has been developed and informally has been shown to be computa-
tionally efficient. - This efficiency has been shown to stem directly from a restriction on the
focus of updating evidence; however,v research needs to be performed on how restrictions
" placed on the updating evidence affect an element’s belief function. Future work will investi-
gate how an element’s belief function changes when the various schemes discussed in this
chapter are used for evidence accumulation. This investigation will use techniques developed
in the past to’chnpare competing models for inexact reasoning [MitHar87]. Another topic that
may warrant investigation is the performance of the combination scheme whenthe evidence
‘provided by the sources is not independent. Some previous work addressing this topie 'can be
found in [DubPraSS], [DubPra86], [HunJay87], [Kyb87], [Sme76], and [Yen86].
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CHAPTER 6

GEOMETRIC COMPUTATIONS FOR
INITIAL AND UPDATING BELIEF FUNCTIONS

Chapter 5 showed how ev1dence is iised to generate and update belief in a data- clement S
label; however, no mention was made of how that évidence is generated Th1s chaptér will
address the process of generating evidefice to choose initial labels for elements and to update
the conﬁdence values for those labels. In PSEIKI, evidence about an elément’s label is gen—-
erated by measunng how well the element meets geometric constraints Between itself and
other elements. Thése constraints take two general forms. In1t1ally when matches are being
formed, the constraints miéasure the similarity between an image element and model elements.
After the initial matches are found and a label for the element has been determined, the con-
straints are used to measure how consistent the element’s label is with the labels of its siblings
in the hierarchy. o |

There are many techniques available that PSEIKI can use to determiné if elements are
meeting geometric constraints. Besl describes some general techniques to match image data
and model data at various levels of abstraction (points, curves, surfaces and volumes) using
geometric constraints [Be588] Crowley and Ramparany take a different approach to the pro-
~ cess of generating evidence based on geonietric constraints; they model sensor readlngs as
samples from a multivariate Gaussian distribution and use this assurnption to calculate a "dis- o
tance" from a feature measurement to it§ mean valie [CroRam87]. They then estimate the
belief in an entlty based on the distance measured. No matter what method is used to measure
the degrée to which the elements are meet1ng the geometnc constraints, the constraint meas-
urements must be converted int6 behef functions. The method used i in PSEIKI to convert Taw
confidence values to belief furictions is described in appendlx B of ‘course, the conversion
method descnbed thete is only one possible method that could be used to convert the measure-
ments into belief functlons ' '

_ In this chapter the ‘two components of the eviderice generation process will be ‘explored.
The first section of this‘chapter addresses the generation of initial labels based ‘oh the compati-
bility of data- elements with model-eléments. Generation of the initial labels for elefnents i
the edge- level and face-level is discussed in detail. The ‘second portion ‘of the chapter
addresses the process of generatlng updating evidence for an ‘elenient’s label based on the
compat1b111ty betwéen its label 4nd its siblings’ 1abels,

6.1. Computing Initial Belief Functions for Data Eléments
As described in chapter 5, an irhage-elément’s initial libel and belief function ‘are
obtained by checking constraints between the element itself and elements on the modeél panel
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of the blackboard. Obviously, the constraints used to provide initial evidence need not be the
same for all levels of the hierarchy. The evidence generated by measuring the degree to which ‘
the constraints are met only needs to focus on members of an element’s FOD or their compli-
ments since these are the only subsets of © that can be used by the evidence accumulation

scheme described in chapter 5. The output of the metrics must range from 0.0 to 101 in order -

"to use the technique presented in appendix B to convert the measurements into bpa’ s.

‘ Before any labels may be generated for an element, its FOD must be deterrmned Ifan

- element has a parent, then its FOD is defined to be the children of its parent’s label- element as

“described i 1n chapter 5. For example, consider Fig. 5.3. If edges {Ej, ..., Eg} on the data panel
are grouped into face F; and F; is matched with FA, then the FOD for each edge in the group
would be

@ {Ea, EB, Ec, Ep)

~ Note that s1nce label 1nformatlon of elements on upper levels of the blackboard is used to
determine the FOD for an element’s label, it is advantageous to determine the labels of ele-
ments on the higher levels first, and then work down to elements on lower levels.

If an element has not been placed into a group and, therefore, has no parent then a dif-
ferent tack must be taken to form its FOD. In this case, the extents of the elements are used to
determine thelr FODs. The term extent is taken from the computer graphics arena [FolVan82]
and is deﬁned to be the minimum-size rectangle with edges parallel to the coordmate axisthat
' 'contalns an ObJCCt Examples of the extents for an edge and a face are shown in F1g 6. l

‘ FIGURE 6 1 Thls ﬁgure shows the extent for an arbltrary face and an arbltrary edge The ob_]ects m thls ﬁgure are

drawn usmg solid lmes and their extents are the dashed boxes.

The FOD for an orphan face-element 1ncludes any model element whose extent overlaps its
own. F1g 6.2 demonstrates the process of determining an orphan face’s FOD. In cases (b) and
v (c) of thlS ﬁgure FA would be placed in F;’s- FOD however, in case (a) it would be excluded
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from the FOD because the two extents do not overlap.

(a) (b) | - ©
FIGURE 6.2 This figure demonstrates how extents are used to determine a face element’s FOD. In this figure,

N N Wpuld be placed in F1 ’s FOD in cases (b) and (c) because their extents (shown as dashed boxes)
overlap. - Cohversely, it would be excluded in case (a) because the two extents do not overlap. . -

A similar method is used to determine the FODs for orphan edges. However, the method
must be modified slightly because two edges can be arbitrarily close and not have overlapping
extents (for example, if they are both parallel to the same coordinate axis). To guarantee that
all model edges are included in an edge’s FOD that should be, the extent of the edge is
expanded. Fig. 6.3. shows how the extent of an edge is expanded by adding a border around
the extent. The size of the border around the edge’s extent, Dy,y, is set by the user and reflects
the maximum expected misregistration between the image and the expected scene. Fig. 6.4
demonstrates the process used to determine if a model edge is included in an orphan edge’s
FOD. In panel (a) of this figure, the model edge would not be included in the edge’s FOD
because the extents do not overlap. However, the model edge would be included on the FOD
in cases (b) and (c) because the extents overlap. Note that although the image elements and
the model elements are on different panels of the blackboard, it is possible to speak of dis-
tances and angles between them because they are both projected into the same world coordi-

nate system,
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| @ ®) -
FIGURE 6.3 This ﬁglire demonstrates how a border is added to an edge’s extent. Panel (a) shows the vedge’s
* original extent; panel (b) shows the edge’s expanded extent.

T . SRR -
& :

S (a) - N ) N Ol
FIGURE 6.4 "Ir'hAis'ﬁ'gure demonstrates how extents are used to determine an edge element’s FOD. In this ﬁgure,
EA would be placed in E;’s FOD in cases (b) and (c) because model elements’ extents (shown as
- dashed boxes) overlap with the data edge’s expanded extent. Conversely, it would be excluded in case

(a) because the two extents do not overlap. .
6 L1 Computmg Imtlal Behef Functions for Edge-Elements

When determlmng initial matches between edges PSEIKI’s labeler KS tries to match a
data edge with the edge in its FOD that lies closest to the same line. To find the match partner
of a data edge, the KS measures the degfee of "collinearity" between the edge and all the
model edges in its FOD; it then chooses as the match partner the model edge with which the
data edge is most collinear. The behef of the match made then is set to the degree of collinear-
ity between the two edges.

The following formula is used as the measure of collinearity between an edge detected in
the 1 1mage and an edge from the expected scene (edge E; is the model edge and E; 1s the data
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Dmax - Dperp % Dmax - Dpa.r
Dimax Drnax

ES_collinearity(E;, E;) = X cos.(G)

where Dy, is the distance from the middle of E; to the line defined by Ea, Dpyr is the
misregistration along the direction Ep, D, is the maximum allowable value for either of the
two misregistrations, and 0 is the acute angle between the segments (see Fig. 6.5). The value
for Dy,ax reflects the maximum expected misregistration between the image and the expected
scene and is set equal to the amount that the edges’ extents are expanded when thelr FODs are
determined.

-
Pt

FIGURE 6.5 This figure shows parameneré used in the definition of collinearity.

To determine an edge-element’s label, PSEIKI’s labeler KS COmputeS its bpa over ® by
applymg the ES_collinearity measure to each element in its FOD. For example, if edge Ei’s
~ FOD was determined to be

©= (Ea, Eg, Ec Ep}

then the formula might produce the following ES_collinearity measurements,
ES_collinearity(E,, E;) =043 |
ES_collinearity(Eg, E;) =0.11
ES_collinearity(Ec, E;) =0.73
ES_collinearity(Ep, E{) =0.56

Using» the technique described in appendix B, the ES_collinearity measurements can be con-
verted to the following bpa for E; by normalizing all the values by the total confidence.

mg, (Eo) = ES_collinearity(E4, E1) / total_confidence = 0.24
“mg, (Eg) =ES_collinearity(Eg, E; )/ total_confidence = 0.06
mg, (Ec) = ES_collinearity(Ec, E; ) / total_confidence = 0.40
}r_nEl (ED) = ES_collinearity(Ep, E;)/ tot'al_conﬁdenée =0.30
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| mEl( ) 0 0 for all other subsets of e
where total conﬁdence O 43+0.11 + 0. 73 +0.56=1. 83
With this bpa El s label would be set to Ec with a behef of 0.40:

o Another procedure is used to initialize the bpa if the ES _collinearity measures sum to less
than one. Assume for a moment that the distance cutoff Dpaxs 1 decreased resultrng in the
- followmg ES collmeanty measurements : :

' ‘ES colhnearrty(EA, El) 023 -
_— ES._collinearity(Eg, E)=0.11 =
- ES collinearity(Ec-,El)—'O'l&
" ES._collinearity(Ep, E;) = 0.26

In th1s case, the amount of conﬁdence left uncommrtted by the metnc 0.27, is cons1dered to be

- the amount of ignorance in the 1dent1ty of edge E; and is set to be the probability mass of the |

- "FOD, ©. We set the probability mass in © to the uncommitted confidence because
'ES_compatibility(E;, E;) measures the belief that the edge E;’s identity is E;. Clearly, if the

- edge’s identity cannot be determined to be any of the elements in its FOD with a sufﬁciently ,
high degree of confidence, then-some belief about its 1dent1ty should be left uncommrtted

: Usmg th1s procedure, the followmg bpa for E; 1s constructed. : L

"“?""mEI (EA) ES colllneanty(EA, El) 023
mg, (EB) ES_collinearity(Ep, E1) = 0.11
mE1 (EC) ES collmeanty(Ec, El) 0.13
: ""-mE1 (Ep) =ES colhnearrty(ED, E1)=026 |
o mg, (©) = 10~ total confidence =0.27
v mEl() OOfor all other subsets of ® . |
" where total conﬁdence 0.23+0.11 +0 13+026 0.73

6. l 2 Computmg Imtlal Behef Functlons for Face-Elements

‘ ~ When determmmg initial matches between face-elements, PSEIKI’s labeler KS tries to
maxmnze the percentage of overlap between matched elements. That is, to determine a face-
element’s label, the percent of overlap between it and all elements of its FOD i is measured and
 the model face element with maximum overlap is selected. The percentage of overlap
between two face-elements is defined to be the area of their intersection d1v1ded by the area of -
: the1r umon Th1s not10n is shown in Fig. 6 6 and can be expressed as - '
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Areaintel‘section
Areaunion

ES_overlap(Fioder> F image) =

(a) Union ' v (b) Intersection
FIGURE 6.6.This ﬁgure shows the union and intersection of two faces.

To improve the computational efficiency, the percent of overlap between two faces currently is
approx1mated by the percentage of overlap of their two extents. '

6.2. Computing Updating Belief Functions for Data Elements

After the initial matches are established between elements, the labeler KS provides evi-
dence about the validity of the an element’s label based on the label’s consistency with the
element’_s"sibling's’vlabels_. In general, two metrics are required for updating an element’s label
belief function. The two metrics must provide measures of compatibility and incompatibility -
between the element and its siblings. The compatibility metric is used to provide confirmatory
evidence that the element’s label is correct. Conversely, the incompatibility metric provides
disconfirmatory evidence about the element’s label. Both metrics should range between 0.0
and 1.0 to facilitate conversion of their values to an updating bpa. It is illustrative to examine
how one element can be used to update the belief in another element’s label when both have
the same label. When this process is understood, the case in which two elements have d1f-
ferent labels follows naturally. - -

6.2.1. Computing Updating Belief Functions for Edge-Elements with the Same Label

Collinearity(") and noncollinearity(‘) are the metrics used to determine the
(in)compatibility between two edges with the same label (the collinearity metric is related to
the ES_collinearity measure used to establish initial matches). That is, if E; and E; are edges.
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in the data panel and have the same label, then collinearity(E;, E; ) is the measure of compat1-
bility between them. Collinearity is defined as - - -

~ Dmax — Dperp

colhneanty(El, Ej)= X cos(O)

Dmax

where 6 is the acute angle between the two edges and Dpelp the d15tance from the m1dd1e of E

to the line defining E; (see Fig. 6.5). Dpax, the maximum allowable value for Dpeﬂ,, is & user-
specified heuristic parameter or function. For the computation of updatxng evidence, Dmax is
set in a manner different from that described in Section 6.1.1; its value is set-'equal“to the
" length of E;. Setting Dpy,x in this manner is justified by the rationale that the maximum allow-
able distance between two data-elements with the same label should be a function of the sizes
of the data-elements. ' ' '

L1kew1se the incompatibility between two edges can be rneasured by calculatmg the
noncollmearlty(El, E;) between them Noncolllneanty is defined as '

: noncoll1neanty(Ei,_ Ej) =_F ® X scale(E ) X s1n(9)
' Dmax

where scale(E; ) depends on. the length of El :
Because the (in)compatibility measures are defined heuristically, it usually is advanta-'
geous to limit the amount of evidence that they can provide. This is accomplished by scaling -

the measures by a level-specific scale factor SF (0.0 <SF<1 0) Thus the (1n)compat1b111ty
measures for the edge level can be defined as:

compat1b1l1ty(E1, E i) = colhneanty(El, E; ) X SFeqge
1ncompat1b111ty(El, Ej)= noncolhneanty(El, E;) x SFedge

Once the (1n)compat1b111ty between the two edges has been determined, the technlque_
described in appendix B can be used to convert them into a bpa. For example, assume that E; .
and E2 exhibit maximal beliefs for the same-model edge, E4, and that the labeler KS is using |
E; to update the belief of E;’s label. To do so, the labeler measures the colhneanty and the
noncolhneanty of E1 and E2, If the results of the (1n)compat1b111ty measurements are o

o compatlblhty(Eg,El) 0. 8
§ .1ncompat1b111ty(E2,E1) =0.1

the behef in E2 s label (say, for example, 0. 8) can be used to create an updatmg conﬁdence
- functlon for E1 as follows s . :

The scale factor is prov1ded to limit the amount of d1sconﬁrmatory ev1dence generated by small '
edges which may be due to no1se : g
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Confy_y1 ((Ea)) =ma((Ea)) x compatibility B, E;)
| =0.64
Confz_,l ({—.E A})=mg, ({E5 1) x 1ncompat1b111ty(E2 » E1)
o =0.08

, Smce the conﬁdence function has some belief left uncommitted, E1 s updatlng bpa can be
deﬁned as

Dugsge(E)) = Contys (1Ex))= 0,64
. g ((-EAD = Conty 1 ((~Ea})=0.08
g0 =10 Conty1((Ex)) - Confy 1 ((~E)=028

where the probablhty mass for the FOD was set to the uncommltted portion of behef

- 6.2.2. Computing Updating Belief Functions for Face-Elements with the Same Label

The (in)eompatibility metrics for face-elements are called colocate(-) and noncolocate(-).
These 'two metrics are designed to measure how close two face-elements are to each other by
measuring the distance between their centroids. The compatibility metric between two face-
elements, colocate(F1 , F»), is defined as

Dmax Dcentroid

colocate(F 1> F2) = 5
. max

where D.onioid 1S the distance between the centroids of the two faces. Dy, is the maximum
allowable value for Decentroids Currently, it is set to the length of the diagonal of F;’s extent.
Again, this is done to scale, by an element’s size, the evidence that the metric can provide. To
improve computational efficiency, the centroid of a face currently is approximated by the cen-
- troid of its extent. Similarly, noncolocate(Fy, F,), the face-level 1ncompat1b1hty metric, is
defined as - o : ’

- noncolocate(F;, Fp) = oo
) Dmax

Note that these metrics can be used for range data by extending the definitions to use the
directions of the normal vectors of the two faces. In the three dimensional case, these metncs

could be deﬁned as

_D. ;d
max centroi X cos(6)

COIOC&ITC:;D (F1, Fp) = D
‘ ' 'max
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and
: ' Dcentroid- .
noncolocatesp (Fy, Fy) = ——— X sin(6)
R , Dmax

where the distance parameters are defined as befere and 0 is the acute angle between the two
‘normal vectors. This extension is not needed currently because of the two-dimensional aspect, ',
 of the mobilé robotic environment. '

~ Another metric that can be used to compute the incompatibility between two faces, F; and
F;, on the data panel of the blackboard, ‘is the fraction of overlap between them,
overlap(F;, F;). To understand how this metric is used, consider the following example
Assume that the mcompatxblhty of two faces on the data panel, F; and Fy, is being computed
and that the two are thought to correspond with two non- overlapplng faces on the data panel,
Fj and Fp, respectively. If faces F; and F, overlap by 10%, then the 1ncompat1b111ty between
them can be defined to be :

mcompatlblhty(F 1 F2) overlap(Fl, F;)=0.1

6.2.3. Con'l'fpu,ting Updating Belief Functions for Elements with Different Labe’l’s~

If two elements correspond to different model-elements, a rigid motion transformation is
applied to one of them before the computation of the (in)compatibility metrics. This has the
effect of enforcing relational constraints between the two data-elements. - For example, if edges
E; and E; are thought to correspond to model edges E5 and Eg, respectlvely, then the measure '
of compatlblhty between E; and E3 would be defined as '

compatlblhty(E3, E;) = collinearity(Es, Tg 1—Eg (E1)) X SFeqge

- where TE L —Ey 18 the ngld motion transformatlon that makes model edge Ea collinear with
- model edge Eg.

Fig. 6.7 can be used to aid-in the explanation of how the transformation is defined. First, ‘
for a given pair of non-parallel edges, the vertices on the convergent and the divergent sides of
the edges are distinguished; the convergent side of the two edges is the side on which they
would meet if extended. The transformation Tg,-E, is accomplished by rotating edge Ex
about its conVergent vertex through an angle that makes the edges parallel; subsequently, E, is
- translated so that the two convergent vertices coincide. Performmg this transformatlon forces

model- elements to be compatlble, in other words, . : :

collinearity(Eg, Tg, g, BA))=1.0

Note that the definition of the transformation is not well defined. There are two transfor-
mations that can be used to make the two model edges collinear depending on the direction
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Original Configuration

B v
A ¢ .
0 } After Rotation
o —0 After Translation O —0
E:; EB § EB E:;
@ (®

FIGURE 6.7 This figure shows the rigid motion transformation that makes two model-elements collinear. Panel
(a) shows the transformation created by "unfolding” the two edges. Panel (b) shows the transformation created by ‘
"collapsing” the two edges.

that edge E, is rotated. The first transformation "unfolds" the two model edges by forcing the
angle between them to be 180 degrees; this type of transformation is shown in panel (a) of Fig.
6.7. The other type of transfor_mation “collapses" the two edges onto each other by forcing the
angle between them to be 0 degrees. It is impossible to determine completely from the
geometry of the model edges which transformation will be needed to make two data edges col-
linear; the transformation also depends on the direction that the image is misregistered from.
the expected scene. Therefore, the transformation that should be used to make two edges col-
linear must be determined at runtime. PSEIKTI’s labeler KS computes the collinearity of the
two edges using both transformations and uses the transformation that results in the largest col-
linearity measurement. The same transformation is then used to determine the incompatibility
of the two edges.

Consider, as an example, how the relational constraints are checked by transforming ele-
ments and measuring their (in)compatibility. Assume that edge E3 is being used to provide
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updating evidence about the label of edge E;. Furthermore, assume that edge E; has label E5
and edge E3 has label Eg. To measure the extent to which the geometrical relationship
between E; and E; is the same as the one between E, and Eg, the labeler carries out the fol-
lowmg (1n)compat1b111ty computations: o

- compatibility(E3, E;) = colhneanty(E3, Tg A_)EB (Ey)) % SFedge
1ncompat1b111ty(E3, E))= noncollmeanty(E3, Tg, —>En (El)) X SFedge

where TE A—->E is the transformatlon that makes the model edges Ea and Ep c01nc1dent and

results in the greatest measured collinearity between E; and the transformed version of edge
E;. Clearly, compatibility(Es, E;) = 1.0 implies that the geometrical relationship between E1
and E3 in the data is exactly the same as between E, and Eg in the model (in this case,
incompatibility(E3, E;) =0.0). If the compatibility calculations yielded the following results:

| compatibility(E3 ,E1)=0.7
- 1ncompat1b111ty(E3,E1) 0 4

and the belief i in E3’s label was 0.95 then the followmg confidence function could be deﬁned
by using the (1n)eompat1b111ty measures and the belief in E3’s label. :

Confs_,1 ({Ex}) = mg, ({Ep }) x compatibility(E3, E;)
' =0.7x 0.95 ’ '
=0.665
' Conf_y;((~Ba)) = mg, (g }) x incompatibility(Es, E;)
. =04x095 -
—038

“Since the conﬁdence is overspec1ﬁed the updating bpa can be deﬁned by normalizing with the
total confidence. : : :

| mugdate({EA}) 0.64

'mugc'i;qlte({'ﬁEA })=0.36

The same technlque of checkmg relatmnal constraints can be used on the elements resid-
ing on the face level. That is, the (in)compatibility between face elements can be measured by
applying the (non)colocate metrics to transformed face elements with different labels. - How-
ever, since the metrics used to calculate the (1n)compat1b1hty between face-elements use only
the distance between centroids for their computations, only a translational transformation is
. requlred Formally, the transformatlon Tg, SF, merely translates F;’s centroid until it is coin-

‘c1dent w1th F S centr01d The transformatlon used to measure face-level relational constraints
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is shown in Fig. 6.8.

FIGURE 6.8 This figure shows the rigid motion transformation that makes the centroid face Fa coincident with
the centroid of the transformed version of face Fg. The crosses inside each face indicate the location of
its centroid. '

Note that if the metrics are extended to work in three-space, as previously discussed, then there

should be a rotational component to the transformation that would make the faces’ normal vec-

tors collinear. - - s

) In reality, a single procedure is used for enforcing both the local and the relational con-
straints within a group. Note that if the identity transformation, Tg, g, is used, the

(in)compatibility calculations for relational constrainits teduce to the computations required for

(in)compatibility calculations for mutual consistency in Sections 6.2.1 and 6.2.2.

To‘mavké the concepts introduced in this chapter more concrete, we will show an example
of the how face €lements are labeled and how the belief in those labels are updated. In this
example, assume that the expected scene consists of a single object with four faces, as shown
in the left panel of Fig. 6.9. Also assume that a region-based preprocessor presented PSEIKI
with the o"b’sérvéd scene depicted in the right panel of Fig. 6.9.

The first step in the labeling process consists of determining the frames of discernment
for the faces on the data panel. As previously described, a model element is include in-a face-
level data element’s FOD if the extents of the two elements overlap. For example, if F5 was
~ the only model face whose extent overlapped with face F;’s extent, then F; ’s FOD would con-
sist enﬁrely-_ of (-3'1_:1 = {Fa}. On the other hand, if the extent of face Fg overlapped with the
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| _ ’FIGURE 69 The left and nght panels of tlus ﬁgure show the model and data panels of the blackboard
_respectively. This figure is used in the example in text which descnbes how the labeler KS mmahzes
and updates the belief in the labels of face-level elements ' . ’

~ extents all of the model faces, then 1ts FOD would be ®Fs v {FA, FB , Fc, FD}

_ After the 1n1t1al FODs for the face elements have been determined, the behef functlon of
| 'each element is 1n1t1ahzed by measuring the percentage that the face’s extent overlaps with the

" extent of each model element in its FOD. For example, the following probability masses could
S result from measurmg the percentage of overlap between face Fg and the model faces o

FA :
ES overlap(FA, Fy) = B0ofs _o0s
FiUFa '
5 Y T
ES overlap(FB, F6)—'—'l-m—'=0.1 ,
FiUFB
R ES overlap(Fc, F6)—-—1—O—C=O.1~
] FIUFC RS
B . Fi~Fp - o
ES overlap(FD, F6) ——lm— —0.3'5 .

The followmg probablllty masses are obtamed by usmg the process descnbed in appendlx B.
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mg, {Fa } =ES_overlap(Fa, Fg) = 0.05
mg, {Fg } = ES_overlap(Fp, F )“ =0.1
mg, {Fc} = ES_overlap(Fc, Fg)=0.1
mg, {Fp } = ES_overlap(Fp, Fg) =0.35
my, {©,} = 1.0~ 0.05-0.1-0.1-0.35=0.4
| | mg, (') = 0.0 for all other subsets of O,

Thus face Fg would be assigned label Fp with belief 0.35. The same process is used to initial-
ize the belief functions of the other face elements on the data panel. Assume for the example -
that the other faces received the following labels.

Face | Label | Belief |

F, Fy | 030
F, | Ey | 042
F, | Fg | 072
" Fa Fa 0.33
Fs ‘ Fe 0.67
Fs Fp 0.26
F, | Fp | 031
Fg Fp 0.20

After each face’s belief function has been initialized, the grouper KS is allowed to group
compatible faces into objects. If we assume that one of the groups formed by the grouper KS
consists of faces Fy, ..., Fy, then these faces can be used to update the belief in each other’s
labels. For our example, we will concentrate on the process used to update the belief in the
label of face F¢. For each face .in the group, excluding face Fg¢, we measure the
- (in)compatibility of the face with face Fg using the colocate() and noncolocate() metrics and
appropriate transformations. For example, since Fg and F; have the same label, the updating
evidence provided by measuring their consistency is computed as follows (assuming that
SFiace 1s equal to 1.0)

Mupine ((Fp}) = m, ((Fp)) x colocate(F7, Fe) x SFree

=031x04x1.0
=0.13
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| mugdate({ﬂFD}) mF7({FD}) xnoncolocate(F7, Fo) SFface

-'—031><06x10
—018

 Mupane({OF,))=1.0-0.13-0.18.
=0.69

However smce the other faces in the group -do not have the label Fp, face Fe must be
transformed before the metrics are applied. For example, the updating evidence for face F5 s
label generated by checkrng its consrstency with the label of face F5 can be computed as

mupdate({FD }) = mg, ({Fp}) X colocate(Fs, TFD—>FC (Fs)) X SFace

. —0.67x08x1.0
=053

mu;s)date({_‘FD}) mFs({FD}) XnOHCOlOC&te(Fs, TF,_-,—)FC (Fs)) x SFface N

=0.67 x 0. 2x1.0
0.14
+ ypdare({OF, 1) = 1.0 —,0.53»+'0.14
; Updatmg evrdence can be generated by checkmg face Fg’s cons1stency w1th the other faces in
the group in a similar manner. After the all of the faces in the group have been used to provide

evidence on the validity of face Fg’s label, the resulting updatmg bpa i is comblned with F5 s
- bpa using Barnett’s formulas to yield a new belief functron : '

Note that, in this example, we have not addressed the effects other KSs would have onthe
processing. For example, the merger KS would most likely merge the following groups of
faces at some point in the processmg because the elements in each group are adjacent and have_ :

" the same label.

{F1, Fz, F4}—>F9
- {Fs, F7)—Fio |

The compos1te faces formed by the merger would then be labeled and updated in the manner

described above. In the next chapter, we will describe the methods used by the sphtter merger. |

and grouper KSs to create and modrfy groups
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CHAPTER 7

; EVIDENTIAL ASPECTS OF , o
THE GROUPER SPLITTER AND MERGER KNOWLEDGE SOURCES

PSEIKI s low-level preprocessors produce data only for the lower levels of the black-
board; thus, the system needs to generate data elements on higher levels. Furthermore, data
presented to PSEIKI by its low-level preprocessors is often far from optimal. Many times,
image structures that should remain separate are merged into a single structure (i.e. the image
is undersegmented) or a structure is incorrectly broken into a number of smaller ones (i.e. the
image is oversegmented). In fact, it is common for a single image to be undersegmented in
‘one section and oversegmented in another. The grouper, splitter and merger KSs are designed
to compensate for these deficiencies by building objects on upper levels of the blackboard
from elements on lower levels and by correcting segmentation errors.

It is the grouper KS’s task to create data—elements on the upper levels of the hierarchy by
forming groups of elements on lower levels. Many previous systems that performed element
grouping used perceptual organization principles descended from Gestalt Theory [Koh47].
Gestalt theery 1s yé_psychological tenet which states that perception occurs as a wholepro_'t':ess
not the combination of a number of more elemental processes. One of the main products of
the Gestalt school was a catalog of a large number of phenomena that produced perceptual
grouping.v Fig. 7.1 shows some of the grouping phenomena categorized by the Gestaltists.
Although this initial thrust into perceptual organization offers little help to computer vision
systems, some vision systems are able to discover perceptual groups based on the related prin-
ciples of "transformations" [WitTen83a], [WitTen83b] and "interestingness" [LawMcC87].
The use of perceptual grouping in computer vision systems is also dlscussed in [Mar82]
[Low85]. .

The splitter and merger KSs are designed to correct grouping errors produced by the =
low-level preprocessors, by the grouper KS and by each other. The merger KS tries to correct
oversegmented images by merging elements on one level of the blackboard into a single group
on the same level. The splitter KS’s task is to break an element into smaller elements all of
which reside on the same level of the blackboard as the original element. This splitting is done
to correct an undersegmented image. These two KSs use many of the classic splitting and
merging techniques described in [BriFen70], [HorPav74], [Zuc76], and partlcularly those -
expressed as rules in [NazLev84].

7.1. The Grouper Knowledge Source

The grouper KS builds data elements on the upper levels of the hierarchy from d'at'a_el‘e-. o

ments deposited by the low-level vision system. It does this in a data-driven manner by
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FIGURE 7. I These are some examples of the groupmg phenomena cataloged by the Gestaltlsts

grouping . obJects on. the lower levels of the h1erarchy into progress1ve1y higher levels For
~ example, if an edge- -based preprocessor is used to generate input data, the grouper ﬁrst groups

B : edge-elements mto faces and then groups the faces mto objects, and so on.

F1g 72 shows a simple example of how the grouping is performed panel (a) shows the
E Aexpected scene, panel (b) shows the edges presented to PSEIKI by an edge-based preprocessor,
and panel (c) shows the initial labels for those edges The grouper KS is triggered by the
monitor when the monitor detects an element on the data panel that has no parents. These
‘orphan elements can have -a number of.origins: The low-level preprocessor deposrts a large -
* number of orphan élements onto the data panel at the begmnlng of processing; in fact, all

E edge-level elements deposited by an edge-based preprocessor are orphans, as are all face-level

elements .deposited by a region-based preproce_ssOr. .Any data element created by the grouper

KS, splitter KS or merger KS also is an orphan initially. When the KS is triggered by the mon-

itor, a knowledge source activation record (KSAR) is built indicating that the orphan element
The labels shown in Fig. 7.2 are intended only for the purpose of explanation here. In actual -

o practice, even for simple imagery, the initial label map may be much more: chaotic, dependlng
‘ upon the extent o Wthh an 1mage is degraded by noxse and other arufacts : L
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FIGURE 7 2 This figure shows an expected scene in panel (a), the edges produced by an edge-based preprocessor
o in panel (b) and their initial labels in panel (c) - : :

should be used as a seed-element of a group. For example, if we assume that all of the edges.

‘shown in F1g 7. 2(b) are orphans deposited on the data panel by an edge-based preprocessor at
the start of processing, then a KSAR is built for each edge indicating that it should be grouped
After the monitor triggers the KS by building the KSAR, it is up to the scheduler to determme
when the KS w1ll fire and form the specified group :

The scheduler fires the grouper KS when a new data element ‘with a part10ular label is
needed. “ At this point, the scheduler determines all of the grouper KSARs whose seed-
elements- can be a child of an element with the desired label and ranks them based on the ele-
‘ments’ belief, size and strength. For example, in Fig. 7.2, at some point in the course of black-
board processing; a new data element with label Fp, may be desired. To form an element with
this label, the scheduler would rank the grouper KSARs for edge elements with labels Ey, En;,
Ep and Ep, because these are the only elements that could be the children of a face with 1aibel
Fp. The scheduler then chooses the highest ranked KSAR and fires the grouper KS. When the
- grouper KS is fired, it creates a parent-element one level up on the blackboard from the seed-
element with the seed-element as the parent’s only child. It then determines the set of all ele-
- ments that could possibly be the siblings of the seed-element, based on their labels “In the
- example, suppose that edge Eq9 was chosen as the seed-element, then the only edges that could
possibly become its siblings are edges Ejq, E1g and Ejp because these are the only edges
whose model elements are siblings of edge Eiq’s model element. After the set of candidate
~ siblings have been determined, the (in)compatibility metrics discussed in chapter 6 are used to
- determine which cand1dates get grouped with the seed element. A candidate element will be
grouped with the seed-element only if the compatibility metric yields a value above a user- -
specified _thmshold. For example, if the compatibility threshold has been set to 0.5 and the
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| followmg compaublhty measurements were made '
coll1near1ty(E16, TEM_,EO (Ey9)) = 0 65 -
colhneanty(Elg, TEM_QE0 (Elg)) O 55

» coll1near1ty(E22, Tg,-E, (E19)) 043 :

| then the grouper could construct the followmg initial group of data edges B
F1 = {E16, E18, E19} Sl

' The same process can also be used to find the followmg initial groups of edges -
Fp= {E3; By, Es, Ei0, En}
- F= {E1, Ey, Eug, E1s, Exo, Ep1, Ens, E24}
' F4 = {Es, Es, Er, Eo, Enn}

Note that the blackboard monitor would tngger the grouper KS as soon as these face elements
were created because each of them would be an orphan 1n1t1ally Also note that the grouper
KS may 1ncorrect1y group some edges into the face. For example, small edges generated by
- noise may be accidentally included in a group. Also, the grouper may incorrectly include
“competing elements into a group; two elements are said to compete if they cannot both be
| present in a consistantly labeled scene interpretation. For example, in F3, edges E; and Eo4
~ compete with each other. Obviously, the grouper KS should include only one of these compet-
ing edges in any group. It is the job of the splitter KS to remove the incorrectly grouped edges
from a face. The splitter KS also has the duty to generate multiple faces from a face contain-
ing compeung edges, the faces that the splitter generates retain only one competing edge at a
time. The actlons performed by the splitter KS will be explained in greater detail later 1in the

o chapter

p The grouper KS groups faces into obJects usmg a s1m11ar procedure, however the grouper'
uses the colocate metric introduced i in the last chapter to determine if a candidate face should
be grouped with the seed face. We will use the face elements created by the grouper in the last -
example to’ explaln the processing used by the. grouper KS to group face-elements into Ob]CCtS :
Assume that labeler KS ass1gned the followmg labels and behef values to the above faces

Face , 'L‘abell ~ Belief :
“F | Fp | 040
"F3 | Fc | 0.72
T»F4‘: | Fg '0.53“ o

Ifa data element on the object level w1th label O, which is composed of faces FA and FB , 18
des1red at some pomt in the blackboard processmg, then the scheduler would rank the
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approprlate KSARs based on their face’s size arid belief values. The scheduler would ther fire
 the grouper KS with the highest ranked KSAR. For this example, assumée that the scheduler
fired the grouper w1th F4 as the seed-clement. After the KS is fired, the grouping process
procéeds as follows First, the grouper creates an object level data-element and ass1gns the
seed-element as. its only child. It then collects a set of candidate sibling faces based on the

their labels: In this example, face F, would be the only candidate face because it is the only
face with one of the labels, F5 or Fg. If the compatibility threshold was set to 0.5 a.nd the
grouper measured the following compatibility measurement '

vcolocate(Fz', Te,—E, (F4)) = 0.69
then F2 would be grouped with F, to create the following face
O, = {F3, F4)

7. 2 The Merger Knowledge Source

The merger KS also performs a grouping process; however this process does not bu11d
elements on higher levels of the hierarchy from elements on lower levels, as does the grouper’ '
KS. Instead, it combines multiple elements on the blackboard into a single, larger element on
the same level as the original eléments. It combines elements if it is believed that they all can :
be represented by a single element on the model panel. This combining process can be used to
correct groupmg errors produced by the low-level préprocessor and the grouper KS. For
example the low-level processor sometimes produces artifacts that break edges into smaller
line segments. The merger KS tries to correct this error by j joining broken line segments with
the same label if they are close together and highly collinear. The merger KS also combines,
into a single edge, highly collinear edges that are joined at a degree-two vertex and that have
the same label. On the face level, the merger KS will combine two faces with the same label if

they are adjacent and grouped in the same object. It will also combiné two faces if they have
the same label and one completely surrounds the other. Some of the merger KS’s actions are
shown in Fig 7.3.

The first step in the merging procedure consists of determmmg if the elements under con-
51derat10n really need to be merged. For example, it is not feasible for the monitor to check the
collinearity of two edges before it builds KSARs to merge them; thus, the merger KS needs to
determine if two edges are sufficiently collinear before it merges them. The KS will not merge
two edges if the collinearity metric described in chapter 6 yields a value below a user set thres-
hold when apphed to the two edges in question. This threshold is usually sét to a relatively
high value (above 0.75) to keep the KS from merging two edges that should remain separate.
For two faces to be merged, it is sufficient that they have the same label, be grouped together
and be adjacent. Two faces are said to be adjacent if they contain at least one edge in com-
mon. .
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B FIGURE 7 3 Thts ﬁgure shows the actions’ performed by the merger KS Panel @ shows how two close, |

' colhnear edges can be _joined together. Panel (b) demonstrates how two colhnear edges can be merged
“into a smgle edge. Finally, panel (c) shows how two ad_]acent face elements w1th the same label can be
- merged if they are grouped together ‘

Once it has been decided that the elements should be merged a level-spemﬁc procedure )
is used to merge them. When two edges are to be merged, the KS deposits a new edge element
on the blackboard with one vertex from each of the two old edges; these vertices are chosen to
give. the new edge maximal length. . When two faces are to be merged, the merger depos1ts a
- new face element on the blackboard whose list of children is the exclusive-or of the lists of the
two old edges That is, an edge is include in the new face’s list of children only if it is the
child of only one of the old faces. Forming the new face’s list of children in this manner

prevents the edges that form the border of the two old faces from being included in the new

- face’s list of children. The new element’s parameters are also initialized when it is deposited
on the blackboard. For example, the strength of a new edge is set to the welghted average of
. the strengths of the two old-edges; likewise, the grey-value of a new face is set to the weighted

S average of the grey-values of the two old faces. After the new element is created by the

merger, any references to both of the old elements is replaced by a reference to the new ele-
~ ment.. Finally, if the two old elements were always referenced as a pair, a flag is set in the ori-
~ ginal objects indicating that they should be ignored in. further processmg, this flag is used
because the ‘newly created element superseeds the elements from which it was created.

7.3. The Splrtter Knowledge Source ’

| The sphtter KS also tries to correct the groupmg of 1ncorrectly grouped elements How-
ever, it performs the oppos1te action of the merger KS; its task is to split data-elements into
smaller elements ifitis beheved that they were 1ncorrectly grouped

v The KS w1ll spl1t an element if it is thought that the element corresponds w1th more than
~-one element on the model panel. Itis poss1ble to determine that an element should be split by
v ,exammmg 1ts bel1ef funct1on an element that corresponds to more than one model element'



72-  andress/kak

will have high belief values that are nearly equal for two or more members of its FOD For
example, if two edges are configured as shown in Fig. 7.4 (a), and the nearly vertical one is
believed to correspond with two model-elements because two of the members in its FOD have
high belief, then the splitter KS will split it near the vertex of the other edge. In this example,
the preprocessor did not form a junction between the upper and lower halves of the edge
because it failed to detect the edge’s intersection with another edge. On the face level, the
splitter KS severs a "peninsula” from a face-element if the two edges on e1ther side of the pen-
insula have. the same label. This is shown in F1g 7.4 (b).

split

(2) | - (b) |
FIGURE '7.4‘VThis ﬁgure shows the actions performed by the splitter KS. Panel (a) shows how a’nv .edge can be
- splitto jOiri it-with another edge. Panel (b) demonstrates how a "peninsula" can be split from a face.

The splittef KS also corrects elements that were incorrectly formed by the grouper KS.
- For example, one or more of an element’s children may not belong with the rest of the group.

These elements are relatively easy to spot because the belief in their labels is usually suspi-
ciously low when compared to the belief in their siblings’ labels. Once the incorectly grouped
children are discovered, it is an easy task for the splitter KS to duplicate the old parent element
with the exception that the incorrectly grouped children are omitted from the duplicate’s list of
children. The original element is then flagged to be ignored.

It is also common for an initial grouping to be contaminated by competing children. For
example, when grouping edges into a face, the grouper may include multiple renditions of the
same edge in the same group. If the gray level variations corresponding to a scene edge do not
exhibit a monotonic variation in directions perpendicular to the edge, the edge may be detected
as multiple parallel edges in close proximity to one another. Edges 1 and 24 in Fig. 7.2 could
be an example of such an artifact. An important job assigned to the splitter is the detection of
such parallel edges. It does this by measuring the angle and the extent of the overlap between
- two grouped elements with the same label. The overlap is measured by projecting the shorter
of the edges onto the longer one. When such competing parallel edges are found, multiple
groupings are formed from an initial group by retaining only one competing parallel edge ata
time. ' :
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In the above example edge 24 w111 compete w1th edges 1 and 2 in F3, the s same w111 be
the case with the edges 6 and 9 in F4 So, the above 1n1t1al groups lead to the followmg
groups: B ' ' : .

) " Fi = (Eqs, Eis, Eig)
. 'Fz = {E3, Es, Es, Eio» En} |
F3 = {E1, Ey, Ey, Ess, Exo, Ea, E23}
o }-Ff‘3_ = {E14, Eis, Ego, Ez1, E3, E)
 F4=({Es,E7, By, Epp}
F 4= {Es, Eg, E, E12}

Note that the sphtter KS and the merger KS do not delete elements that they beheve to be
incorrectly grouped; instead they create new elements and set a flag in the old element indicat-
ing that the element is no longer in focus. The old elements are not destroyed so that the KSs
may check to see if a newly created element is identical to an older element that is no longer in
focus. ‘The new element is deleted immediately if it is determined to be identical to such an
element. The, older elements are also allowed to remain on the blackboard because, at some
later time in the‘processing, it may be decided that they were correct and should be used.
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‘CHAPTER 8
BLACKBOARD IMPLEMENTATION IN OPS83

»'Philosophi¢a11y, all blackboard (BB) systems are alike in that they all contain three main
components. First, they all contain a collection of knowledge sources (KSs) into which ‘the
domain knowledge is partitioned; that is, each KS is able to solve a small portion-of the ‘total
task. Furthermore, blackboard systems are so named because each contains a blackboard, a
hierarchical database containing the data for the specific problem on which work is being done.
To keep the KSs independent, communication between them is allowed to take place only
through the blackboard database. Finally, each of the systems contains.a control mechanism,
commonly called the scheduler, that can respond opportunistically to data residing on the
blackboard in order to optimize control flow. o :

Although a11 blackboard systems are conceptually similar, 1mplementat10n detalls affect
control strategles KS granularity, etc. This chapter will address PSEIKI’s 1mplemcntat10n in
OPS83 and the effects of the rule-based programming language on design decisions. The
chapter w111 show the working memory data structures used for representing the data- Velem_‘ents E
and the knowledge source activation records . Subsequently, the current implementation of
the scheduler and the monitor will be described. Finally, KS implementation will be
described; the operation of the grouper KS will be described in detail and the operatlon of the
labeler KS, the sphtter KS and the merger KS will also be discussed. '

8.1. OPS83 Data Structures Used By PSEIKI

~ PSEIKI uses the ‘working memory of OPS83 for the BB data structure; each working -
memory element (WME) corresponding to the BB data structure describes a data-element at
some level of the BB. In addition to being a host for the BB data structure, the working
memory also stores the knowledge source activation records (KSARs). A KSAR is created by
the BB monitor when the trigger conditions for a KS are satisfied by some data-element. (It is
‘the job of the monitor to keep track of the data on the BB and to constantly check whether a
newly created data-element satisfies the triggering conditions for a KS.) KSARs also can be
created by KSs, allowing KSs to trigger other KSs explicitly. Each KSAR holds the 1dent1ty_-
~ of the data-element that meets the triggering conditions of a KS, the relevant KS, and other
pertinent information such as the cycle during which the KSAR was created. This information

If not already familiar with terms like "working memory," "production memory," etc. the reader
is referred to [BroFar85] for a nice exposition on the architecture of a production system. The
OPS83 used for PSEIKI is a direct descendent of the OPS5 system described in [BroFar85]. Much
more so than OPS5, OPS83 allows functions and procedures to co-exist with rules and working
memory elements. .



| '.1nd1cates to the KS the obJect on wh1ch work should be performed and a1ds the scheduler in

E . choosmg a KSAR to act1vate

8. 1 1 Workmg Memory Elements for Representmg Data

A s1ng1e WME class is used to store all data-elements, regardless of the BB level at
which the data—element resides. In other words, the same WME class is used for: edges, faces,.

obJects and scenes. The d1st1nctrons between different types of data-elements are introduced

by using appropriate values for the level attribute. Using the same WME class allows genenc .
funct10ns to be appl1ed to elements from all of the data levels. o

Flg 8.1 shows the definition of the WME class for : representlng data Most of the WME f
~ fields are self-explanatory The element s id number is a unique 1dent1ﬁer used to keep track
of individual data-elements; data-elements are always referenced via their:id numbers. The
panel and level ﬁelds spec1fy the. element s location on the BB. -The type ﬁeld is used to
specrfy the type of data from wh1ch the element is derlved the values that it can assume are.
two_d, three d and model ) ' '

“The next two’ ﬁelds spec1fy the sub-elements from wh1ch an element is bu11t The Chll-

' ‘dren field i 1s used to store the list of id numbers of the element’ s chrldren The madeof field

has a. number of uses. If the element is on the data panel and was built by the" sphtter KS. or
- merger KS, then this field stores the id number of the element(s) that were spllt or. merged to

- -form this element.. However, if the element is on the model panel, then this field is used to

- store the id numbers of all data elements whose labels are equal to this element s 1d number

The next few ﬁelds are parameters of the data-element The value ﬁeld is a genenc attrr-
bute in- wh1ch a level speclﬁc value is stored. For example, it is used to speclfy the strength of '
an edge or the average gray level of aface. The size: parameter is also generrc this parameter
is used to spec1fy the degree, length area or volume if an element is a vertex, edge face, or an
object, respectrvely 'The near and far paramcters are used to specrfy the two' d1agona1 ver-
t10es deﬁnmg the extent of the element o SRR

The focus ﬁeld has two functrons If the element is on the data panel then thrs field is
used as a flag 1nd1cat1ng if the element isin focus, a zero value indicates that the element is-no
- longer in- focus and:should not be used in further processmg If the element is on the model
panel, then this ﬁeld is used to specify the desired number of. competing data elements that
have th1s element as the1r model. For example, if the value of this field was set to three foran
" element on the model panel then there should be: at least three 1n focus elements on the data

panel that have thrs element as the1r model ' |

o The next two parameters spec1fy the data-element S locat1on ifitisa vertex The rowcol
Lo ,attnbute mdrcates a vertex’s coordrnate on the i 1mage plane if i it was obta1ned from 2D data
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type Data=element (

)i

id: integer; --unique id number

panel: integer; -- panel in the BB

type: symbol; -- type of panel (two_d, three_d, model)
level: ~ symbol; --level in the panel (vertex, edge, ...)

'SOUICC:‘ symbol; -- source of the element (original, synthetic)

-- Parameters defining the composition of element

- children: list; -- children of element

madeof: list; -- list of elements that were split
- -- or merged to create this element

-- General Parameters

value: ' integer; -- edge strength, face grey-value, etc.
size: integer; -- edge length, area of face, etc.
near: vector;  -- coordinate of extent

~far: vector;  -- coordinate of extent
focus: integer; -- flag set if element is in focus

-- Parameters valid only for vertex-elements | .
rowcol: ivector; -- (vertex) image coordinate of vertex

~ coord: vector;  -- (vertex) world coordinate of vertex

~ -= Parameters used for uncertainty management

"f',ramc; list; -- frame of discernment

bpa: bpas; -- basic probability assignment
positive: real; -- updating bpa belief
negative: real; -- updating bpa disbelief

label: integer; -- label of element

belief: real; -- belief in label

FIGURE 8.1 This is the WME class definition for data-clements.

Likewise, the coord attribute specifies the vertex’s location in the 3D world coordinate frame. '

The remaining fields shown in Fig. 8.1 hold the uncertainty information about a data-
element and are used by the labeler KS. The frame attribute holds the list containing the
element’s frame of discernment and the bpa attribute holds the element’s basic probability
assignment. ‘An element’s updating bpa is stored in the positive and negative attx‘i.bufés; these
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values 1ndlcatc thc new belief and disbelief in thc element’s label. Fmally, the clement s label
and belief in that label are indicated by the next two attnbutes

'8 1.2, The WME Class for Representmg KSARs

~ F1g 8. 2 shows the WME class definition for representing a KSAR The 1d field is used to ,

keep track of the KSARs while the state of any KSAR is determined by its status field. The
KS and actlon fields of the KSAR specify what action is to be performed on its focal-element.
The object field is used to specify the id number of the KSAR’s focal element; the level and
~ panel fields specify the location of the focal element on the BB. The using field is used to
specify the secondary focal element; for example when the merger KS is to merge two ele-
ments, the id number of the second element is stored in this field. PSEIKI’s scheduler uses the
~ priority field when ranking KSARs for ﬁring, only the KSARs for the splitter KS and merger
KS have non-zero priority values for reasons to be ‘discussed later in this chapter. ‘The
trigger_cycle, the tngger KSAR and the active_cycle fields are used as a log of the BB
activities; thcy are used to record the BB cycle that-a KSAR was created, the KSAR that was
active when the this KSAR was created and the BB cycle on which this‘_ KSAR was run,
respectively.’ ‘Th‘is information has proven useful for debugging the BB.

- type KSAR=element (

S (8 o integer;’  —-KSARid #
.. status: ~symbol;  -- KSAR status
| K8 sy'mbdl;'» - Knowlcdgc source being tnggered S
-action: . symbol; - --action KS is to pcrform SRS
e i,‘obj‘ccti ‘ ’ integer; - Objcct bemg focused on
using: . integer; - Secondary object being focused on -
level: ~symbol; - -- Level being focused on
.. panel: integer;  -- Panel Being focused on
, ‘;priority:-v . ! reél;  -KSAR priority.
- . trigger_cyclc;» integer; -- ¢ycle KSAR 'was formed _
- trigger KSAR: integer; = -- KSAR which was active whcn '
e S -~ this one was triggered
- active_cycle: Jinteger; - cycle dunng wh1ch KSAR was actlvc

_ FIGURE 8.2 This is the WME class definition for KSAR.
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" The KSAR originally is created with its status marked as pending. This means that the
KS has been triggered but has not yet been run. When the scheduler decides to fire on a
KSAR, it mark’s,the KSAR’s status to active. At this point, the KS’s precondition and poison-
 ing productions are allowed to fire; it is their job to mark the KSAR’s status to running if the
preconditions are met or poisoned if they aren’t. If the KSAR is determined to be poisoned,
the KS’s body productlons are not allowed to fire and control is passed back to the scheduler.
If the status has been set to running, the KS’s ‘body productions are allowed to fire. After the
KS has accomphshed its goal it marks the KSAR’s status field to ﬁmshed and returns control
to the scheduler ' o

8.2. Schednler and Monitor Operaticn '

8.2.1. Scheduler Operation

The scheduler is the heart of any BB. It is the scheduler’s job to choose what actiori to -
'perform at any cycle of the BB operation. It carries out this job by selecting one of the pend- ‘
ing KSARs and activating the corresponding KS. PSEIKI’s scheduler, which consists of a set
of metarules, Tuns by ‘default; that is, it runs: automat10ally when no KSs are active. In1t1ally, :
when data is depos1ted on the BB, the scheduler is invoked to get the entire process started

PSEIKI s scheduhng strategy can be broken into three phases ‘The ﬁrst phase is called :
the initialization phase. In this phase, the labeler KS is used to assign labels to the elements |
deposited on the data panel by the low-level processor; the grouper KS and labeler KS are also
used to create and assign labels to elements on the upper levels of the data panel, respectively.
In the second phase called the updating phase, the belief in the labels of the data elements are
updated usmg the technlques presented in chapters 5 and 6. The third- phase is called the
incorporation phase; in this phase, the evidence ‘passed up the hierarchy by the low-level ele-
ments is 1ncorporated into the upper-level elements’ belief functions. | ’

_ Although scheduling algorithm follows this three phase pattern in general the actions
usually des1gnated to one phase may be performed in another phase if the need arises. For
example, during the updating phase, if all of the elements with a particular label have their
label changed, then the grouper KS will be fired to try find another element that can be given
the desired label. ‘The orderly flow of BB processing may also be mterrupted by scheduling
the sphtter KS or the merger KS because these two KSs take scheduling presidence oyer the
grouper KS and the labeler KS. That is, the scheduler will fire the merger KS or the sphtter

KS as soon as one of their KSARs appears indicating that two elements should be spht or

‘merged. It seems teasonable to fire these two KSs first because it is their duty to correct mis-
formed groups "If an element is composed of a misformed group, then any processing.
resources spent labeling that element or including that element in a group will most likely be



_ wastedt Thus, it makes sense that we try to correct thesernisformed groups as soon as prSl—'_ .
o Twoactions are performed during the ibnitialization’ phase of BB processing: data ele-
ments of the lower levels of the BB are grouped into elements on the upper levels by the
grouper KS and the labels and belief functions of unlabeled data elements are 1n1t1ahzed by the

‘labeler KS.- Backward chammg is used extensively to.guide KSAR scheduling dunng the ini- |

tlahzatlon phase Scheduling is started with the goal of finding a prespecified number of com-
. peting scene elements. - The number of scene elements that the scheduler tries to find is
specified by the value of focus field of the only scene-level model element; the value of this

field is set by the user at the start of processing. To find the competing scene elements, the
'scheduler creates the sub-goal of finding a prespecified number of objects in the scene in order

to group them into the desired elements; once again, the number of competing obJect-level ele- .
ments is specified by the focus field of the appropriate model element. The rule shown in Fig.

. 8.3 is used to cham down the expected scene creatmg goals and sub- goals to ﬁnd elements and

their. ch11dren '

: e RULE T schedule init_ chlldren , :
e IF ﬁ We are trymg to ﬁnd an elements on a label that has no-

- :data-elementsonit . LT
;-_THEN . : create sub-goals (contexts) to find the element S klds _ ppE e
..s»u-rule schedule init ch11dren{ RE

L &contxt (Context current=sched_: 1n1t element), .

g &model (Data id=&contxt.object); f : : _
Lo (KSAR KS—label action=initialize; level-&model level),
, &kld (Data in hst(@ id, &model. chlldren)), ' : -
> : . ' » v
o "'rna.ke (Context current—sched init, element Ob]CCt =&kid.id);
- _FIGURE 8 3 Thls is the rule that chams down the model hlerarchy creatmg goals to ﬁnd the chlldren of a model _

element

ThlS rule works as follows The ﬁrst two CEs are used to match the model element for the _
“current goal. The third CE checks to see if there is an element on the same level as the current :
‘goal element; the rule w1ll not fire if there is such an element. If there is data element on the
- current level, then the labeler KS should be ﬁred to label it and 'this rule need not fire. When
. the rule ﬁres, the RHS merely creates a context element (sub goal) to ﬁnd the ch11d :
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Sub-goals are created to find the elements on successively lower levels of the BB until a
level is reached that contains the data elements deposited by the preprocessor. If an edge-
based preprocessor was used to generate PSEIKI’s input data, then the edge level will be the
highest level with data elements on it; if a region-based preprocessor was used, then the face
level will be the highest level with data elements on it. When a sub-goal is created to find an
element on a level that contains data elements, the rule shown in Fig. 8.4 becomes enabled and
fires the labeler KS to initialize the labels of the elements on this level. This rule ﬁres once for
every data element on that level of the BB.

--RULE  : schedule_init_label
-- IF . :Theis a goal to find a model element that lies on a level
- :that contains data elements
--THEN . : Fire the labeler KS to initialize the label
 rule schedule_init_label {
- &contxt (Context current=sched_init_element);
&model ~ (Data id=&contxt.object);
&ksar(KSAR level=&model.level;
o KS=label; action=initialize; status=pending);
: ~  (KSAR priority > PRIORITY_THRESHOLD); '
> : » 7 v
modify &ksar(status=active; active_cycle=&current_cycle);
S :
FIGURE 8.4 This rule is used to schedule the labeler KS to initialize the labels of data elements.

The LHS of this rule is very similar to the LHS of the rule in Fig. 8.3; the main difference

between the two is found in the third CE. In this rule, the third CE is used to match a labeler

KSAR; in the previous rule, the third CE was used to prevent the rule from firing if it matehed .
a labeler KSAR. The last CE is used to prevent the rule from firing if there is a pending KSAR

for the splitter KS or the merger KS; we will describe the scheduling algorithm used to fire

these two KSs later. This rule’s only action is to fire the labeler KS on the element specified

by the matched KSAR. Note that only the highest level elements deposited onto the data panel

are labeled at this time (. g. faces for a region-based preprocessor); the labels for elements on

the levels lower than this are not initialized until the updatlng phase of BB processmg

After all of the labels for these elements have been assigned, the grouper is scheduled to -
group them into elements on higher levels of the BB. As soon as the grouper KS forms an ele-
ment, the labeler is fired to label it. The grouper is not allowed to be fired to form a new ele-
ment on the data panel until each child of that element has the prespecified number of compet-
‘ing elements (as specified by their focus fields). The rule shown in Fig. 8.3 is used to schedule



o ‘ the labeler KS and one hke itis used to deterrmne that the grouper KS should be ﬁred After it

has been determmed that the grouper should be fired, a number of rules fire that determme the ,
. child element that will be used asits seed-element These rules rank the grouper KSARs based
. on'the product of the element s size and the behef in its label One of the rules used to rank

- ’the grouper KSARs is shown in F1g 8. 5

s

' :j " RULE ﬁnd_gfoup candrdate ' AT
"« IF T ¢ there is a context to ﬁnd a cand1date for the seed element ’ -

| ':w1thapart1cularlabel ‘ P
:: Choose, as the candldate, the element thh the largest product of

| -- - _:".s1ze and behef

h rule find. _group candrdate { _
.- &contxt (Context current—sched find candldate)
S .&model "~ (Data 1d—&contxt object);
e &el (Data label=&modelid); -
i - (Data. ch11dren[2]-&el idy; - o
i ‘f.?&ksar(KSAR obJect-&el id; KS—group, actlon—lmtlahze, 'V

L StatuS_pen dlng)
e [&el behef * &el size];
e
- mOdlfy &kSar(status—candeate)
e ;rém‘OIVCH : &contxt L

o FIGURE 8 5 ThlS is one of the rules used o rank’ grouper KSARs

v Thrs rule is used to ﬁnd candldate seed elements that may be used as the seed element of the :
group. It ﬁnds one. of these candldate elements for each of the chlldren of the model element B
" being formed “The' first two CEs guarantee that a candidate element with a partlcular label is
- - found. The th1rd CE matches ‘the data element that wrll become the candidate seed element S
‘ »The fourth ‘CE guarantees that the. candldate has not been used as the seed element for- another' -
_group; . in effect this prevents an element from bemg the seed element for more than one
.~_group. Fmally, the last CE matches the grouper KSAR w1th the designated seed-element ‘The

. structure on the next. line uses a feature of OPSSS to choose, as the candidate, the element with

: the largest product of size and belief. OPS83 uses the value in: the ‘square brackets to rank

instantiations in the conflict set; everythmg else belng equal 0OS83 selects the rule: 1nstant1atlon R

- for ﬁrmg ‘that y1e1ds the greatest value for the expression in the brackets. Thus the construct -

- will force the rule to fire on the data element with the largest product of size and belief. When o

v : .th1s rule ﬁres, 1t ﬂags the KSAR asa candrdate and deletes the context so that the rule wrll not -
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fire again. Other rules are also used to in the grouper KSAR rankmg and selectlon process, ,
they are not shown here for brevity’s sake. :

The followmg scheduhng scheme is. used dunng the updating phase of BB processmg
First, the labels of all of the children of the in-focus scene-level elements are- updated (all of
which will reside on- the object-level). Next, the labels of all of the children of the object-level
children are then updated (all of these elements will reside on ‘the face-level). This up'dating ’
process proceeds down the data-panel hierarchy in a depth-first manner until the edge level is
reached. If an edge -based preprocessor was used to provide the input data, then labels ‘will
have been assigned to the edges during the initialization phase;.in this case, the edges’ belief
 functions ,are updated normally. However, if a region-based preprocessor was used to provide

the input data, then the edges on the data panel will not have been labeled during the initializa-
~tion phase In th1s case, labels are as51gned to the- edges and then the behef in these labels is
updated ' :

The followmg rule (F1g 8.6) fires the labeler KS to update the bellef in an element ) ch11- )
“drens’ labels. The first two CEs in the LHS of this rule are used to match the KSAR to fire.

- The last CE of this rule is used to prevent the rule from firing if there is a pending sphtter

'KSAR or merger KSAR. The RHS of this rule: changes the status of the labeler KSAR to ‘
active, causmg the KS to fire. Do -

? f',-- RULE : fire_on_update_: element
o IF : There is a context to update the chﬂdren of an object |
- » : AND there is also a KSAR to update the ch11dren
-- THEN -« fire the KSAR ' :
'~ rule fire_on update element { -
A &contxt (Context current-—sched update element),

&ksar(KSAR object=&contxt. object;
KS8=label; action=update; status—pendmg) :
- (KSAR priority > PRIORITY_THRESHOLD; status=pending); -
- modify &ksar(status=active);

 FIGURE S-Q‘Th‘i.sl rule is used to fire the labeler KS during the updating phase.of BB B processing. o

, .
‘Note: the: labeler KS does not update the belief in the focus element’s label; rather it updates the
belief i in the labels. of the focus.clement’s children. . : :
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 The following rule (Fig. 8.7) will fire after an element’s childrens’ labels have been
updated; this rule generates a context to force the scheduler to fire the labeler KS on the
element’s grandchildren The first CE of this rule allows the rule to fire only if the BB is in the
updatlng phase of processing. The second CE makes sure that the labeler has fired on an ele- -
ment before it ﬁres on the element’s children. The third and forth CEs match the element and
one of its chlldren respecuvely The last CE makes sure that the rule fires only once with any
: element/chﬂd pair. When the rule fires, it creates a context to fire the labeler KS on the child
found by the forth CE.  The context WME matched by its first CE is then modified so that it
will be the most recent WME in the worklng memory. Making the context the most recent
~ WME forces the rule to generate the update context for all poss1ble element/ch1ld palrs before

any other rule is allowed to fire. :

- RULE +'schedule. update chlldren
-~ TF . _ :Anelement’s children have been updated L
e THEN . Generate contexts to update the ch11dren of the chlldren . B |
“rule schedule update children {
" - &contxt  (Context current=sched_update_. element)
. &ksar(KSAR object=&contxt.object;
L KS=label; action=update; status<>pending);
&el (Data id=&contxt.object); :
L _&kld (Data in_list(@ id, &el. chlldren)) -
~ . (Context current—sched _update_element; ob3ect—&k1d 1d), s

- Make the context to schedule the child
e also modify the current context last so that this rule

: '5,-- will fire next (because of recency) to find : any other klds

N make (Context current—sched update element Ob]CCt—&kld 1d),
modlfy &contxt  ();

FIGURE 8.7 ThlS rule makes the scheduler ﬁre the labeler KSto update the labels of elements on the lower levels
- of the BB. ' : :

"The 1ncorporat10n phase of BB processing is used to accumulate, into an element’s belief
function, the evidence that was generated by checking the consistency of the element’s descen-
| dents. The schedulmg scheme used in this phase of processing is identical to that used in the
~ updating phase. 'fI'hatv is, the labeler KS is fired first on the in-focus scene elements, and then
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their ch11dren followed by their ch11dren s children, etc. The similarity of the two scheduhng.
schemes is reflected in the similarity of rules implementing the strategies; in fact, the rule used
in the 1ncorportat10n phase is identical to the rule shown in Fig. 8.6 except that the context is
called}"sched_mcorp_element, instead of "sched_update_element" and the KSAR’s action is
“now "incorp_update." Because, the rules used to perform the scheduling in this phase of BB
processing are so similar to the rules used in the updating phase, they will not be shown here.

v ~Scheduling the firing of the splitter KS and the merger KS is viewedaslan _exceptional'
event which is not part of the normal KSAR selection process. These two KSs are viewed in
the excepticnal manner because they are used to correct misformed groups; thus, they would
not be needed if the low-level preprocessors always produced error-free results and the grouper
KS always produced correct groupings. Because the splitter and merger are used in this
manner, - PSEIKI’s overall ‘scheduling scheme can best be thought of as the
label/update/incorporate process described above with opportunistic interruptions made by the
splitter and merger to correct misformed groups. We will now describe the process used by
‘the scheduler to interrupt the normal label/update/incorporate flow of control when the grouper
or splitter needs to be fired. The orderly flow of BB processing is interrupted as soon as-a high

. priority splitter KSAR or merger KSAR appears in the working memory and does not resume

until all of these: exceptional KSARs have been fired upon. When one or more splitter KSARs

or merger KSARs appears in the working memory, the scheduler ranks them based on the
value of their przorlzy field and chooses the highest ranked KSAR for firing. The pnonty field
is used spec1fy the degree to which it is believed that the elements need to sp11t or merged. If
two or more KSARs have the same maximum priority value, then one is selected at random.

The scheduler w1ll continue to fire these KSARs until there are no pending splitter KSARs or

merger KSARs left in working memory that have a priority greater than a predefined threshold.

Note that the priority field is always zero for labeler KSARs and grouper KSARs because they

. are scheduled using the scheme described above. The rule shown in Fig. 8.8 selects the sphtter »

or merger KSAR with highest priority and fires on it.

8.2.2. Monitor Operation '

The monitor is the watchdog of the BB. It is the monitor’s job to keep track of the data
on the BB and trigger the KSs when specific conditions are met. It also is up to the BB moni- :
tor to watch the BB and determine if the status of any poisoned KSARs should be reset to
pending. This resetting of a KSAR’s status occurs if the KS action on the specified data-.
element once again becomes valid. It also is up to the monitor to determine if any poisoned
- KSARs should be deleted; deletion occurs if there is no chance that the KSAR could once -

again become vahd '

The BB, monitor 'makestextensive use of OPS83 demens. A demon iynk»QPS83 is a rule
‘whose first CE is not a context, goal or KSAR. Because of the OPS83 rule selection strategy,
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--RULE . : schedule_fire_interrupt

- IF . :Ifthereis splitter or merger KSAR with priority greater than 5
- . ithe priority threshold and there is no KSAR with hlgher pnonty

--THEN  :Fireonthe KSAR ‘
. 'rule schedule fire_interrupt { .

o &ksar(KSAR priority > PRIORITY THRESHOLD)
" (KSAR priority > &ksar.priority);

ey o v o
. modify  &ksar(status=active);

S
FIGURE 8.8 ThlS rule is used to ﬁre the splitter KS or merger KS.

these rules take precedence over ordinary rules (e.g. rules 1n51de of KSs or scheduler rules) and
fire as soon as they become completely instantiated. Thus a demon in OPS83 can be thought
‘to operate outside of any context, KS or goal search.

_ As an example of a monitor rule, consider Fig. 8. 9. Th1s rule, used to trlgger the grouper

* KS, fires when it finds a data-element without any parents (an orphan element). ‘The rule then
creates a KSAR that directs the grouper KS to find the element’s parents. This rule works as
follows: The first CE matchs any new data-element if it has a label; this data-element is the
~ focus-element of the rule. The second CE allows the rule to fire only if the focus-element is an
~ orphan. This CE uses the function in lzst( ) to match any WME that has the first CE’s id
number in its list of children. The tilde in front of the CE acts as a negation symbol; that is, it
allows the rule to fire only if no WME matches the CE. Thus the tilde in front of the second
CE of this rule keeps the rule from firing if the focus-element has a parent. The last CE keeps
the rule from firing if the grouper KS already has been triggered on this data-element; the rule
is fired 1f a pendmg grouper KSAR focused on the same element can not be found.

- 8.3. Operation of the KSs
Even though the various KSs perform very drfferent tasks, many common subtasks are
performed by all'of them during KS operatlon These subtasks start when the scheduler marks
a KSAR’s status to active. After a KS becomes active, its poisoning rules are allowed to fire;
these rules make sure that the KS’s preconditions have not become invalid since the KS was
- triggered. - It a poisoning rule does fire, it sets the KSAR’s status to poisoned and returns con-
trol to the scheduler If none of the p01son1ng rules fire, a rule that marks the KSAR’S status to
‘ runnmg ﬁres by default ‘
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s RULE group_ tngger
- IF There is a labeled element that is being focused on but
- . :hasnot yet been placed in a group
- AND a KSAR saying that it should be grouped has not yet been created
<= THEN : Creat_e a KSAR that indicates that the element should be grouped

_rule group_| trigger {
&el (Data type<>model; label<>0; focus<>0)
f ~ (Data in_list(&el.id, @.children));
S (KSAR KS=group; action=initialize; Ob_]CCt—&Cl 1d)

vmake (KSAR KS—group, action=initialize; :
trigger_ cycle=&current_t cycle;
1d—&next KSAR_id; status—pendmg, .
object=&el.id; panel—&el panel; level—&el level;
priority=0.5); ~
~ &next_KSAR_id = &next KSAR_id + 1;
koo

- FIGURE 89 This is a :n'loriitor.'demor.lg that is used to create a KSAR for the grouper KS.

‘ "Afté_:r the KS starts running, the control flow becomes more KS specific, bu_t‘it,sltill' fol-
lows the same pattern. The first few rules that fire after the KS starts running usually are
driver rules. These rules don’t contribute directly to the solution of the KS’s task; 1nstead‘ ,
they 1n1t1a11ze, in working memory, the elements that the KS needs to. solve the task. ‘These
driver rules can generate contexts needed: by the KS in its problem solving activity.. They also
can put on the BB dummy. data-elements that will be "fleshed out" during the course of the
KS’s processing.  After the KS’s driver rules are fired, the control flow becomes: vcry KS
~ specific. In the next few sections, the control flow inside each KS will be demonstrated -
through the use of a few examples. R

8.3.1. Grouper KS Operation

-To illustrate the flow of control: inside a KS, the grouper KS’s formation of a. face from
~ edges will be examined. The example in Fig. 8.10 will be used to make the explanation. more
concrete. Assume for the examplc' that the grouper KS has been activated with a KSAR
focused on the element Eq of Fig. 8.10. As previously described, the KS’s poisoning rules are:
allowed to fire when it is ﬁ‘rst',a,c,‘_t_iyavtgd., Fig; 8.11 is an example of a poisoning rule used by
the grouper KS. This rule is meant to po_ison.a‘ KSAR if the grouper KS fires. on an element
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FIGURE 8.10, This 'ﬁgure shiows an ekample of data on the BB and is used to explain KS operation. LT

- RULE edge group_porson :
- IF~ - :Theactive KSAR focuses onan edge that is already the seed of a group
-- THEN _ :Poison the KSAR
- i _._rule edge _group_p01son {
' &ksar(KSAR KS—group, act10n—1n1t1ahze, status—acttve),
o (Data level—-face, ch11dren[2]—&ksar object)
v-'.>_j' ’ .
S mod1fy ._ &ksar(status=poisoned);‘
FIGURE 8 11 An example of a poisoning rule

» "has already been used asthe seed of a group ThlS rule works in the follow1ng manner: The ,
ﬁrst CE matches the active KSAR if its action is to initialize a group The second element
determmes if there is a face-element that has the focus element as its seed. The seed element

~ ofa group 1s always stored in the second pos1tlon the element s list of ch1ldren (the posmon of

, Th1s does not 1mply that a data-element can. part1c1pate only i ina s1ngle group. An edge-element
-~ for example, is allowed in two or more groups if it is on the common boundary between them. .
- However, an edge-element can serve as a seed for only one group. Therefore, an edge-element v
that belongs to two .or more- groups can. mgger the formatton of only one of them other edges o
'would have to actas seeds for the other groups : . : N
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the last element in a list is stored in its first position). If this CE matches a WME, then the
focus-element alréady was used as a seed; the rule fires, ‘and the KSAR is marked : as poisoried.
If no-poisoning rules fire, another rule fires by default and marks the KSAR’s status to funning.
Thus if it is assumed that element Eg has not been used as the seed for another group, then the
active KSAR’s status is set to running. -

The grouper KS uses a dnver rule to 1n1t1ahze internal processmg, this rules fire immedi-
ately after the KS starts running. The driver rule is used to deposit an element on the BB that‘
will be used as the focus element’s parent. The grouper KS then finds other elements on the
- BB that can become siblings of the focus element and groups them into the focus element’s
- parent Flg 8. 12 shows the driver rule for group initialization.

The rule in: F1g 8.12 works as follows: The first two CEs match the runnmg KSAR and
the focus-element. The third CE prevents the rule from firing if it detects the focus-elémént’s
parent. Because this rule creatés the focus element’s parent, the third CE prevents the rule -
from firing more than once during any KS activation. The last CE is designed to find a possi-
ble model for the parent-element by finding the parent of the focus-elément’s label-element.

The rule performs two actions when it fires. First, it builds the parent-elernentt As men-
tioned previously, the KS’s focus-element and its siblings will be grouped‘into this element.
The parent-element is initialized with appropriate parameters: panel, data type,. level, id '

' number size, etc. The parent-element’s seed element is set to the focus-element. Thls is done
to prevent the dnver rule from firing twice and to allow the remaining KS body rules to find
both the focus and parent-elements easily. The rule also builds a KSAR that requests that the
parent-element be labeled. v , '

Because edge Eg is an orphan in the example, this driver rule would fire. When the rule
fires, a new element, say element Fj, is created and depositied on the BB. This new'¢element
 lies on the face level of the data panel with label Fc and, initially, has element Ej as its only

child. Now it is up to the rest of the KS body rules to ﬁnd element Eg’s 31b1mgs and group
them into face Fj. - . ,

After the driver rule initializes the pa‘rent-element, the remaining KS body rulés can fire.
Only one KS body rule needs to fire to group edge-elements into the face-element. This rule
(shown in Fig. 8.13) fires at least once for every edge that can be grouped into the face.

The first four CEs of the rule in Fig. 8.13 find the active KSAR, the parent-element; the
model of the parent-elemient and the focus-¢lement, respectively. The fifth CE finds a candi-
date to group into the parent. This CE miakes sure that the candidate is on’the same level and
~ panel as the focus- element and that it has not yet been grouped into the parent. Furthérmore,
this CE makes sure that the label of the candidate allows it to be grouped into the parent by
checking to see if the candidate’s label element is a child of the parent’s label ¢lement. The
rest of the CEs i‘n‘e‘rely obtain data needed in the right hand side (RHS) of the rule: The sixth
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e vR'ULE e group_dnver -- start up groupmg process by creatmg parent element
s - t+ - --also make KSAR to label parent element - '

- - IF - :Thereisarunning KSAR that says to initialize a group .
el -+ AND there is no element with the KSAR’s object as its mam chﬂd .

- THEN - vMake the parent element and a KSAR to label it o

o rule group_dnver {

' - &ksar(KSAR KS=group; actlon—lmtlallze status—runmng)
&el (Data id=&Xksar.object); _

T - (Data children[2]=&ksar.object);

"'&model N V(Data in_list(&el,label, @.children));

&max_id = &max 1d+1 :
o Qmake (Data id=&max_id; source—synthetlc, label—&model id;
- - type=&el.type; panel=&el.panel; level=&model.level;
size=&el.size; value=&el.value; focus=1;
near[1]=&el.near[1]; near[2]=&el.near{2];
near[3]=&el.near{3]; near[4]=l.0;
far[1]=&el.far[1]; far[2]=&el.far[2];
far[3]=&el .far[3]; far{4]=1.0;
. 'ch1ldren[l] =2; children[2]=&el.id);
-write () I1n1t1ahz1ng| &model.level, | I, &max_id, ’0;
‘write ()| grouping |, &el.level, I, &el.id, ’0;
- make (KSAR KS=label; action=initialize;
trigger_ cycle-&eurrent cycle;
id=&next_KSAR_id; status=pending;
level—&model level; object=&max_id,; pnonty—O 5)
&next KSAR_id = &next KSAR_id +1;

B
FIGURE 8. 12 An example ofa dnver rule.

CE, one e of the CEs used to obtain data for the RHS matches a WME that holds a homogene--
ous transformatlon matrix. - The transformation matrix is defined to transform the focus-
element’s label element so that it is compauble with the candldate s label- element

When the rule ﬁres, the combpatibility between the candidate and a transformed version of
- the focus element is.computed as described in chapter 5. If-this value is greater than a thres- -

-~ hold, then the add;list( ) function is used to add the candidate’s id number to the parent’s list of

~ children. Notice that if the candidate-element doesn’t meet the criteria to be grouped, then
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-- RULE : group_into_face -- group edge-elements into a face-element

" TF  :We sre grouping edges into a face and there is a compatible edge

: that is ot yet in the face

-- THEN : IF the xformed vefsion of the edge is collinéar with the focus

: element, put it into the group

'rule group_| mto _face {

->

b

. &ksar (KSAR ‘KS=group; action=initialize; status=nunning);

&face (DaLa children[2]=&ksar.object);

&model (Data id=&face.label; level=face);

&edgel (Data id=&Kksar.cbject);

- &edge2 (Data type<>model; level=edge; id<>&edgel. 1d

 in_list(@.label, &model.children);
(in_list(@.id, &face.children))); -

--‘get parameters needed in ths computations .

&xfrm (Model_xfrm from=&edge2.label; to=&edgel. label)
&sl (Data id=&edgel.children[1]);

&el (Data id=&edge] .children[2]);

&s2 (Data id=&edge2.children{1]);

&e2 (Data id=&edge2.children[2]);

- .&slop (Constant name=max_dist);

&dist - (Constant narne=gmUp_threshold);

‘ local &compat, &incompat: real;

local &belief, &disbelief: real;

: call edge compaublhty(&sl coord, &el.coord; &s2.coord, &e2.coord,

&xfrm.xfims, &slop.real value
. &compat, &mcompat), :
&belief = &compat * &édge2.belief * &xfrm.scale_fact;

" &disbelief = &incompat * &edge2.belief * &xfrm.scale_fact;

if (&compat > &dist.real_value) {

modl.fy &face (ca]l add hst(&edge2 1d @ chlldren)
size = @.size + &edge2. size;
- call updite_belief(@, LEVEL_SCALE * &belief,

LEVEL_SCALE * &disbelief));

writé ()| grouping edge |, &edge2.id, *0;

FIGURE 8.13 This rule is used to group edges into faces.
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nothmg in the working memory is changed and refraction prevents the rule from ﬁnng agam
with the same instantiation.

In the example, any edge that has one of the labels Ep, Eg, Eg or Ey is a ca‘ndidatc to be
grouped with edge Eg into face F3. Edges E7, Ei1, Eis, E14 and E;5 méet this critérion. Thus
any of these edges that was compatible with the transformed version of the focus-element
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would be grouped into the parent. If all but Ej; were compatlble with the transformed Eo then
the children of F3 would be edges E7, Eg, E13, Ey4 and Es.

8.3.2. Labeler KS Operation

The labeler KS can perform three actlons It can initialize a data element S label update
the belief in the labels of an element’s children and incorporate, into an element’s belief func-
, tion, the updating belief generated by the element’s descendants. These three actions are

specified by setting the action field of a KSAR to initialize, update and incorporate, respec-
tively. In this section, we will use the previous example to demonstrate the processing per-
formed by the labeler KS to update the belief in the labels of an element’s children. Using this .
- example, we will show how the belief in the labels of the children of face F3 are updated.

If we assume that no poisoning rules fire after scheduler activates the labeler KS, then the
driver rule shown in Fig. 8.14 fires and generates context elements specifying that every child
of the focus element should be used to update the belief in the label of every other child. This
rule is easily understood. On the LHS, the first two CEs are used to match the KS’s focus ele-
ment and the third CE is used to keep the rule from firing more than once for any KS invoca-
tion. The RHS of the rule contains a set of nested for loops that index through the focus
element’s list of children and generate the desired contexts. After the driver rule has fired, the
- contexts. are used to specify the elements that can be used to update the belief in-other ele-

ments. In the example, two contexts would be generated for each pair of “elements in
- {E4, Bg, Eq3, Eq4, Eq5) specifying that each element should be used to update the behef in the
label of every other element.

The rule shown in F1g 8.15 is used to generate the updatmg evidence for edge elements
- This rule fires once for every context generated by the previous rule if the belief in the edge
providing the ev1dence is above a user specified threshold. If the belief in the edge is below
~ the threshold, then the context is removed automatically. The first two CEs of this rule match
the edge whoSe belief is being updated. The third CE matches the edge providing the updating
evidence and also keeps the rule from firing if the belief in that edge’s label is below a thres-
hold. The remaining CEs are used to obtain the data needed by the RHS of the rule. The
fourth CE is used to obtain the homogeneous transformation matrix needed to deterrmne the
compat1b111ty of the two edges. Finally, the last four CEs are used to obtain the endpomts of |
the two edges. The RHS of this rule uses the edge _compatibility() function to measure the .
compatlblhty of the transformed version of the first edge with the second edge based on their

collmeanty After the compatibility is measured, the update_bpa() function is used to accu-

mulate the new evidence. into the updatmg bpa. Finally, the context WME is removed to
prevent the rule from firing again with the same context. :
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--RULE :update_certainty_driver

-- IF . :Thelabeler KS was just activated .
-- THEN  : Generate a context to update the label of every chlld using
- : - : the label of every other child.

'rule update certainty_driver {
&ksar(KSAR KS=label; action=update; status—runmng)
&el (Data id=&ksar.object);
~ (Context current=incorporate_belief);

local &, &j, &kids: integer;

writ'ev()A lupdating children of |, &ksar.level, | |, &ksar.object, *0;
make (Context current=incorporate_belief; object=&ksar.object); :

&kids = &el.children[1];
 for &i = (2 to &kids)
i for &j =(2 to &kids)
if (&i <> &j) _
make (Context current=update_certainty;
object=&el.children[ &il;
: ~ using =&el.children[&;j]);
BoN :
| FIGURE 8.14 Thls is the driver rule for the labeler KS.

8.3.3. Splltter KS and the Merger KS Operation

We will illustrate the flow of control inside the splitter KS by examining the rules used to
split a face with competing edges into multiple faces with one competing edge apiece. The
splitter KS uses a driver rule to initialize processing; this rule is used to generate a context that
directs the KS to examine the focus element for competing edges. After the driver rule fires, a
level-spéciﬁc body rule is allowed to fire that finds all the competing children of an element;
this rule fires at least once for every pair children that could possibly compete. For example,

- the splitter KS ”u:’ses the rule shown in Fig. 8.16 to find competing edges that the grouper has
included i ina face When it finds a pair of competing edges, it creates two new faces each with
only one of the competmg edges; it also resets the focus flag in the original face to prevent its
- use in further BB processing. The rule works as follows: The first two CEs are used to match
the newly created face element; they also keep the rule from firing more than once. The
second two'CEs are used to match two edges from the face’s list of children if they have
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 —-RULE :update edge_certainty
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--IF : there is a context to use one edge to update the belief in another s label
- ~ .+ AND the belief i in the one providing the evidence is > BELIEF_THRESH
--THEN ' : update certainty based on the (in)compatibility of the two edges '

. rule update_edge_certainty {
v &contxt  (Context current=update_certainty);

&ell (Data id=&contxt.object; level=edge);

&el2 (Data id=&contxt.using; belief > BELIEF_THRESH);

- -- get parameters needed in rhs computations
~&model (Model_xfrm from=&el1.label; to=&el2. label)

&s1 (Data id=&ell.children[2]);

- &el (Data id=&ell.children[3});

&s2 (Data id=&el2.children[2]);

&e2 (Data id=&el2.children[3]);

local &sl _xfrm, &el_xfrm: vector;
local &pos, &neg: real;

, call edge compatibility(&s2.coord, &e2.coord,

&sl.coord, &el.coord,

&model.xfrms, distance(&s2.coord, &e2.coord), »

. &pos, &neg);
&pos = &pos * &el2.belief * &model.scale_fact;
&neg = &neg * &el2.belief * &model.scale_fact
* scale_certainty(&el2);

‘write () | new evidence for I, &ell.level, I, &ell.id;
N ‘write () | using |, &el2.level, | |, &el2.id, °0;
- modify &ell (call update_belief(@, &pos, &neg));

remove &contxt;

FIGURE 8.15 This rule is used to update the belief in an edge’s label.

identical labels; these edges could possible compete. When the rule ﬁres, the function
~ edge_overlap() is used to determine the overlap of the two edges using the technique described
in chapter 7. If the overlap is found to be greater than a preset threshold, then the two edges
are considered to be competing and the face is split into two faces with one competing edge
aplece Fmally the rule generates a context to check each of the new edges for other
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: face _split :
: There is a face with two edges that have the same label :
: Check to see if they are competing. If so, create two

v ‘andress/kak

: faces with one competing edge apiece. Also reset the original -

i face’s focus flag.

rule face_split { o |
' &contxt (Context current=ﬁnd_competing);
&face(Data id=&contxt.object; focus<>0);
&edgel (Data in_list(@.id, &face. children))
&edgeZ “(Data label=&edge1.label; in_list(@.id, &face chlldren),

id<>&edgel.id; length<&edge1.length);

' .1f (edge overlap(&edgel, &edge2) > OVERLAP THRESHOLD) {
- . --remove the face from the focus set

modify &face (focus = 0);

" --initialize the first face .

b -

&max_id = &max_id + 1;

v méke (Datarduplicate_Data(&face);

- &id = &max_id; :
call delete_list(@.children, &edgel.id);
madeof] 1]=2; madeof{2]=&face.id);

| make (Context current=find competmg, object=&max_ 1d),

&max id = &max_ id +1;

- 1n1t1ahze the second face

make (Data duplicate_ Data(&face)
&id = &max_id; ' :
call delete_list(@.children, &edge2.id); ,
madeof]1]=2; madeof[2]=&face.id);

make (Context current=find_competing; object=&max_id);

- FIGURE 8.16 This rule is used to spht a face with compeung edges into multiple faces w1th one of the competmg

edges apxece

competing edges.



The merger KS does not require any driver rules. When the KS is activated by the
s'cheduler’ a level-specific rule is fired to merge the KS’s focus element with the secondary
focus element, For example, the rule shown in Fig. 8.17 is used to merge two faces. The LHS
side of this rule is used to match the two focus elements. and guarantee that the rule will fire
| only once. The RHS of the rule builds an element on the face level of the data panel into
‘which the two focus elements are merged. The children of this new element is set to be the
exclusive-or of the children list of the two focus elements. The focus flags of the ongmal two -

-05-

. faces are also reset to prevent the1r use in further BB processing.

- .RULE‘ face _merge

o IF

: The active KSAR 1nd10ates that two faces should be merged

--'TI-I‘EN: : merge them

| rule face_merge {

 &ksar(KSAR KS—merge status—runmng, level=face);

&ell (Data 1d—&ksar.obJect, focus<>0);

&el2 (Data id=&ksar.using; focus<>0); -

 &max_id = &max_id + 1;

- lmake (Data id=&max_id; source—synthetlc,

type=&ell.type; panel=&ell panel level—&ell level

size=&ell.size+&el2.size;

value = weighted_ average(&ell .value, &ell size,
: &el2.value, &el2.size);

label—&ell label; focus=1;

call near_vert(&ell.near, &el2.near, ’@.near);

call far vert(&ell.far, &el2.far, @.far);

call xor_list(&ell.children, &el2.children, @.children);

madeof[1]=3; madeof[2]—&e11 1d madeof[3] &el2. id); o |

modify &ell (focus=0);
modify &e12 (focus—O)

- write () Imerging into |, &ell.level, ||, &max_id, ’0;

.‘ };

~write ) | merging |, &ell.level, | |, &ell.id, ’0;
- write O | and |, &el2level, [ 1, &el2.id, 0;

FIGURE 8.17 This rule is used to merge two faces .into‘ a larger face.

andress/kak _,
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CHAPTER9 |
COMPLEXITY ISSUES IN BLACKBOARD PROCESSING

In the most general sense, PSEIKI’s geometric matching act1v1ty can be expressed as the

problem of ﬁndmg subgraph-isomorphisms, a known NP-complete problem [GarJoh79]. Itis -

well known that artificial intelligence’s use of hueristics can greatly 1mprove the computatlonal
efficiency of the solution to a problem solving task; in fact; it has been shown that some
»heunstlcs can beat the exponential explosion associated with NP-complete problems [Pea84].

It is hoped that the heuristics encoded into the PSEIKI’s 0pportun1stlc control flow ‘and
geometric constraints, when combined with the hierarchical strﬁcture of the matchmg task will
' enable PSEIKI to.perform matching as scene complexity grows

. There are a number of ways that a system’s time and space complex1ty can be analyzed
If the system’s solution to a task can be expressed in a simple, algorithmic fashion, then its
complexity often can be calculated theoretically [AhoHop74]. If a system’s solution can not
be expressed in a way that allows its complexity to be analyzed directly, then the system s
major components can be modeled and the model analyzed. Petri net theory [Pet81] one tech-
nique for modeling systems, will be explored in this chapter. Particular attention w111 be
focused on stochastic Petri nets, an extension to Petri net theory created by assocratmg an
exponentlally distributed firing time with each transition in the net [Mol82]. Stochastic Petri R
nets can be analyzed by mapping the state-space of the net to a Markov-chain and by usmg
- concepts from queuing-theory to analyze the system. Currently, stochastic Petri nets can
. model only small-scale systems because the state-space of a Petri net grows exponentially w1th '

the size of the net.(hence, so do the nodes in the Markov-chain). '

If a system is too complex to be analyzed theoretically or modeled effectively, as is
_ currently the. case with blackboard systems, the only resort is to determine enlpirically the
system’s computational complexity. In the past, experimental investigations have been used to
study how control flow [GarCor87] and data locking [FenLes77] affect blackboard perfor-
~ mance. Note, since PSEIKI’s hierarchical structure and geometric constraints have been fixed,
PSEIKI’s computational efficiency can be increased mainly by optimizing its control flow. At
this time, PSEIKI’s scheduler is evolving too rapidly to justify an empirical performance
analysis. However, as PSEIKI’s scheduler becomes more stable, an empirical performance
study will be undertaken to determine how PSEIKI’s matching scheme scales with- problem
size. :

9.1. System Modelmg with Petri Nets

Petri Net theory is a graph based modeling technrque that has proven very powerful for
modeling concurrent, synchronous and asynchronous systems. Since their introduction by C.
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A. Petr1 in h1s Ph.D. dissertation [Pet66] ‘Petri nets have been used to model complex systems
in many diverse domains, some of these domains include the modeling of product1on systems,
chemical reactions and legal systems (see [Pet81] for a bibliography of some domams of appli-
cation). Because Petri nets have been used to model such a wide variety of systems and have
“been used by researchers with a wide range 'of backgrounds, they have been formulated in
many different ways. The definition and development of Petri' nets in this report will follow
that found in [Pet8 1]; the reader is referred there for a more complete introduction to Petri net
vtheory and some typlcal apphcatlons ' ‘ ‘

o Formally, a Petri net graph isa d1rected b1part1te multigraph, G (V A) Vis the set of
~vertices, V={vi, V2, ** -, v} and A is the set of arcs, A= {a;, a5, ‘- *, a,} where an arc, a;

_ ‘fro_rn,vertex Vj to vertex vy is expressed as a; = (vj,vk) with vj, vge V. Since the graph 1s_'
bipartite, .the set of vertices, - V, .can  be partitioned into two disjoint - parts,

P={p1,p2, **:»Pm} and T={t;, ty, -, t,} such that each arc in A contains exactly one

vertex in P and. .one vertex in T. Us1ng the normal terminology, the set P is called the set of

places and the set T is called the set of transitions. . -

; A Petri net. structure, C, is a four-tuple C=(@,T, I 0). P and T are places and transi-
tions as described previously. The input and output functions, I and O, respectively, map tran-
- sitions, t;, to collections of places. The collection of places I(t;) and O(t;) are called the input
and output places for transition t;. The multiplicity of the arcs between a transition and one of
its input places is equal to the number of arcs from the place to the transition. Likewise, the
multiplicity‘of the arcs between a transai‘tion and one of its output places is equal to the number
of arcs from the transition to the place . The markmg ofa Petn net is a mapping, H, from the
set of places to the non- negative integers, N.

TR P—>N

u() deﬁnes the state of the net. Durmg execut1on of the Petri net, the markmg of the net may

"change; that is, the function () may change reflecting the evolving state of the net. The for-
mal definition of a marked Petri net structure (hereafter merely called a Petri net) is
M=, T,1, O W) where the components prev1ously have been defined.

- Although Petn nets are defined in abstract graph -theoretic terms, it is often helpful to
draw the marked Petri net graph.- When drawmg Petri nets, a bar | represents a transition and
a circle-O represents a place. Tokens, drawn as small dots e in a given place, ‘pj;"are' used to
represent the value of u(pj) An 1nput place of a transition is indicated by an arrow from the
place to the transition. Conversely, an output place of a trans1t10n is 1nd1cated by an arrow

Note that the input and output multiplicitics between .a transition and a place need not be equal if
the place is both an input place and an output place for the transition. The multiplicities will differ
if the number of arcs from the place to the transition is different from the number of arcs from the -
transition to the place
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from the transition to the place. Fig. 9.1 shows an example of a simple Petri net; Fig. 9.2
shows its associated graph. ’ .

- P={p1, p2, p3, P4,ps}
e T={ty, ty, t3, 14} . I
It)={p} | | Ot) =1{p2. p3. P4 Pa}

" I(t2) = {p2. P3» P4} O(t2) = {p2}
- I(t3) = {p4, Pa} ' O(ts)={ps}
It4) = {ps} | O(t4) = {p3, p4}

L RED=1 pp)=0; pEs)=0; pps)=2 ups)=1

FIGURE 9.1 This figure shows an example of a simple Petri net.

FIGURE 9,2 This figure shows the marked Petri net graph for the Petri net given in Fig. 9.1.

A transition is said to be enabled when the number of tokens in each of the transition’s
input places is greater than or equal to the multiplicity of the arcs between the transition and
that input place. For example, if there are two arcs from an input place to a transition, then the
transition will not be enabled until there are at least two tokens in that input place. An enabled
transition is fired by removing tokens from the transition’s input places and addih'g/tok‘:ens to
the transition’s output places. The number of tokens removed from or added to the transition’s
input placésor output places, respectively, is equal to the multiplicity of the arcs between the
transition and the places. If more than one transition is enabled at any time, then the transition
that is fired is picked at random. In general, the state of the net will change when a transition
fires. Thus some transitions that were previously enabled may no longer be enabled and some
new transitions may become enabled. The process of successively firing-enabled transitions is
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called exécutmg the Petri net. When there are no enabled transitions, the execution of the Petri
net halts. Fig. 9.3 shows the execution of the Petri net shown in Fig. 9.1. Panel (a) in th1s :
figure shows the net’s initial marking. Panel (b) shows the net’s marklng after t4 ﬁres and
panel (c) shows the net’s marking after t; fires. :

A marklng of a Petri net is said to be reachable from another marking if- there is a
- sequence of transition firings that transforms the state of the net from the initial markmg to the
desired marking. The reachability set of a marking is defined to be the set of all states reach-

~able from the initial marking. Note that the reachability set of a Petri net is dependent on the o

original marking. Also note that the reachability set of a Petri net will grow exponentlally with
the number of places, transitions, and tokens present in the net. Both of these effects limit the
usefulness of Petri nets in the modeling of blackboard systems. ‘

_ F1g 9.4 is a simple example of a Petri net that could be used to model PSEIKI’s ﬂow of
control. - The places in this net correspond with the blackboard scheduler and knowledge
sources. The token represents the locus of processing in the system; a process is considered

- - active when its corresponding place contains the token. Notice that the configuration of the net

forces the control of the system to return to the scheduler between each knowledge source‘

activation. The net can be extended to model concurrent blackboards by adding a token for

~each process1ng thread. Obviously, the model shown here is over-s1mp11ﬁed and cannot be
used in any reahstlc analysis. - : L

Petn net theory has been extended in a number of ways to make it-a more powerful
modeling tool. Stochastlc Petri Nets, an extension first proposed by Molloy {Mol82], are
created by. assoc1at1ng an exponentially distributed firing time with each transition. The firing
time of a uansmon specifies the average amount of time that the transition takes to fire. Thus
the transitions in a stochastic Petri net will fire a random amount of time after they become
enabled (unless another transition fires first and disables the first transition). If another transi-
tion fires but does not disable the first transition, then the timing of the first trans1tlon does not
change (the first transition does not have to be "reset” because of the memoryless property of '
the exponential d1str1butlon) '

" A stochastic Petri net is formally defined as S=®, T,LO,uA) where 7L is the mapping
from the transitions to the real numbers that defines the mean ﬁrmg time of the exponentially
distributed random processes. The rest of the components of S have been defined previously.

'Note that the transitions’ firing rates are completely spe01ﬁed by A because an exponential dis-
tribution is completely specified by its mean value.

Stochastlc Petri nets are useful tools for analyzmg complex systems because they are iso-
morphic with homogeneous Markov processes but have all the expressive capabilities. of ‘the
original Petri nets [Mol81]. The isomorphic properties of a stochastic Petri net and a Markov.
process can be. seen with the help of the following example. In this example, the simple Petri -
net shown in Fig. 9.5 will be converted into an equivalent Markov chain. The first step in the
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7 ()
’ ‘FIGURE 9.3 This figure shows the execution of the Petri net from Fig. 9.1.
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Scheduler

Labeler KS Grouper KS Splitter KS v Merger KS

FIGURE 9.4 This figure shows a simple Petri net that can be used to model PSEIKI’s control ﬁow.. :

'AFIGURE 9.5 Th1s ﬁgure shows a simple Petri net that is 'used in the textual explanauon of the 1somorph1sm
' between stochastlc Petn nets and Markov processes ; -
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_conversion process is the determination of the reachability set of the net given an initial mark-
ing. The reachability set of the example Petri net is given in table 9.1. Each row in this table
represent a distinct state of the net. The entries in the table represent the number of tokens in a
place for a given state.

P1 P2 P3 P4 DPs5
M1 1 0 0 0 0
153 0 1 1 0 0
M3 0 0 1 1 0
M4 0 1 0 0 1
us | O ) 0 1 1

TABLE 9.1 This table shows the reachability set of the Petri Net shown in Fig. 9.5.

If the mean firing times of the transitions in the stochastic Petri net shown are Ay =2, A, =1,

A3 =1, A4 =3, A5 =2, then the following procedure can be used to map the state-space of the

net to a Markov chain. A state in the chain is created for every distinct marking in the net.- A

state-transition is created between two states in the chain if the firing of a single transition in

the Petri net will transform the marking of the net from the first state to the second. The mean

transition time of the state-transition is set to the mean firing time of the transition that must
fire to transform the state of the net from the first state to the second state. For exémple, mark-

ing Y, will be transformed into'marking W4 if transition ts fires; thus, in the Markov chain,

there is a state-transition from state i, to [l4 with an average transition time of 1 second, the

mean firing time of transition t3. Fig. 9.6 shows a Markov-chain that is isomorphic to the net
shown in Fig. 9.5. In this figure, the mean transition times between states of the chain are indi-

cated by the numbers shown above the state-transitions. The numbers shown below the state-

transitions are the transition-probabilities of the chain.

0.6

- FIGURE 9.6 This ﬁgufe shows the Markov equivalent to the stochastic Petr net shown in Fig. 9.5.
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Once an equivalent Markov chain is constructed from a stochastic Petri net, classical
queuing theory techniques [Tri82] may be used to determine the performance of the system by
analyzmg the chain. For example, the throughput of a system can be estimated by determining

“the average amount of time that the system needs to transform from a starting state to an end-
ing state and then reset back to the starting state. Queu1ng theory techniques also can be used
to determine the the steady-state marking probabilities of the system (the probablhty that the
net will have a particular marking at a given time) by determining the equivalent chain’s limit-
ing state probabilities. By finding the limiting state probabilities of the Markov- chain‘ in Fig.
9.6, the steady-state markmg probabilities of the net in Fig. 9.5 can be shown to be '

P[] =0.1163
Plyi,] = 0.1860

. Plus] = 0.0465

© P[pe] =0.5349
Pliis] =0.1163

In their current state of developm’ent stochastic Petri nets have a number of drawbacks
that limit their use for modehng blackboard systems. First, the reachablhty set of the net
depends on the initial marking. Thus if tokens are used to represent data elements on the |
blackboard or other problem dependent information, then a new analysis is needed for each

problem 1nstant1at10n Second, the current formulation of stochastic Petri Nets requlres that
every transition have an exponentially distributed firing time. When modeling complex sys-
tems, such as blackboards, it may be neccessary to model transitions that fire immediately on
enabeling, require a fixed amount of time to fire, or fire in an amount of time that is a function
of the net marking. In addition to these limitations, a final drawback prohibits the use of sto-
chastic Petri Nets for modeling large-scale'systems. In general, the size of a Petri net’s reacha-
bility set will grow exponentially as the number of tokens, places, or transitions in the net
increases. Since most queuing theory techniques require the determination of the eigenvalues
and eigenvectors of an N x N matrix when solving a Markov-chain with N states; the problem
quickly becomes intractable as the problem size increases. - Although stochastic Petri nets can-
not currently niodel systems as complex as blackboards, most researchers are optimistic about
the prospect of extending them to handle such large-scale systems. See [RamHo80], [Mar-'
o Con84],»[Zub8»5], [Dug’B}o}b85] for some recent work on extended stochastic Petri nets’., L
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CHAPTER 10
EXPERIMENTAL RESULTS

PSEIKI was run on a number of images typical of what would be seen by a sidewalk-
navigating mobile robot with downward-slanted cameras. Figs. 10.1 - 10.4 show the results
for one such run; Fig. 10.1 shows the edges representing the expected scene and Fig. 10.2 the
actual image. Note that the expected scene and the observed image are significantly misre-
gistered. Two of the major edges in the expected scene, in the lower left, are fnissing entirely
in the observed image. The reader should also note the presence of shadow edges in Fig. 10.2.
The output of the edge-based preprocessor described in chapter 3 is shown in Fig. 10.3.

The final result produced by PSEIKI consists of labels with associated belief values
attached to entities at the edge level and higher levels on the data panel on the blackboard. For
example, in Figs. 10.1 - 10.3, if the element at the scene level (the highest blackboard level)
with maximum belief is selected and its component edges are displayed, Fig. 10.4 results. This
figure shows the edges, their labels, and associated belief values for the scene interpretation
that PSEIKI found most believable. In line with the earlier chapters, the percentage value
associated with a label indicates PSEIKI’s belief in the correctness of the label. For example,
PSEIKI has a belief of 0.53 that the lower right edge can be matched with the right-bottom
edge of the expected scene. This amount of belief indicates that, at a belief level of 0.47,
PSEIKI believes that the edges were mismatched or that the system is ignorant about the vali-
dity of the match made. ' '
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~ FIGURE 10.1 This figure shows a line drawing of the expected scene with edges labeled.
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FIGURE 10.3 This figure shows the input to PSEIKI from the preprocessor.
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FIGURE 10.4. The output of PSEIKI with detected edges, their labels and associated belief values are displayed
here. | '
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APPENDIX A
A BRIEF REVIEW OF DEMPSTER-SHAFER THEORY

‘In this appendix, we will present a short review of some relevant téﬁﬁindlbgy from ‘the
Dempster-Shafer (D-S) theory of evidence accumulation. For a détailed presentatlon of the
theory, the reader is referred to Shafer [Sha76].

Ina  random experiment, the frame of discernment (FOD), ©, is the set of all pos'si‘b*le‘ou't-
comes. Forcxarhple, if we roll a die, © is equal to the set of 'possibilities, "the number shbw-
ing is i," where 1 <1i < 6; therefore, © may be set equal to the set {1, 2, 3,4, 5,6}. The 2'©!
subsets of © are called propositions and the set of all the propositions is denoted by 28, Inthe
die example, the proposition ‘‘the number showing is even" would be represented by the set
{2,4,6}.

In the D-S theory, probability masses are assigned to propositions, meaning to some of
the sets in 2%, and therein lies a major departure of this theory from the Bayesian formalism in -
which probab111ty masses must be assigned to the individual elements of ©. These probablhty |
~ masses must addup to one, and the probability mass assigned to © represents ignorance. The
interpretation to be given to the probability mass assigned to a subset of © is that thé mass is
free to move to any element of the subset; this interpretation being in consonance With‘fhe;?pro-
bability mass assigned to © representing ignorance, since this mass may move to any element
of the entire FOD. When a source of evidence assigns probability masses to the propositions
discerned by ©, the resulting function is called a basic probabzlzty assignment (bpa). Formally, '
a bpa is function m: 29—9[0 1] where :

0.0<m(-)<£1.0, m(@) =0 and > m(X)=10
' Xce

A belief function, Bel(X), over © is defined by

Bel(X) = 3 m(Y)
YeX

In other words, our belief in a proposition X is the sum of probability masses assigned to all
the propositions implied by X. Dempster’s rule of combination, also known asDempster’s
orthogonal sum, states that -given two bpa’s, my(-) and my(-), corresponding to two :indepe],n-
dent sources of evidence, we may combine them to yield a'new bpa m(-) via '

mX) = my @m2 =K ¥¥ mX;)myX;) where
X, X2
XX =

CKl=1- ¥ m(X)m(Xp)
XM\ X=2
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APPENDIX B

CONVERSION OF CONFIDENCE VALUES TO BASIC PROBABILITY ASSIGNMENTS

Many systems face the problem of converting raw evidence to a form that is usable by the
Dempster-Shafer theory of evidence. Garvey, et. al. were the first to investigate the process of
converting raw evidence, such as image feature values, into belief functions [GarLow81];
other work on the conversion of sensor readings to belief functions can be found in
[LehRey86], [ReyStr86] and [SafGot87]. In this appendix, a scheme to convert confidence
values into a bpa is described. In this scheme a confidence value for any subset of an
element’s FOD is required to be a value between 0.0 and 1.0. A confidence value of 1.0 for a
subset of ® indicates that the evidence source has conclusive evidence that the element’s iden-
. tity is in that subset. Conversely, a confidence value of 0.0 indicates a lack of evidence that
the element’s identity is in the subset. To formalize the notion Qf confidence values, a
confidence function, Conf, is defined. ‘ '

~ Conf:2° -0, 1]

The idea is that the value of this function for any subset represents. the amount of evidence pro-
vided by a source suggesting that the element’s identity is in the subset. Note that this notion
is related to the concept of a probability mass in a basic probability assignment; however, a
bpa has other properties that are not required of a confidence function. Although a confidence
function may not haVc all the necessary properties of a bpa, a bpa can be defined in terms of an
underlying confidence function. To define a bpa, m(+), in terms of a confidence function, it
must be defined so that it satlsﬁcs three propemcs

1) 00<m()<10
The conﬁdcnce functlon meets this criteria by definition.

2) m((@)=0.0
This property is obtained by setting the probablhty mass of the null set to zero. This
action makes intuitive sense because the null set represents the case in which the
element’s identity is not a member of the FOD. If this were the case, the FOD would be
incomplete and a new, more complete one would be needed. '

3 X my)=10
yc®
This requirement states that the evidence source generating the bpa has unity total-belief. |

When forming a bpa with this property, the concept of the source’s total conﬁdence is
helpful. A source’s total confidence is defined to be

Confto[ = Z Conf(\lf)

yc o
\TE ]

This concept can be used to break the problem into three cases.
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1) Confyo = 1.0 o -
In this case, the confidence function is a bpa. Therefore, ,deﬁne‘
- m(x) = Conf(x) for all x € 28, x# Q. : N

2) Conftot <1.0 : :
~ In this case, Conf incompletely specifies the source’s belief. A bpa can be deﬁned
by assigning the uncommitted portion of the source’s belief, its 1gnorance about the
' ;'1dent1ty of the element to the entire FOD, ©.

1.0 - Confmt X = @
m(x)=4 0.0 - x=0
' Conf(x)v else

3) Conf,,, > 1.0 ~
In this case, the evidence source has over-specified its belief. A bpa 18 deﬁned by
normalizing all the confidence values by its total confidence. - :

() = Conf)

forallx e 28, x # &

- After the preceding operations are applied to the confidence function, a bpa for the
evidence source, m(-), results. Note that defining the bpa in this manner does not
affect the validity of the first two requirements for a bpa; this is apparent because
Conf,,; = Conf(: ) 20. ~ :

- To see more clearly how the conversion process works, consider the following example.
Assume for this example that an evidence source is being used to determine the identity of an
object with FOD @ = {0,, 63, 0¢, Op}. If the evidence source prov1des non-zero welghts
only to members of ©, then the followmg confidence function might result

Conf(8,) = 0.7

Conf(6g) = 0.1
Conf(8¢) = 0.4

Conf(6p) = 0.05

If the total eonﬁdence exceeds unity, as in this example, the confidence values are normalized
by the summed value resulting in the following bpa over ©: ' '

. .
Note that, in general an ev1dence source could provide values to any element of 29, not just
clements of @
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- m(Bs)=0.56
m(6g) = 0.08
m(6¢) = 0.32
m(8p) = 0.04
| m(;) = 0.0 for all other subsets of © k
On the other hand, the evidence source could have produced values that sum to less than one,
asin the following case:
Conf(e a) =07
Conf(6) =0.1
“Conf(8c) =0.0
Conf(GD) - 0.05
Since the measures now sum to less than unity, there is no reason to normalize. Instead they
are converted dJ.rectly into a bpa in the following manner:
m(G A)=0.7
m(6g) =0.1 -
m(6¢c) = 0.0
m(6p) =0.05
m(®) =0.15
-m(+) =0.0 fof all other subsets of ®

Note that the amount of belief assigned to © is equal to 0.15; this is the difference between
unity belief and the evidence source’s total confidence. Settlng the probability mass in © to
the difference seems intuitively correct for the simple reason that Conf(0;) is a good measure.
of the confidence that the object’s identity is 6;. Clearly if the object is not thought to.
correspond to any of the elements in its FOD: to a sufficiently high degree, then some belief ’
may be uncommitted. In the above assignment, m(®) = 0.15 represents the uncommitted por-
tion of the belief. '
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