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The PSEIKI Report - Version 2

ABSTRACT

A fundamental goal of computer vision is the development of systems capable of carrying 
out scene interpretation while taking into account all the available knowledge. In this report, 
we have focussed on how the interpretation task may be aided by expected-scene information 
which, in most cases, would not be in registration with the perceived scene.

In this report, we describe PSEIKI, a framework for expectation-driven interpretation of 
image data. PSEIKI builds abstraction hierarchies in image data using, for cues, supplied 
abstraction hierarchies in a scene expectation map. Hypothesized abstractions in the image 
data are geometrically compared with the known abstractions in the expected scene; the 
metrics used for these comparisons translate into belief values. The Dempster-Shafer formal
ism is used to accumulate beliefs for the synthesized abstractions in the image data. For accu
mulating belief values, a computationally efficient variation of Dempster’s rule of combination 
is developed to enable the system to deal with the overwhelming amount of information 
present in most images. This variation of Dempster’s rule allows the reasoning process to be 
embedded into the abstraction hierarchy by allowing for the propagation of belief values 
between elements at different levels of abstraction. The system has been implemented as a 2- 
panel, 5-level blackboard in OPS 83. This report also discusses the control aspects of the black
board, achieved via a distributed monitor using the OPS83 demons and a scheduler. Various 
knowledge sources for forming groupings in the image data and for labeling such groupings 
with abstractions from the scene expectation map are also discussed.



CHAPTER 1 

INTRODUCTION

This report is an expanded version of the discussion published earlier on PSEIKI, a sys
tem for expectation-driven scene interpretation [AndKak88]. In addition to elaborating upon 
some of the points that were only tersely mentioned in the earlier publication, this report also 
presents an upgraded version of PSEIKI that can handle both region-based and edge-based 
symbolic representations of images. The acronym PSEIKI stands for a Production System 
Environment for Integrating Knowledge with Images.

PSEIKI can be used for expectation-driven interpretation of vision data in any domain 
where a good estimate of the expected scene is available. For example, for the navigation of a 
self-guided munition, PSEIKI could be used to compare an image of the terrain with a map of 
the terrain; the results produced by PSEIKI could then be used to yield an updated fix on the 
location of the munition. In more industrial applications, PSEIKI could be used to verify file 
location and orientation of an object by comparing its 2-D image with a description of the 
expected scene generated from CAD data. Such verification systems are expected to play an 
important role for monitoring the progress of assembly robots. i

PSEIKI was originally developed for integrating the global map information with vision 
data to aid navigation for an autonomous mobile robot [KakRob87]. In this problem, the 
robot’s task is to traverse a known network of sidewalks. The primary source of information 
on the location of the robot is a set of encoders mounted on the wheels; however, due to slip
page in the wheels, there is always an uncertainty in the exact location of the robot. PSEEKI’s 
task is to compare the visual image of what the robot sees with the stored map knowledge and 
obtain an updated position fix on the robot. To simplify this problem of self-location, the cam
eras on the robot were aimed such that the robot could only see in its immediate vicinity, mak
ing for a near-sighted robot.

As a simple illustration of PSEIKI’s integration of image and expected scene information 
in the context of self-location of a mobile robot, consider Fig. 1.1. If panel (a) of this figure is 
a graphic rendition of an expected scene and panel (b) a depiction of the edges found in the 
vision data collected for the scene, then PSEIKI would produce an output similar to the one in 
panel (c), where the labels attached to some of the edges and their corresponding belief values 
are shown. For example, the label ’right:35%’ means that PSEIKI has found the expected- 
scene edge labeled ’right’ in panel (a) to be compatible with the lower right edge in panel (b) 
with a belief of 35%. In this case, the rest of the belief, 65%, would be apportioned either to 
this particular label being incorrect or to the system professing ignorance on the subject of 
assigning a label to this edge in the vision data. The reader might note that the edge labeled 
’top:38%’ actually corresponds to two edge segments in panel (b). This merger of nearly com
patible edges in the vision data is one consequence of various tests PSEIKI makes for internal
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graphic rendition of an expected scene with edges labeled. Panel (b) shows a simple example of the 

Output of an edge based preprocessor which PSEIKI would use as input data. Panel (c) shows the final 

output of PSEIKI, with labeled edges and the labels’ belief values in the most plausible interpretation of 
the scene. The confidence value attached to the overall interpretation of the scene is also shown.

geometric consistencies in the vision data.

The match information generated by PSEIKI is expressed by labeling the image-elements 
with the identities of the corresponding model-elements; a belief value indicating the 
confidence of the match found is attached to each label. The Dempster-Shafer theory of evi
dence is used to accumulate evidence about the certainty of the matches made, a particular 
advantage of using this formalism being that if a grouping from the image data is too distant or 
too dissimilar from its correspondent in the^expected scene, the system is capable of expressing 
ignorance for such unlikely associations. To overcome the exponential explosion usually

A Bayesian would probably insist one could use low belief values when one is comparing 
dissimilar or distal groupings in the image data on the one hand and the expected scene on the ;



associated with the Dempster-Shafer formalism, a computationally efficient variation of 
Dempster’s rule is used to combine evidence about the labels. This variation of Dempster’s 
rule also allows the reasoning process to exploit the hierarchical nature of the integration task. 
For example, the belief value associated with the top level of the hierarchy is considered to be 
the confidence in the entire matching process; if this belief value does not exceed a threshold, 
the matches found are rejected.

Although the original version of PSEIKI, as reported in [AndKak88], was edge based, 
meaning that both the input image data and the expected scene data had to consist of edge 
descriptions, the newer version reported here can also handle region-based image inputs 
directly. However, even when the an image is input into PSEIKI in a region based form, the 
system still exploits edge level information by treating the boundaries between regions as 
edges and matching them with edges in the expected scene. We believe that if the edge level 
information was completely ignored for region based inputs to PSEIKI, the resulting evidence 
accumulation processes would become weaker, meaning that the system would make weaker 
assertions about labeling the image regions with entities from the expected scene. As a 
perhaps poor analogy, given blurry images of, say, a horse and a cow, it may be hard to make a 
distinction between the two. What we are trying to say is that even in region-based processing, 
edge level information is not ignored.

PSEIKI groups low-level image-elements into higher level constructs by taking cues from 
the supplied abstractions in the expected scene. For example, if PSEIKI’s low-level preproces
sor provides edge information to the system, then PSEIKI would group compatibly labeled, 
adjacent edges into faces. Once these higher level image-elements are formed, PSEIKI can 
then match them with high-level model-elements. The following list enumerates the levels of 
data abstraction present in PSEIKI and describes the data residing on each level.

Level 5:
Scenes -- The entire scene (expected or observed) is represented on this level. The scene 
is defined as the union of all objects in level 4 of the hierarchy. This level provides a way 
of labeling multiple objects that otherwise would not be possible. The confidence of the 
match made on this level is interpreted as the confidence in the entire matching process 
and is used to determine if the matching process has succeeded.

Level 4:
Objects — Each element on this level corresponds to a distinct physical object. An object 
is defined as the union of its boundary faces from level 3.

other. We do not dispute that. However, our experience has shown, and as will be illustrated by 
the discussions in the report, when belief values must be generated from the rather ad hoc 
measures of geometric compatibility and when such belief values must be normalized for obvious 
reasons, expressing ignorance by withholding belief becomes a convenient aspect of evidence 
accumulation — something that is not allowed in a Bayesian formalism.
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■ Level 3:
Faces — The elements on this level represent the polygonal faces that form boundary 
representations of the observable portions of objects. In image data, a face corresponds to 
a region in the image; in range data, surfaces are stored on this level.

Level 2:
Edges — These elements represent edges detected in the sensor data; they are used to 
form the boundaries of the faces in level 3 of the hierarchy.

Level 1;
Vertices — The vertices are the endpoints of the edges from level 2. They can be 
expressed either in world or image coordinates depending on the type of data they 
represent

Fig. 1.2 shows how a simple scene, a single block, can be broken down hierarchically. 
Each element in this hierarchy is defined by its parts on lower levels. This figure demonstrates 
how an object can be defined in terms of its bounding faces and how a face can be defined by 
the group of edges which form its border.

PSEIKI exploits geometric relationships between data-elements at the above levels of 
abstraction in the reasoning process. Initial matches between image data and model data are 
formed by noting geometric relationships between image-elements and model-elements. For 
example, an image-edge will be matched with the model-edge that comes the closest (in some 
sense) to lying along the same line in the world coordinate frame. To find the match partner of 
an image-edge, PSEIKI measures the degree of collinearity between the edge and all the 
model-edges in the vicinity in the world frame; it then chooses as the match partner the 
model-edge with which the image-edge is most collinear. The belief of the match made then is 
then made proportional to the degree of collinearity between the two edges.

After the initial matches are made, the extent to which image elements satisfy spatial con
straints, dictated by the model information, is used to update the beliefs associated with the 
assignment of particular model labels to image data. In general, two metrics are required to 
measure the degree to which image-elements meet these constraints. The two metrics must 
provide measures of compatibility and incompatibility between image-elements given the spa
tial relationships amongst their matched model elements. The compatibility metric provides 
evidence that an element’s label is correct, and, conversely, the incompatibility metric pro
vides evidence that an element’s label is incorrect, both from the standpoint of how well the 
model generated constraints are satisfied. For example, two edges that have the been matched 
with the same model-edge should lie approximately along the same line. Thus the compatibil
ity metric for edge-elements with the same label, collinearity(edge], edge2), measures the 
degree to which the two edges lie along the same line. This collinearity metric is closely 
related to the measure used to establish initial edge labels, but it is not identical to that meas
ure. The edge-level incompatibility metric, noncollinearity(edge!, edge2), measures the
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FIGURE 1.2 This figure shows how a simple scene can be broken down hierarchically into Objects, faces, edges 

and vertices.

degree to which two edges do dot lie along the same line. Of course, different 
(in)compatibility metrics must be used at each level of abstraction. For example, the metrics 
that are used to compute the (in)compatibility between two faces on the data panel are based



on the distance between the two faces’ centroids. The metrics used to determine matches and 
the mechanisms for updating the belief of those matches are discussed in detail in chapters 5 
and 6.

An important aspect of evidential reasoning in PSE1KI is the propagation of beliefs up 
and down the abstraction hierarchy. The propagation of belief values towards the higher 
abstraction levels is based on the rationale that any evidence confirming a data element’s label 
should also provide evidence that its parent’s label is correct. Propagation of beliefs to lower 
levels is based on the intuitive idea that if, say, a face is mislabeled, then all its Constituent 
edges are also most likely mislabeled.

Although PSEIKI currently is restricted to performing expectation-driven processing on 
image data, it can also be extended to perform expectation-driven processing on range data. 
This extendibility stems partially from the independent nature of the blackboard knowledge- 
sources; the system can be extended by updating or adding a few knowledge sources without 
worrying about the effect of the extension on the operation of the existing knowledge sources. 
The system’s extendibility also stems from the generic way that PSEIKI treats its data; the data 
structure that is used to store data-elements can be used to store elements generated by range 
sensors. Furthermore, the opportunistic nature Of blackboard processing can be exploited to 
tune PSEIKI’s flow of control for particular sensors or applications. At the present time, a lim
itation of PSEIKI is that the expectated scene must be described as an abstraction hierarchy 
over piecewise-linear edge segments. This implies that any curved boundaries in the scene 
must be approximated by piecewise linear forms.

In its present configuration, PSEIKI has been implemented in OPS83 as a 2-panel / 5- 
level blackboard, as shown in Fig. 1.3. The left panel, called the model panel, holds the 
abstraction hierarchy for the expectated scene, and the lower levels of the right panel, called 
the data-panel, are supplied with the image data after it is reduced to a symbolic level. For 
region-based implementations of PSEIKI, the region level symbolic information from the input 
image is fed directly to the face level of the data panel. Each level in the blackboard 
corresponds to one of the levels of data abstraction discussed earlier. Thus each blackboard 
panel contains the following abstraction levels: scenes, objects, faces, edges and vertices. 
Each element on the blackboard, except for vertices, is defined by a finite collection of lower- 
level elements.

PSEIKI has four main knowledge sources (KSs) that it uses to establish correspondences 
between image-elements and model-elements: labeler, grouper, splitter, and merger. The 
grouper KS determines which data-elements at a given level of the hierarchy should be 
grouped to form a data-element at a higher level. The merger KS also groups elements; how
ever, its job is to merge multiple elements at a given level and retain the grouped information 
at the same level. For example, the grouper KS may group together a set of edges into a face; 
while the merger KS may group together a series of short edge segments into a longer
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FIGURE 1.3 This figure shows the current configuration of PSEIKI’s architecture.

segment, or a set of faces into a single larger face. The splitter KS performs the opposite 
action of the merger KS; it splits a single element on the blackboard into multiple smaller ele
ments . The labeler KS has the responsibility of establishing model to data correspondences at 
all levels of the blackboard, and to accumulate evidence on the validity of those correspon
dences. Each of these KSs can operate at any level of the blackboard by using level-specific 
actions.

As was mentioned before, the input image is first preprocessed and then deposited into 
the lowest two or three levels of the data panel. The type of preprocessing performed by a 
low-level systems determines the blackboard levels on which the data is deposited. The sym
bolic information produced by edge based preprocessors is deposited directly at the vertex and 
edge levels of the data panel. On the other hand, for preprocessors that are capable of

For those familiar with our earlier publications on PSEIKI, the merger and the splitter KSs in the 
current implementation are a ‘generalization’ of the data-reduction KS in the earlier version of the 
system. The data-reduction KS could only operate at the edge level of the blackboard and its 
function was to merge edge segments into longer edges and to delete short segments. On the other 
hand, the merger and the splitter KSs can merge and split information at all levels of the 
blackboard.



producting region type outputs, the additional information is fed directly into the face level of 
the data panel. This additional input has been depicted by a dashed line in Fig. 1.3. Some 
low-level systems that can be used to generate input data for PSEIKI are presented in chapter 
3. Model data is deposited onto all levels of the blackboard because we assume that perfect 
knowledge of the expected scene is available.

Work related to PSEIKI will be discussed in the next chapter; a survey of some previous 
knowledge-based computer vision systems will be presented there. In Chapter 3 we will talk 
about the type of preprocessing that must be carried out before an image can be fed into 
PSEIKI; in this chapter, we will also show the data structures used for describing the image 
elements (the same data structures are used for model elements). Chapter 4 will focus on the 
generation of expectated scene information and will briefly discuss a couple of CAD systems 
we have used for this purpose. Chapters 5, 6, 7 and 8 are used to describe PSEIKI in detail. 
Chapters 5 and 6 are used to present the techniques used in the labeler KS to generate and 
accumulate evidence for correspondences between the data and the model elements. In partic
ular, chapter 5 is used to describe a hierarchically based evidence accumulation scheme based 
on the Dempster-S hafer framework; chapter 6 demonstrates how geometric constraints can be 
used to generate evidence about the matches found between elements. The grouper, splitter 
and merger KSs are discussed in chapter 7. Chapter 8 is used to discuss the implementation of 
the blackboard in OPS 83; the data structures and the flow of control on the blackboard will be 
examined. Complexity issues of blackboard processing are addressed in chapter 9. Finally, 
some preliminary experimental results are presented in chapter 10.

-9- andress/kak



CHAPTER 2

RELATED WORK ON SPATIAL REASONING

It is now realized that for a computer vision system to be able to make scene interpreta
tions in complex environments, the spatial reasoning involved must utilize domain knowledge. 
Yet, systems that are too domain specific tend to solve problems that are rather narrow in their 
scope, and given the amount of effort it takes to program such systems, their payoffs tend to be 
rather limited. In designing PSEIKI, our aim was to create a spatial reasoning tool that would 
be as domain independent as possible. Clearly, what we have in mind is that a powerful tool 
like PSEIKI would be used by a higher level, but more domain specific, system for comparing 
scene expectations with vision data. The higher level system could also guide the inference 
mechanisms by controlling the various policies used by PSEIKI, such as the policy regarding 
the priority given to the different KSs, etc. Since our current efforts are focussed on PSEIKI 
itself, we have not yet addressed how PSEIKI would be embedded in higher level systems that 
are more domain specific.

In this chapter, we will briefly survey what has been done to date in the development of 
knowledge based Systems for image understanding. r

An early model-based image understanding system is described by Brooks in [Bro81]; the 
task of this system, ACRONYM, consists of finding instances of known objects in the image. 
To perform object identification, the system first builds an Observability Graph that specifies 
information about objects that could be in the image; generalized cones are used to represent 
these model objects. The system then builds a Picture Graph of the image and identifies 
instances of objects in the image by matching nodes of the Observability Graph with sets of 
nodes in the Picture Graph. The objects in the Observability Graph are represented in slot - 
filler structures where any slot that can accept numeric values can also accept algebraic con
straints expressed as inequalities. The system then can manipulate these constraints and deter
mine if they are met by properties of objects detected in the image. ACRONYM uses only 
backward chaining in the matching process and does not incorporate inexact reasoning.

The SIGMA image understanding system for aerial interpretation was first described in 
[MatHwa85] and later developed in [DavHwa85]. The system represents its object classes 
hierarchically using frames and uses both forward and backward chaining to arrive at an 
interpretation of a scene. Furthermore, the system is able to integrate hypotheses about 
specific objects in the scene. The system does not use uncertain reasoning, but instead is able 
to control its focus of attention based on the strength of a situation.

Another aerial interpretation system is described by Nagao and Matsuyama [NagMat80]; 
the system is based on the blackboard architecture and uses multispectral images in the 
interpretation process. To accomplish the interpretation task, the system first performs a global
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survey of the entire image and labels regions without using domain specific knowledge. The 
characteristic regions that it finds, such as water, vegetation, roads, etc., are then used to gen
erate context information for further blackboard processing. This processing consists of a 
detailed analysis of local areas in the scene using context information provided by the charac
teristic regions and applying context specific object detection subsystems.

SPAM, a system designed by McKeown, Harvey and McDermott also is an aerial image 
interpretation system [MckHar85]. The system originally was constructed to interpret airport 
scenes but has been expanded with a rule generator so it now can interpret scenes from other 
domains, SPAM uses confidence values to aid in labeling and can manipulate these values 
based on the consistency of the various labels.

VISIONS (Hanson and Riseman) is another blackboard expert system designed to 
analyze color images [HanRis78]. The system uses a flexible control scheme, hierarchical 
scene representation, and a number of knowledge sources to accomplish the scene interpreta
tion task; VISIONS is domain independent, but schemas can be used to tune the system for a 
particular application.

Nazif and Levine describe an expert system based image segmenter in [NazLev84]; the 
system was designed to provide a framework that would allow the combination of edge, region 
and area based segmentation techniques. With these segmentation techniques, the segmenter 
can split and merge regions, link and break edges and operate on image areas based on features 
of the elements. The system is rule-based and stores its rules in a global long term memory; 
the image data undergoing segmentation is operated on in a short term memory, The expert 
system, which contains a set of metarules, can focus its attention on interesting areas of the 
image. Many of the processes described in this work are used by PSEIKI to group, split and 
merge elements on its blackboard.

PSEIKI differs from the above knowledge-based Systems in the following three main 
areas: First, PSEIKI’s task differs from those of previous systems. Most of the other systems 
were designed to find object instances in the image and, through such discoveries; to arrive at a 
global interpretation of the image. PSEIKI’s task is limited to integrating image data with 
expected scene information - it generates consistent labels, with associated belief values for 
the data-elements. Of course, since PSEIKI is limited to matching data-elements, a higher 
level system is required to make a global interpretation of the scene content.

PSEIKI differs from SPAM and SIGMA, and to a certain extent VISIONS, in not relying 
on domain-dependent information . For example, SPAM uses airport design knowledge when
*—- - - - - - - - - - - - • ' . V ' ■ .

In the context of this report, a system is called domain dependent when domain-specific 
knowledge is embedded in various components of the inference engine, such as the rules or the 
knowledge-sources. PSEIKI is domain independent in this sense; the context information that 
PSEIKI uses is encoded entirely in the form of the graphic rendition of the expected scene.
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interpreting airport scenes. Context-cues also have been used extensively in past computer 
vision systems. For example, if SIGMA detects a driveway irt an image, it then would search 
for a house and for roads connected to the driveway. Because PSEIKI is provided with a good 
estimate of the expected scene, it does not have to perform inferences of this type. Although it 
might be said that context-cues are indispensable for scene interpretation because they make 
deductions more powerful, their use necessarily introduces some domain dependence. There
fore, it is our philosophy to separate the generation of the mapping from the formation of an 
overall interpretation of the scene. If the use of context-cues is desired by a system using 
PSEIKI, then it is up to the higher level system to provide PSEIKI with a graphic rendition of 
the expect scene incorporating the information contained in the cues.

PSEIKI also differs from previous systems in its method of performing inexact reasoning. 
Many systems, including ACRONYM, SIGMA and the system by Nazif and Levine use no 
uncertain reasoning in the image interpretation process. Because of the overwhelming amount 
of data in an image, most of the inexact reasoning schemes used in the past have employed 
simple combination schemes in order to keep from becoming bogged down in certainty value 
computations. On the other hand, inexact reasoning in PSEIKI is based on the Dempster- 
Shafer formalism in a tangled hierarchical space. The use of a hierarchy curtails the number of 
uncertainty calculations and is made possible by the use bf the blackboard architecture.
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CHAPTER 3
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PREPROCESSING OF INPUT VISION DATA

The image to be interpreted must first be converted into a symbolic form before it can be 
deposited on the lowest two or three levels of the data panel of the blackboard. This chapter 
will focus on the preprocessing steps that we use for this conversion to symbolic form. In this 
chapter, we will also describe the the format in which PSEIKI expects to see the input sym
bolic data. The same format is also used to pass expected scene information to PSEIKI, more 
on that in Chapter 4.

The chapter will describe two image segmenters, one is edge-based and the other region- 
based. The former is used for generating edge-based symbolic descriptions of the input image, 
and the latter for region-based symbolic descriptions. The two segmenters described here are 
presented only as examples of systems that can generate input data; because they both use well 
known techniques, they will not be described in any great detail. Furthermore, no claim of 
optimality for any of the presented systems is made. In fact, for PSEIKI to be a truly general 
expectation-driven vision system, it should be robust enough to overcome any peculiarities of 
these or most other low-level preprocessors. Thus, if improved low-level preprocessing tech
niques become available in the future, PSEIKI should be general enough to use the segmenta
tion produced by the new preprocessors.

3.1. Format of Input Data

PSEIKI expects to see its input data as an ASCII text file with each line corresponding to 
a separate data element, as shown in Fig. 3.1. The fields used in the data files are self- 
explanatory. The first field on a line following the *+’ specifies the level of the blackboard 
onto which the element is deposited. All other fields are specified by keyword - data pairs; the 
data part of some fields can hold multiple values. For example, the data part of the children 
field can specify that an element has more than one child. The id field is used to specify a 
unique identification number for a data element; each element on the blackboard is referenced 
via its id number. The element’s children field specifies the sub-elements that are used to 
build it; for example, an edge has two children — its end vertices. If an element is a vertex, its 
location may be specified in one of two ways. If the vertex is on an image plane, its location 
must be specified via the row and col fields. However, if the vertex is to be specified in three- 
space, the coordinate field is used to specify its location in world coordinates; the data part of 
this field holds three values — the x, y and z values of its location. Any text appearing after a 
semicolon is considered to be a comment and is ignored. Besides the fields shown in Fig. 3.1, 
there are a number of optional fields that the low-level systems can use to provide additional
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+ object id 1 children 2 3 4 ; object A

+ face id 2 children 5 6 7 8 ; face A
+ face id 3 children 7 9 10 12 ; face B
+ face id 4 children 8 10 11 13 ; face C

+ edge id 5 children 14 15 ; edge A
+ edge id 6 children 14 16 ; edge B
+ edge id 7 children 15 17 ; edge C
+ edge id 8 children 16 17 ; edge D
+ edge id 9 children 15 18 ; edge E
+ edge id 10 children 17 20 ; edge F
+ edge id 11 children 16 19 ; edge G
+ edge id 12 children 18 20 ; edge H
+ edge id 13 children 19 20 ; edge I

+ vertex id 14 coordinates 1.0 1.0 1.0 ; vertex A
+ vertex id 15 coordinates 1.0 0.0 1.0 ; vertex B
+ vertex id 16 coordinates 0,0 1.0 1.0 ; vertex C
+ vertex id 17 coordinates 0.0 0.0 1.0 ; vertex D
+ vertex id 18 coordinates 0.0 1.0 0.0 ; vertex E
+ vertex id 19 coordinates 1.0 0.0 0.0 ; vertex F
+ vertex id 20 coordinates 0.0 0.0 0.0 ; vertex G

FIGURE 3.i Sample data file demonstrating PSEIKI’s input data file format

information to PSEIKI. The value field can be used to provide PSEIKI with a level specific 
value; for example, this field can be used to indicate an edge’s average strength or a region’s 
average grey level. Likewise, the size field can provide PSEIKI with level specific size infor
mation (e.g. region area, edge length, degree of a vertex).

The input data presented by the edge-based preprocessor is deposited on the edge and 
vertex levels, in this description the vertices may be described by either the image based coor
dinates or their 3-D world coordinates. On the other hand, in addition to the edge and vertex 
level information, the region-based preprocessor also, feeds information at the face level. The 
data on the face level represent the regions extracted by the segmenter; the borders between 
these regions would be represented as edges, and would be described at the edge level. Finally, 
the vertices associated with the edges would be input at the vertex level.



3.2. An Edge Based Image Preprocessor For PSEIKI

Edge detection is a common technique used in image segmentation and other low-level 
image processing [RosKak82|, [BalBro82]. However, the most common edge detection pro
cess, which consists of thresholding the output of a gradient type window operator, is incapa
ble of generating input data directly for PSEIKI. This is due to the difficulty encountered 
when converting thick edges produced by this process to the symbolic form required by 
PSEIKI. Although iterative methods are available to reduce the widths of these edges, they are 
prohibitively time-consuming [RosKak82], [Ebe76], [BalBro82]. Ridge-tracking is another 
method that can be used for edge detection [WatArv87]. A variation of the ridge-tracking 
algorithm described in [Kim88], which lends itself to the conversion of edges into a form 
usable by PSEIKI, will be described in this section. A modification of the original algorithm 
was necessary due to PSEIKI’s requirement that all of its input data be represented symboli
cally. The original algorithm’s inability to find edge intersections also has been corrected in 
PSEIKI’s preprocessor. There are a number of steps to the modified segmentation process.

1) First, a window-based gradient operator is applied to the image; the Sobel operator is 
used in the current system [RosKak82], Since the ridge-tracking algorithm uses only gra
dient magnitude information, the direction of the gradient is not computed.

2) After the gradient operator is applied to the image, every pixel above a user-specified 
threshold is stored in a list; this list of pixels is called the threshold list. Since the system 
only works on pixels in this list (usually between 5% and 10% of the total number of pix
els), the required amount of work is drastically reduced.

3) To reduce the algorithm’s noise sensitivity, all pixels in the threshold list are averaged 
with their eight closest neighbors.

4) The next step in the process consists of finding all edge endpoints; eventually, these pix
els correspond to vertices on PSEIKI’s blackboard. To find these elements, the notion of 
the degree of one dimensional maximum (DODM) is used. Each pixel has four pairs of 
neighbors — horizontal neighbors, vertical neighbors, and neighbors in two diagonal 
directions. The DODM of a pixel is the number of pairs of neighbors in which both 
neighbors have lower values than the pixel itself. Fig. 3.2 demonstrates this concept; the 
DODM for the center pixel, “C”, is defined to be the number of cases in which it is 
larger than both of its two neighbor pixels, “N”. The center pixel of the image neighbor
hood shown in Fig. 3.3 has DODM 2 since it is larger than its four neighbors in the hor
izontal and vertical directions. All pixels in the threshold-list with DODM of three or 
four are considered to be edge endpoints.

5) It is in the next step in segmentation that the ridge-tracking process actually occurs. Two 
image structures are used to aid in this ridge-tracking process; these image structures are 
called the edge and mark arrays. The edge array is used to record the pixels that have
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FIGURE 3.2 This figure demonstrates the concept of the Degree of one Dimensional Maxima (DODM).

The DODM for the center pixels is defined to be the number of cases (1-4) in which the center 

pixel “C” is larger than both adjacent pixels “N” along a line.

FIGURE 3.3 The DODM of this example image neighborhood is 2 because the center pixel has a larger 

value than its horizontal and vertical neighbors.

been determined to be endpoints or parts of an edge. If the value of a pixel is nonzero in 
the mark array, then the pixel is said to be marked and the tracker will not follow the edge 
onto that pixel. This technique is used to keep the tracker from backtracking onto pixels 
recently determined to be part of the edge. Another concept that is used in the tracking 
process is called the current(i) pixel; this is the ridge pixel that was determined, at time i, 
to be part of the edge. The tracking process is described below.

5a) Let i = 0. Obtain an endpoint vertex found in step 4 of the process and designate this as 
the current(O) pixel. In the edge array, label this pixel as an endpoint and mark this pixel 
in the mark array (by setting the value of the pixel in the mark array to nonzero).

5b) In the edge array, label the current(i) pixel (if i * 0) as an edge pixel and let i - i + 1.

5c) Choose the eufrent(i) pixel in the following manner: If there is an unmarked endpoint or 
edge pixel adjacent to the current(i - 1) pixel in the edge array, choose this unmarked 
pixel as the current(i) pixel, designate it as an endpoint in the edge array, and stop the 
tracking process. Otherwise, find the next pixel in the edge by finding the largest 
unmarked pixel which is adjacent to the current(i - 1) pixel and has DODM > 2. Label 
this pixel as current(i), add it to a list of pixels that denote the edge, and designate it as an



edge in the edge array. If there exists no pixel fitting this description, then the edge 
"died;" designate the current(i - 1) pixel as an endpoint and stop the tracking process.

5d) Unmark the current(i - 2) pixel and its eight neighbors.
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5e) Mark the current(i — 1) pixel and its eight neighbors.

5f) Go to step (5b).

The original algorithm never unmarked pixels after they were marked; this 
prevented the system from finding junctions between edges. By unmarking pixels when 
there is no possibility of the ridge-tracker backtracking onto freshly labeled edge pixels, 
these vertex pixels can be found. If the number of pixels in an edge is less thari a user 
specified threshold, then the list is deleted and all pixels in the edge matrix are reset to 
their original state.

A few iterations of the tracker at step (5e) are shown in Fig. 3.4 to demonstrate how the 
tracking algorithm works. In this illustration, the pixels in boldface have been labeled as 
belonging to the edge. The shading denotes pixels that have been marked on the current itera
tion of the tracking algorithm.

6) The final step of the segmentation process is the fitting of piecewise-linear segments to 
the lists of edge pixels. This step is based on a process described in [DudHar73] and also 
used in [NavBab80]. This step also requires a user-specified parameter — the maximum 
fitting error, Emax. In this process, a line, called the model line, is drawn between the two 
endpoints of an edge; then the edge pixels are followed (by traversing the list of edge pix
els) and the distance between the individual pixels in the edge and the model line is com
puted. If the distance between every pixel and the line is less then Emax, then the edge 
can be represented by the model line. However, if any pixels are greater than Emax away 
from the model line, then the pixel that is the farthest from the model line is considered to 
be a new endpoint and the line fitting algorithm is called recursively (once for each edge 
between the new endpoint and the old endpoints). The line fitting process is shown in Fig 
3.5; in this example, the line-fitting process breaks the line into two piecewise linear seg
ments.

The segmentation process, including the intermediate steps, is shown in Figs 3.6 and 3.7. 
Fig. 3.6 demonstrates the process when applied to an image typical of those taken by a mobile 
robot with downward pointing cameras. Fig. 3.7 demonstrates the process when applied to an 
industrial scene. In each of these two figures, panel (a) shows the original image; panel (b) 
shows the magnitude of the gradient as found by the Sobel operator, and panel (c) shows the 
edges that were traced by the ridge-tracking algorithm. Panel (d) shows the final output of the 
segmenter after it has converted the edges in panel (c) into piecewise-linear segments.
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(b)
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(d) .. .

FIGURE 3.4 This figure demonstrates the marking of pixels in the ridge-tracking algorithm. The boldface pixels 

represent edge pixels and the shaded pixels are marked.

This process is fairly efficient due to the use of linked lists to represent the edges. The 
segmenter was applied to a set of 512x480 test images; the system was able to segment an 
image (perform the Sobel operation, threshold, smooth, ridge-track and Convert to symbolic 
form) in an average of 45 seconds on a lightly loaded SUN/3.

3.3. A Region Based Image Preprocessor For PSEIKI

As was mentioned before, PSEIKI can be driven in two modes: in the first mode the 
input image is first reduced to an edge-based description and the resulting description used for 
deriving abstraction hierarchies; in the second, mode abstraction hierarchies are built on top of
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(a) original image (b) image after applying sobel operator

(c) edge found by ridge follower (d) edges after conversion to piecewise-linear segments

FIGURE 3.6 This figure shows the intermediate and final output of the edge-based preprocessor when applied to 

an image typical of those gathered by a mobile robot with downward pointing cameras.
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(a) original image (b) image after applying sobel operator

(c) edge found by ridge follower (d) edges after conversion to piecewise-liriear segments

typical image of an industrial scene.
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FIGURE 3.5 This figure demonstrates how a sample edge could be broken into two piecewise-linear 

segments by the line fitting algorithm. Since the edge falls outside the Emax boundaries in (a), 

the line is split into two in (b) where the edge lies within the Emax boundaries.

region-based descriptions of the input image. For the second mode of operation, we use a seg- 
menter based on region growing ideas first advanced in [BriFen70] and later further developed 
by Horowitz and Pavlidis in [HorPav76]. Our implementation differs from that described in 
[HorPav76] in that we use the quadtree data structure that has become rather popular since the 
original algorithm was published. The quadtree data structure, a well known tool for 
representing binary images [Sam84a, Sam84b], has been extended in this application to 
represent greyscale images. There are a number of steps that the region growing process uses 
to generate the final segmented image.

1) The segmenter’s first step is to break the image into a data structure called a greyscale 
quadtree. A greyscale quadtree is a simple extension of the binary quadtree in which 
every leaf is maximal and satisfies a constraint (a leaf is maximal if it is not part of a 
larger leaf that satisfies the constraint). In this segmenter, a group of pixels is allowed to 
be grouped into a leaf of a quadtree if



max f(x, y) - min f(x, y) L <2e (3 1)
x, y x, y

where f(x, y) denotes the brightness function of the image and x, y are allowed to range 
over the entire leaf; epsilon is a user-supplied parameter. In the original algorithm, this 
process required an iterative split-and-merge procedure. However, with the use of the 
Morton matrix [Mor66], [Sam84a] the quadtree can be built without any iterations. By 
visiting the pixels in the order defined by the Morton matrix, the building of a leaf can be 
postponed until it is certain that no larger leaf node satisfying constraint (3.1) is possible. 
Fig. 3.8 shows an example of an 8x8 Morton matrix.
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1 2 5 6 17 18 21 22

3 4 7 8 19 20 23 24

9 10 13 14 25 26 29 30

11 12 15 16 27 28 31 32

33 34 37 38 49 50 53 54

35 36 39 40 51 52 55 56

41 42 45 46 57 58 61 62

43 44 47 48 59 60 63 64

FIGURE 3.8 An example of an 8 by 8 Morton Matrix.

Note that the Morton matrix does not have to be stored explicitly to guide the traversal of 
the image in the order that it prescribes. An image can be traversed in the correct order 
by recursively visiting the four quadrants of the image in the following order: northwest, 
northeast, southwest and southeast.

2) The segmenter’s second step is to merge adjacent quadtree leaves into regions. Adjacent 
leaves are merged into a region only if the region formed also satisfies constraint (3.1). 
Regions of the image are represented using the tree based UNION-FIND data structure 
described in [AhoHop74].

3) The third step in the process is the merging of adjacent regions whose average greyscale 
values differ by less then a user specified threshold.

4) At the end of these processes there may exist very small regions that should be elim
inated; for example, many of these regions are generated by shot noise and are only a sin
gle pixel large. Each small region is merged with the neighboring region whose average 
grey level is closest to its own.



5) The segmenter’s final step is to convert the segmented image into a format usable by 
PSEIKI. This is accomplished by first finding all the borders between regions; these 
border-elements are then converted into piecewise-liner segments using the process dis
cussed in the previous section. The endpoint pixels are output as vertex-elements for the 
blackboard; likewise, the borders and regions are output as edges and faces respectively.

The segmentation process, including the intermediate steps, is shown in Figs. 3.9 and 
3.10. These two figures demonstrate the region growing process when it is applied to the sam
ple images described in the previous section. In each of these two figures, panel (a) shows the 
original image; panel (b) Shows the quadtree leaves generated by step 1 (the grey-levels in 
these images are arbitrarily generated and are used to help the reader distinguish between adja
cent regions). Panels (c), (d) and (e) show the regions after steps 2, 3 and 4 are used to gen
erate and merge regions. Panel (f) shows the region borders after they are converted into 
piecewise-linear segments.

This segmenter is slightly less efficient than the edge-based process; however, the system 
was able to segment 512x480 images in less than two minutes on a lightly loaded SUN/3.
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(a) original image (b) greyscale quadtree

(c) regions after max-min merging (d) regions after merging based on averages

(e) final result after merging small regions (f) symbolic output

an image typical of those gathered by a mobile robot with downward pointing cameras.
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(c) regions after max-min merging (d) regions after merging based on averages

(e) final result after merging small regions (f) symbolic output

to a typical image of an industrial scene.



CHAPTER 4

EXPECTED SCENE GENERATION
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Computer graphics systems and CAD systems are two obvious methods of generating 
PSEIKFs expected scene information; this chapter will present two systems used to generate 
model information for PSEIKI. A computer graphics interface is used to generate the expected 
scene information for mobile robotic applications, while a solid modeling package is used for 
more industrial domains. Any modeling tool that is used for expected scene generation must 
possess the capability for hidden line removal. Also, the modeling tool must output its infor
mation in the same format that was described in Section 3.1. Note that while the symbolic 
information that is input on the data panel has at most two or three levels initially, the expected 
scene has to be described as a hierarchy containing descriptions at all levels.

4.1. Expected Scene Generation for Sidewalk Navigation Applications

For sidewalk-navigation applications, a simple 2D graphics program is used to generate 
PSEIKI’s expected scene information from stored sidewalk maps. In this system, the sidewalk 
maps are stored in a graph data structure. The links in this graph represent straight sections of 
the sidewalk and nodes represent the endpoints of the straight sections. Associated with each 
node is an (x, y) pair designating the coordinates of the sidewalk junction corresponding to the 
node; thus, the centerline of a straight section of sidewalk is the line that connects the coordi
nates of its two junction nodes. Associated with each link of the graph is a numerical value 
that specifies the width of the corresponding segment of the sidewalk. This is enough informa
tion to completely specify a sidewalk map.

Fig. 4.1 illustrates the steps involved in the generation of a symbolic description of the 
expected scene from the graph data structure. The first step involved in generating the 
expected scene information is the extraction of the edges of the sidewalk from the graph data 
structure. It is a trivial task to determine the lines defining the edges of a straight section of the 
sidewalk because both the section’s width and its centerline are known. A more difficult prob
lem is encountered when trying to determine the location of the vertices corresponding to the 
intersection points of the edges of the sidewalk. These are determined by the following algo
rithm. First, we associate four vertices with each link in the graph corresponding to the two 
endpoints of each of its two edges. For example, we associate the vertices P, Q, R and S with 
the link AB as shown in Fig. 4.2. Vertices P and Q are obtained by analyzing node B, whereas 
vertices R and S are obtained by analyzing node A. Consider node B first. The graph is 
searched for all the links that meet at B; the angle that each link subtends with the link AB, 
measured in a counterclockwise fashion, is then calculated. We then retain only those links
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FIGURE 4.1 This figure shows a block diagaram of the processes used to generate PSEIKI’s expected scene 

information in a mobile robotic context.

that correspond to the minimum and maximum of these angles. As shown in the figure, links

Clip Edges 

Behind Robot

Determine

Sidewalk Edges

Transform to

Robot Frame

Backproject

Clip Edges 

Outside Image

Transform to

Image Plane

BC and BE correspond to the minimum and maximum angles there, respectively. Now it is 
rather simple matter to compute the location of the two vertices, P and Q, that correspond to 
node B of link AB; for example, the computation of the location of vertex P can be found by 
solving the equations of the straight lines corresponding to the edges SP and PT. Similarly, the 
location of vertices R and S can be computed by analyzing node A. Note that at node A, 
where there is only a bend in the sidewalk, as opposed to a junction, the minimum and the 
maximum angles correspond to the same link, that is the link AF. The pseudo code in Fig. 4.3 
presents the algorithm more formally. The reader should note that this procedure will yield 
each vertex, such as point P in the figure, twice. In this example, the vertex corresponding to 
point P will be generated when node B is considered as belonging to link AB, and then again 
when the same node is considered as belonging to link BC. This duplication at the vertex level 
of the symbolic description is easily eliminated by comparing vertices and dropping one when 
two are found to be nearly identical in terms of their coordinates.

After a symbolic description of the edges in the sidewalk map has been extracted from 
the graph data structure, a “spotlight" function is applied to the description to delete all those 
edges that can not be seen from the robot’s hypothesized location and orientation. To imple
ment the spotlight function, we first generate two homogeneous transformation matrices, one 
that takes a world point into the robot base coordinate frame and the other that takes a point 
from the robot base coordinate frame into the camera image plane. The first matrix, which is 
derived from knowledge of robot’s location and orientation, is used to transform end points of 
edges, such as point P for edge PS in Fig. 4.2, from the world frame into a robot base
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FIGURE 4.2 This figure shows a part of a sidewalk map; it shows the process used to generate a sidewalk’s edges 

from a graph description.

coordinate frame. A clipping operator is applied to the transformed data to delete all those 
edges that are behind the robot. The middle panel of Fig. 4.4 illustrates the edges from die left 
panel that would remain after this clipping operation is applied. Now the second transforma
tion matrix, which is derived from camera calibration parameters, is applied; this transforma
tion is used to project the clipped edges onto the camera image plane. A second clipping algo
rithm is now applied to delete the edges and parts of the edges that fall outside the boundaries 
of the image. The edges from the middle panel of Fig. 4.4 that are not deleted by the final clip
ping operation are shown in the right panel. Note that the edges of the sidewalk are still 
described symbolically at this point; that is, they have not been converted into image form.

If the expected scene is to be expressed in world coordinates, the clipped edges are then 
back-projected into the world coordinate frame. This vertex level and edge level information 
is finally output in the format described in section 3.1. The project/clip/back-project process 
just described has the desired affect of deleting all of the edges that are not visible from the 
robot’s hypothesized location and orientation. If the expected scene is to be expressed in 
image coordinates, then the system outputs the edges in the appropriate format without back- 
projecting them. Although it would be possible to implement the world coordinate spotlight 
function via a simple clipping operation performed in the world coordinate frame, using the
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get_both_edges(LINK, right_start, right_end, left_start, left_end) { 

get_veitices(LINK, start_node(LINK), left_start, right_start) 

get_vertices(LINK, end_node(LINK), right_end5 left_end)

' } '

get_vertices(LINK, NODE, right_vertex, left_vertex) { 

for each link in the graph not equal to LINK {
if (one of the link’s nodes is equal to NODE) 

add the link to the set of intersecting links
}■

sort the intersecting links on the basis of the angle between them and LINK

min_link = link with minimum angle 

maxjink = link with maximum angle

right_vertex = intersect(edge(LINK, right), edge(min_link, right)) 

left_vertex = intersect(edge(LINK, left), edge(max_link, left))

' ) ■

FIGURE 4.3 This figure shows the pseudo code for algorithm used to determine the location of the vertices of a 

section of the sidewalk.

FIGURE 4.4 This figure shows how the spotlight function is used to delete from the expected scene all edges that 

can not be seen from the robot’s hypothesized location and orientation. In the leftmost panel, the 

triangle shows the expected location and orientation of the robot and the unshaded area shows the 

region of the ground visible to the robot’s downward slanted cameras. The center panel shows the 

clipping of the edges behind the robot. The rightmost panel shows the edges remaining after the 

image-coordinate clipping is performed.

project/clip/back-project algorithm allows us to use a single spotlight function for both world 
coordinate and image coordinate output.
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After the low-level information is generated by the graphics system, the model informa
tion on the face level, the object level and the scene level is hand entered by editing the output 
file. On the face level, each connected section of sidewalk and each connected section of the 
ground is considered to be a separate face. These faces are hand grouped onto the single 
object in the scene. To help the operator enter this upper-level information, an image of the 
expected scene, with the grey values of each edge indicating its symbolic id number, is 
displayed at the same time the low-level symbolic output is generated. Generating this image 
is trivial because the spotlight function projects the sidewalk’s edges into the image coordinate 
plane. Hand entering the upper-level information is usually not difficult because the sharp 
down-look angle of the camera limits the complexity of the expected scenes.

As an example of the processing performed by this graphics system, consider the follow
ing figures; Fig. 4.5 shows a simple sidewalk map to be used in this example.

Position 4

Position 1 Position 2

Position 3

FIGURE 4.5 This figure shows the sidewalk map used to generate the expected scene images of figure 4.6. The 

robot’s position for each of the four expected scenes is indicated in the drawing.



Fig. 4.6 shows a sequence of expected-scene images that the system would produce for a 
mobile robot traveling to the middle sidewalk section of the map, turning up that section and 
then turning right.

4.2. Expected Scene Generation for Industrial Applications

A generic solid modeling system is used to generate PSEIKI’s expected-scene data for 
industrial applications. Solid modeling techniques have gained great popularity in the past 
decade for representing geometric objects in a complete and unambiguous fashion. Construc
tive solid geometry (CSG) and boundary-representation (B-rep) are the two most popular 
solid-modeling techniques. In this section, we will first highlight the principles used in CSG 
based modeling and show an example of an object constructed using CSG principles. We will 
then describe the TWIN B-rep modeling system and describe how the system is used to gen
erate PSEIKI’s expected scene information.

Solid objects are created in CSG systems by combining primitive objects using the fol
lowing boolean operators: union, intersection and difference. Fig. 4.7 shows how CSG can be 
used to construct a simple object, a mug, by combining primitive solids using these operators. 
CSG systems usually are restricted to working with regular solids; a set of points, X, is said to 
be regular if it is equal to the closure of its interior, that is

X = ki(X)

where k and i denote the closure and interior, respectively. Because a solid produced by the 
combination of regular solids using the set-theoretic boolean operations is not necessarily reg
ular, CSG systems use regularized boolean operators when combining objects to guarantee 
that the result of the combination will be regular. Fig 4.8 shows how a nonregular object can 
result from the set-theoretic intersection of two regular objects; it also shows the object pro
duced by the regularized intersection of the two objects. The set-theoretic intersection of the 
two faces in panel (a) of Fig. 4.8 is shown in panel (b); note that the result of the combination 
is not regular (because of the "dangling" edge). Panel (c) shows the valid face produced by 
taking the regularized intersection of the two faces in panel (a). The set-theoretic union and 
difference operators have similar problems. The regularized operators, union (^j*), intersec
tion (f''!*) and difference (-*), of two sets, X and Y, are defined as

XU* Y = fc(XUY)

Xn* Y = */(XnY)

X- Y = ki(X-Y)

Most of the concepts used in CSG modeling systems were originally developed for the PADL 
solid modeling system [VoeReq77], [HarMar85].
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position 1

position 3 position 4

FIGURE 4.6 This figure shows some typical expected scenes generated for a mobile robot with downward 

pointing cameras. The scehes depicted in this figure were generated with the map shown in Fig. 4.2.
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Difference

Cylinder

FIGURE 4.7 This figure demonstrates how objects are defined in CSG systems by the boolean combination of 
successively simpler objects. The coffee mug in this figure is defined in terms of two cylindrical 

primitives and one toroidal primitive.

Boundary-representation modeling is another common solid-modeling technique. In this 
scheme, objects are represented in terms of their boundary surfaces. In many B-rep systems, 
polyhedrons are used to approximate the boundary of the objects; thus, any curved surfaces, 
such as cylindrical or spherical surfaces, are only approximately represented. PSEIKI uses the 
TWIN B-rep solid modeling package [Mas87] to generate expected scene information in an 
industrial domain. TWIN was developed at the Computer Aided Design and Graphics Labora
tory (CADLAB) at Purdue University’s Engineering Research Center. TWIN is a library of
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FIGURE 4.8 This figure shows a shortcoming of the set-theoretic intersection operation in two dimensions. The 

face in panel (b) is the set-theoretic intersection of the two faces in panel (a); it is not a valid face 

(because of the dangling edge). The face in panel (c), a valid face, is the regularized intersection of 

the two faces.

subroutines in the C language that contains routines to generate the primitive objects included 
in most CSG systems; the set of primitives that TWIN can generate includes parallelepipeds, 
wedges, cylinders, cones, toruses, spheres, fillets, elliptical cones, and ellipsoids. The library 
also contains routines to perform regularized boolean operations on solid objects. Because the 
TWIN library contains routines to generate the primitives used in CSG systems and routines to 
perform the operations used by CSG systems, the same process used to generate solid objects 
in CSG systems can be used to generate objects with TWIN. That is, solid objects can be 
defined by regularized boolean combinations of primitive objects.

A two step procedure is used to convert the TWIN models into a form usable by PSEIKI. 
First, the Watkins scan-line rendering algorithm [Wat70], is used to generate an image of the 
expected scene. The grey value of every pixel in the rendered image is set to the id number of 
the model surface visible at that location in the image; thus, regions in the image with the same 
grey level all belong to the same surface in the TWIN model. After the model is converted 
into an image, the region-based preprocessor described in chapter 3 is then used to extract the 
image’s labeled regions and output the scene description on the vertex, edge and face levels. 
The threshold values required by the segmenter are set to zero so that each region detected by 
the segmenter will correspond to a single model surface. The information on the object and 
scene levels is generated by assuming that there is only a single object in the expected scene. 
Thus, all of the faces detected in the image, with the exception of the background face (which 
has id number zero), are grouped into a single object. This object is then set to be the only 
object in the scene. If there is more than one object in the image, then the output file must be 
hand edited to correct the object level and scene level information. Fig. 4.9 shows a graphic 
output of the system for an industrial object, a piston connecting rod; this figure shows three 
orthogonal views and one oblique view of the object. Fig 4.10 illustrates the process used to
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FIGURE 4.9 This figure shows some typical expected scenes generated in an industrial environment. It shows a 

piston rod from three orthogonal views and one perspective view.



generate the data file for the oblique view of the connecting rod shown in Fig. 4.9. The image 
at the top of the figure represents the TWIN solid model. The image at the middle of the figure 
shows the rendered image with uniquely labeled surfaces. A small portion of the symbolic 
output is shown at the bottom of the figure. In reality, this data file contains the definition for 
about 200 elements.

The current method of generating PSEIKFs expected scene information has a number of 
obvious flaws. The main deficiency of the technique is that all 3D information is lost when the 
model is rendered. This deficiency has not been a problem to date because of the simple 
scenes currently being used to test PSEIKI; this loss of information is expected to become 
more limiting as PSEIKI is applied to more complex scenes in the future. Another deficiency 
of the technique is the assumption that there is only one object visible in the expected scene. 
Although it is usually not difficult to correct this information by hand if there is more than a 
single object in the scene, it would be convenient if the system was able to correctly generate 
PSEIKI’s input data at all levels of abstraction. Future versions of the expected scene genera
tor will avoid these problems by converting the expected scene information directly into a 
form that PSEIKI can use without the intermediate rendering step. These future versions of 
the expected scene generator will be able to easily convert curved borders of nonplanar sur
faces into piecewise-linear segments for PSEIKFs input because the curved borders are 
already represented as piecewise-linear facet boundaries in the TWIN models. |
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TWIN solid model

Watkins rendering algorithm 
>r

Rendered image

Region-based Segmentation

+ scene id 2194 children 2193
+ object id 2193 children 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 ...
+ face id 2174 children 2149 2161 2162 2163 2164 size 684 value 2 
+ face id 2175 children 2103 2145 2146 2147 2148 2149 size 924 value 255 
+ face id 2176 children 2106 2107 2108 2109 2142 2143 2145 2146 2155 2156 ...
+ face id 2177 children 2084 2085 2086 2087 2088 2089 2090 2091 size 1098 value 5

FIGURE 4.10 This figure shows the processing performed to generate the symbolic expected scene data for 

industrial objects. The top image represents the TWIN solid model information; the middle panel 

shows the rendered model image with every surface uniquely labeled. The lower part of the image 

shows a small portion of the symbolic output which would be presented to PSEIKI.
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CHAPTERS

AN EVIDENCE ACCUMULATION SCHEME FOR BLACKBOARD REASONING

The use of inexact reasoning in computer vision systems is certainly not new; however, 
most of the previous schemes for evidence accumulation have been based only loosely on for
mal uncertainty calculi [HanRis78], [MckHar85]. The main reason that these systems 
employed ad-hoc schemes is the overwhelming amount of data in an image; the systems 
needed a fairly simplistic evidence accumulation scheme to avoid becoming bogged down in 
confidence value computations. In contrast, the evidence accumulation scheme used in 
PSEIKI is based on the Dempster-Shafer (D-S) theory of evidence, Whose normally exponen
tial computational complexity is controlled by a number of mechanisms to be discussed in this 
chapter. For example, one of the mechanisms consists of accumulating evidence over binary 
sets of hypotheses, meaning the evidence either supports that a data element from the image 
should be given a particular label from the model or denies this supposition. Pooling of evi
dence in this fashion leads to a particularly efficient implementation of the Dempster’s rule. 
Performance also is improved by exploiting the hierarchical nature of the blackboard system. 
By performing a small number of computations on upper levels of the hierarchy, many compu
tations on lower levels can be avoided. The hierarchical nature of the blackboard also is used 
to constrain the matching process for elements on lower levels of the hierarchy; elements on 
lower levels of the hierarchy are allowed to match only if their parents are matched.

In the next section of this chapter, we will introduce Dempster’s rule of combination and 
point to its exponential time complexity. Next, it will be shown how, in past systems, the com
putational efficiency of Dempster’s rule was improved by making assumptions that the focus 
of incoming evidence is limited to a small number of subsets of ©. Once these assumptions 
are made, a computationally efficient form of Dempster’s rule can be derived. The evidence 
accumulation scheme employed by PSEIKI will be introduced in this context; the new accu
mulation scheme will first be introduced in general terms. Next, it will be shown that the accu
mulation scheme can be embedded into a hierarchy if the reasoning task has the appropriate 
structure. It also will be shown that the hierarchical structure allows the computational com
plexity of the scheme to be improved by limiting the size of the elements’ FODs and by limit
ing the number of evidence sources that are allowed to provide updating evidence. Further
more, a method for passing belief values up and down the hierarchy will be introduced; After 
the general scheme has been fully developed, its use by PSEIKI’s labeler KS will then be 
presented as an application. Finally, to show the enerality of our evidence accumulation 
scheme, we will point out how it could be applied to the speech recognition domain.
*------------------

It is assumed that the reader has a working knowledge of the Dempster-Shafer theory of 
evidence and its associated terminology. For those not familiar with the theory, see [Sha76]; a, 
brief review is also presented in appendix A,



5.1. Computationally Feasible Methods For Evidence Accumulation Based on the 
Dempster-Shafer Theory

The Dempster-Shafer theory of evidence is gaining wider acceptance as an uncertainty 
calculus. However in the general case the formula used to accumulate evidence in this theory, 
Dempster’s sum, takes exponential time (in the size of the FOD) to combine evidence from 
two independent sources. This is shown easily by observing the formula for Dempster’s sum 
as shown in equation 5.1.

m(X) = m^mi = K XZ mi(xi)m2(X2) (5.1)
xrx2

xinx2=x
where

K-1 = 1 — XZ m1(X1)m2(X2) 
xxx2 

x,nx2=0
The main reason for the exponential complexity is the requirement that the probability mass 
for all 2101 elements of the power set of © be evaluated when combining evidence from 
independent sources. If N bpa’s are combined to form a data-element’s belief function, then 
the total number of operations will be on the order of Nx2101 (this will be denoted as 
0(Nx 2101)).

Barnett [Bar8l] was one of the first to show that Dempster’s rule could be implemented 
in better than exponential time if the focus for all evidence is restricted to a limited number of 
elements of 2®. Barnett was able to implement Dempster’s rule in linear time by assuming 
that all evidence either confirms or denies members of the FOD. Although this assumption 
places a fairly large restriction on the general D-S theory, many systems naturally provide evi
dence in this form and are not hindered by the assumption. It can be shown that, in the general 
case, 0(Nx 101) operations are required to combine N bpa’s when using Barnett’s equations.

Gordon and Shortliffe also were able to improve the computational complexity of the D-S 
theory by making an assumption about the type of evidence allowed to update beliefs 
[GorSho85]. They formed what they termed a hierarchical hypothesis space, a hierarchical 
partition of an element’s FOD, and assumed that all evidence either would confirm or deny 
elements in the partition. An example of a hierarchical hypothesis space that could be used in 
a computer vision system is shown in Fig. 5.1; it shows the partition that could be used by a 
target identification system to classify tactical objects detected in a sequence of image frames. 
The identification system could use the partition shown in this figure if it detected an object 
that moved from frame to frame. If the system detected a moving oject, then it would be able 
to use the hierarchy to provide evidence asserting that the object was a vehicle without needing 
to specify which type of vehicle. A system using the formulas derived by Barnett would not be 
able to provide evidence for the generic class of vehicles directly, because evidence is limited
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to focusing on the individual members of the FOD in that scheme.

{tank, jeep, truck, half-track, house, bam, school, church) 

vehicles ___buildings

untracked

{half-track} {church){house}

FIGURE 5.1 This figure shows a hierarchical partition of a hypothesis space that could be used to classify objects 

detected in a tactical image.

In order to provide a computational gain, Gordon and Shortliffe were forced to approximate 
Dempster’s sum; the resulting approximation had a number of drawbacks. When presented 
with highly contradictory evidence, the approximation produced poor results. The approxima
tion also prevented the computation of belief values for negations of elements in the hierarchy; 
thus, plausibilities for elements in the hierarchy could not be computed.

Shafer and Logan were able to formalize the problem of using Dempster’s rule to com
bine evidence focused on elements of a hierarchical partition [ShaLog87]. By applying varia
tions of Barnett’s formulas to elements in a hierarchical partition of an element’s FOD, they 
were able to compute Dempster’s sum for elements in the partition without any approxima
tions; thus, the results that their formulas provide are always valid. Their formulas also are 
slightly more general than those used by Gordon and Shortliffe in that they can compute both 
belief values and plausibilities for elements in the hierarchy.

Binary frames of discernment (BFODs) involve the most drastic restriction to the D-S 
theory, but they provide the greatest computational gain. As presented in [SafGot87], a BFOD 
is a FOD with 101= 2. Equivalently, any FOD with all of its probability mass constrained to 
two disjoint elements of 2® and {©} itself can be thought of as a BFOD. Obviously, since the 
size of the FOD is constrained to be 2, the time needed to combine two bpa’s is constant. Thus 
the time needed to combine N bpa’s is O(N).



Although the above variations of Dempster’s rule greatly improve its computational 
efficiency, none of them are applicable to the problem of accumulating evidence in PSEIKI. 
Binary FODs are too restrictive to be used in a general matching procedure; their requirement 
that all probability mass be constrained td three subsets of 0 severly limits their applicability. 
Barnett’s scheme, while remaining general enough for use in PSEIKI, is still too inefficient to 
handle the overwhelming amount of data in an image. Finally, the use of hierarchical 
hypothesis spaces is not possible because the hierarchy used in PSEIKI is not Sttidt (e,g. an 
edge can be the children of two faces - the faces it separates). For this reason, a new pro
cedure to accumulate evidence was developed by incorporating the concept of an element’s 
label into the reasoning process.
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5.2. A Computationally Efficient Evidence Accumulation Scheme using Labels

As has already been mentioned, Barnett was able to implement Dempster’s sum in linear 
time (with respect to the size of the FOD) by assuming that all evidence either confirms or 
denies members of the FOD. Although this is a great improvement over the complexity of the 
original formulation of Dempster’s rule, in the general case it still takes 0(Nx 101) operations 
combine the evidence contained in N bpa’s. We will show that it is possible to further reduce 
the computational complexity of Dempsters rule by splitting the accumulation process into two 
phases: initialization and updating. In the accumulation scheme introduced here, a single evi
dence source is used to define the bpa during the initialization phase. This source is used to 
provide confirmatory and disconfirmatory evidence focused on all members of the FOD, much 
as in Barnett’s scheme. Once the belief function has been established, the updating phase 
commences and the focus of all new evidence is restricted to focus on only particular elements 
in the FOD. We will show that, by using this two phase accumulation scheme, it is possible to 
combine evidence from N sources in 0(N+1 © I) operations.

In this accumulation scheme, assume that the identity of an element, E;, is in question and 
that its identity can be any one of M possibilities, 0i, 02, •'.•*, 0^. Therefore, the FOD for Ej
iS - ' • ,

0= (01, 02, * * ' , 0m)

Furthermore, assume that there are N evidence sources, Si, S2, • , Sn, that can provide
information about the element’s identity. The sources are assumed to provide bpa’s with evi
dence that is focused entirely on members of 0 or their compliment. This is exactly the same 
assumption that Barnett uses to reduce the computational complexity of Dempster’s rule to 
linear time. However, we also assume that it is also possible to force the evidence sources to 
provide bpa’s with evidence focused entirely on a single member of 0 and that element’s com
pliment . It is this ability to restrict the focus of the evidence produced by the sources that 
*------ -—1 - " ■

One way forcing the bpa’s to have this form is to incorporate all the probability mass from 
unwanted subsets of 0 to 0 itself.



enables the computational complexity of the accumulation scheme to be reduced.

During the initialization phase of the accumulation process, a single evidence source is 
used to provide evidence about Ej’s label. This source is used to define the initial bpa by pro
viding confirmatory and disconfirmatory evidence focused oh all (singleton) members of the 
FOD, as in Barnett’s scheme. After the initial bpa for the element’s identity is computed, the 
label of the element is determined. An element’s label is defined to be the member of 0 with 
the largest belief. (If two or more elements of the FOD yield the same belief, one is arbitrarily 
selected). Thus, in some sense, the element’s label can be considered to be the current best 
hypothesis for the element’s identity. As an example of the ease with which an element’s label 
can be found, consider the process of determining the label for element Ei. Remember that the 
FOD for E; consists of M elements
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0= {0i, 02, •••,0m)

To determine the Ej’s label, the element of © with maximum belief must be found. However, 
since only singletons are being considered as labels, finding the element of 0 with greatest 
belief is equivalent to finding the element of 0 with the largest probability mass (the belief of a 
singleton is equal to its probability mass). Thus, only the following elements of Ej’s bpa need 
be considered

mE.({0<x}) for a - 1, ...» M

Let 00^ be the element of © for which the bpa takes a maximum value. That is, 

mEi({0am„ }) ^ mEi({0a}) for a = 1, ..., M 

The label of element E; is defined to be 0^.

Once the initialization phase of the accumulation scheme is complete and the initial bpa 
for Ei’s identity has been computed and the label determined, the belief updating phase begins. 
In this phase, all evidence is restricted to focus on the label-element and its compliment. That 
is, the only elements in an updating bpa that are allowed to have non-zero probability masses
are _}, {“'®(w} and {©}• Thus at any time, all new evidence provided by the evidence
sources is focused on either trying to prove or trying to disprove that an element’s label is 
correct (i.e. that the element’s identity has been correctly determined). If the accumulated 
disconfirmatory evidence about an element’s label is enough to force the belief in the label ele
ment to fall below the belief in another member of 0, then the label will be changed to the ele
ment with greater belief. The evidence sources then are allowed to provide confirmatory or 
disconfirmatory evidence about the new label.

When incorporating new evidence for an element’s label, the computational load can be 
eased by making use of the associative nature of Dempster’s rule. If an element’s bpa is 
updated incrementally with every piece of new evidence, as is done in Barnett’s scheme, then 
the new bpa will be computed as
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mnew — ((fo^dd ® ^update) ® ®update) ®" ® ^update)
2-»i 3->i T«-»i

Where © denotes Dempster’s rule of combination and m^ate is the updating bpa for the new
j~>i

evidence that source Sj is providing for element Ei. Since Dempster’s rule of combination is 
invariant with respect to the order of combination, the new bpa can be expressed as

tHnew =:.'mold ® mjjpdate

where

^tupdate = ((mupdate ® ^update) ® "" ® ntupdate)
2-»i 3—>i N-»i

Now the fact that the updating bpa’s use binary frames of discernment can be exploited (if ele
ment Ej is labeled as EA then the only elements of Ei’s bpa with nonzero probability mass 
correspond to the subsets {EA}, {-iEa} and {0} itself). Because BFODs can be updated in 
constant time, the time needed for N evidence sources to form an element’s updating bpa is 
O(N). Furthermore, Barnett’s formulas can be used to incorporate the updating bpa into the 
initial bpa in 0( 101) time. Thus, the total amount of time for N evidence sources to update an 
element’s belief in its label is 0(N+101). Of course, if an element’s label changes during the 
accumulation process then further computation is necessary because the evidence sources must 
provide evidence to update the element’s belief in the new label.

It should be mentioned that if the updating belief for a number of elements is generated 
by noting the degree to which their labels are mutually compatible, then the updating evidence 
contained in their updating bpa’s should not be incorporated into their belief functions until all 
of the updating bpa’s are formed. If the incorporation of the updating bpa’s is not delayed in 
this manner, then it is possible for the updating bpa for an element to be influenced by its belief 
in its own label. Ah element could provide updating evidence to itself if it was used to gen
erate updating evidence in another element’s label which in turn was then used to provide 
updating evidence about the first element’s label. Delaying the incorporation of updating evi
dence into elements’ belief functions until all updating evidence has been generated prevents 
this from occurring;

5.3. Hierarchical Evidence Accumulation in PSEIKI

If the task of a system is to determine the identity of a number of elements which are 
arranged into a part-of hierarchy, then the evidence accumulation scheme introduced in the 
previous section can be embedded into the hierarchy to provide further computational gain. A 
part-of hierarchy is shown in panel (b) of Fig. 5.2; in this figure, as in most part-of hierarchies, 
elements on the higher levels of the hierarchy are defined by groups of elements on lower lev
els. For example, in this figure elements Eu through E1i4 are grouped to form element E2>i 
(Eij denotes the j* element on the i* level of the hierarchy). Part-of hierarchies are a natural
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way to represent many types of objects. For example, this report contains a number of 
chapters each of which, in turn, contain a number of sections. As we progress down this struc
ture, we find that the sections can be broken down into paragraphs, sentences, clauses, words 
and letters. An automobile also can be represented hierarchically using a part-of hierarchy. 
Panel (a) of Fig. 5.2 is a simple example of how an auto can be broken down into its major 
assemblies (the frame, the body and the powertrain) and how each of these assemblies can be 
broken down into its main components. Of course, a part-of hierarchy that could be used to 
represent a real auto would be much more complex. Note that these hierarchies do not need to 
be strict; that is, an element can have more than a single parent if it is in more than one group.

(a) (b)
FIGURE 5.2 (a) Hierarchical description of an automobile, (b) demonstrates how a number of unidentified 

elements can be grouped into a part-of hierarchy.

The structure of a part-of hierarchy can be used to aid in the determination of the identity 
of its elements. For example, in many cases, the label for an element will dictate the possible 
labels that its children can assume. For example, in Fig. 5.2, if elements Ei j through Elf4 are 
grouped to form element E2, i and if E^i is thought to be the drivetrain of an auto, then the 
possible labels for elements Elti through E^ would be

0= {engine, transmission, driveshaft, differential, axle)

Thus panel (a) of Fig. 5.2 can be thought of as a hierarchical arrangement of the possible labels 
that the elements of panel (b) can assume (i.e. their frames of discernment). If the hierarchy 
was not used to restrict certain possible labels from being included in an element’s FOD; then 
the FOD might include all possible labels on the same level of the hierarchy. As it stands, the 
FOD for an element is determined by its parent’s label-element and the children of its parent’s 
label-element. Specifically, an element’s FOD is defined to be the children of its parent’s 
label-element.

Because an element’s FOD is determined by its parent’s label, the FOD for the element 
and all of its descendents must change if the parent’s label changes - a computationally inten
sive operation. Thus it is advantagepus to incorporate new evidence on upper levels of the 
hierarchy before incorporating evidence on lower levels of the hierarchy. Because calculations 
on upper and lower levels of the hierarchy can be thought to correspond to checking global and



-45- andress/kak

local consistencies respectively, generating updating evidence for elements on the upper levels 
of the hierarchy before generating updating evidence for elements on lower levels corresponds 
to performing global consistency checks before local ones.

To further curtail the number of uncertainty calculations, elements are only used to gen
erate updating evidence for their siblings. For example, only elements thought to be part of the 
auto’s drivetrain would be used to generate updating evidence for other elements in the 
drivetrain. If the data were not arranged hierarchically, every element would be needed to 
generate updating evidence for every other element. An element can be used to generate evi
dence for another element that is not a sibling by propagating the first element’s confidence 
value up through the hierarchy until a common ancestor is reached and then back down to the 
second element.

5.3.1. Evidence Propagation Between Levels in the Hierarchy

Evidence from an element’s siblings is not the only Source of knowledge used to update 
its belief function. A mechanism also is provided for passing belief values between different 
levels of the hierarchy. This is done to satisfy the intuitive argument that says any evidence 
confirming an element’s label also should provide evidence that its parent’s label is correct. 
Discontinuing evidence also is required to be passed down to the lower levels of the hierarchy 
Furthermore; it is intuitively appealing to pass both confirmatory and discOnfirnaatory informa
tion up the hierarchy if all updating evidence for an element is generated by measuring its con
sistency with its siblings.

The updating bpa, mupdate, is used when passing evidence up the hierarchy. To do this, 
mupdate is combined not only with the bpa for the element in question, but also with that for the 
element’s parent. Combining the updating bpa with an element’s parent makes intuitive sense 
because all new evidence generated on a level comes from the (in)compatibility between ele
ments bn that level. If the children of an element have consistent (compatible) labels, then 
these child-elements should provide evidence that the label given to the parent-element is 
correct. Likewise children with inconsistent labels provide evidence that their parent’s label is 
incorrect. Thus, by passing the updating bpa’s to each parent-element, new evidence is pro
vided for those elements based on the consistency or the inconsistency of their descendents.

Evidence from an element cannot be applied directly to its parent because the FODs of an 
element and its parent are composed of different types of data elements. However, it will be 
shown, with the help of the above example, that it is possible to build a FOD that can be used 
to update the belief functions of elements on a higher level of the hierarchy. Assume that the 
data is as shown in panel (b) of Fig. 5.2 and that element Elfl is a child of element E2>i. 
Furthermore, assume that Ei,i is labeled as the transmission and E^i islabeled as the 
drivetrain. Because the confirmatory evidence for Eu ’s label derived from its siblings arises



from the consistency of the label with its sibling’s labels,, it may be considered as a weighted 
vote of confidence that E2(i ’s label is correct. Likewise, because the disconfirmatory evidence 
for Ejj’s label derived from its siblings arises from the inconsistency of the label with its 
sibling’s labels, it may be considered as a (weighted) vote of no confidence in E2>i’s label. 
Thus, mup^ate (©) can be considered to be the amount of ignorance in E^i’s label. Using this

Bl,l

rationale, an updating bpa for E2,1 with the following non-zero probability masses may be 
defined as

ni update ({diivetrain}) = mUpdate({transmission})
Bl .1-*2.1 *1.1

111 update ({—idrivetrain}) = mUpdate({ ^transmission}}
• ^l,l-4E2,l “1,1

^ update (®E21) = mupdate (®E!! )

El,i—>E2,1 ’ “1,1

Now it will be shown that m update is a bpa for E2ii . As described in the last section, the FOD
Bl-.i—»E2,1

for an element’s updating bpa is binary in nature. Thus the only non-zero elements of the 
updating bpa for Ei are mUpdate({transmission}), mUpdate({—itransmission}), m„pHat>.((Ql) and

they sum to 1. Because m update has unity total mass and its null hypothesis has zero mass, it
El.l—>E2.i

is a bpa by definition. The total accumulated new belief for E^i from its children E^i,..., Ei^ 
now can be expressed as

tnUgdate = (m Update © • • . © m update )
^2,1 Eiji -»E2,1 Eit4->E2,l

Information is passed down the hierarchy only if it is disconfirmatory. This downward 
propagation of information takes file form of the reassignment of frames of discernment caused 
by the ancestor of an element having its label changed. In the previous example, this could 
happen if the hypothesized identity fop E24 is changed to be the frame of the auto. Using 
information from the model panel, the FOD for Ei would be reassigned to

© = {carraige, front suspension, rear suspension}

It should be mentioned that there are two cases that require special consideration. First, a 
data-element may have no siblings; in this case, since the element’s consistency can not be 
checked with its siblings, the only updating evidence that will be received about its label will 
be generated by checking the consistency of its children’s labels. The other special case 
occurs when an element’s label-element is an only child; in this case, there is only one member 
of the element’s FOD. Therefore, the element’s label can not be changed no matter how small 
the belief in this label becomes. Note that since the element has only one element in its FOD 
(101 =1), its bpa is a simple support function.
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5.4. Use of the Hierarchical Evidence Accumulation Scheme in PSEIKI

The evidence accumulation scheme introduced here was originally developed to aid in 
the matching of data-elements with model-elements by PSEIKI’s labeler KS. In this applica
tion, the labeler KS uses the scheme to determine the identities of the elements on the data 
panel of the blackboard. Their possible identities are the elements on model panel. To illus
trate how the scheme used used by PSEIKI, consider the example in Fig. 5.3.

8
7

10

14

16

... A ' .

I;

FIGURE 5.3 The left panel of this figure shows a simple example of model-elements derived from a graphics 

source; die right panel shows image-elements from 2D vision data. The figure is used to aid the textual 

explanation of how PSEIKI’s labeler KS uses the evidence accumulation scheme introduced here. Note 

that the elements in this figure could represent only a small fraction of the data-elements on the

blackboard panels.

This figure shows the edge-level and face-level of the data on the blackboard. Model-data is 
shown in the left panel; in this frame edges Ea through Ed are grouped into face Fa. The right 
panel shows image-data; here edges Ei through Eg are grouped into face Ff

As was mentioned in the previous section, the hierarchical nature of the matching task is 
used to increase the efficiency of the matching process by restricting the model-elements 
allowed to be members of an image-element’s FOD. For example, in Fig. 5.4, if Fj is matched 
with Fa, then the frame of discerment for edges Ei through Eg would be

© - {Ea» Eb, Eg, Ed}

These model elements are allowed be members of the FODs for edges Ei - Eg because they
W ‘ : ' ■■ ;
Note that in the following discussion the elements generated by the graphics source have capital 

letters as subscripts while elements derived from 2D vision data have numeric subscripts.
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are the children of their parent’s model element, face Fa.

The hierarchical nature of the task is exploited further by checking the consistency of an 
element only with its siblings. In the previous example, the belief Ei’s label would be Updated 
only with evidence generated by noting its consistency with edges E2 - Eg. These edges would 
be used to provide the updating evidence because they are grouped into face Fj along with 
edge Ej. If the image-elements were not grouped hierarchically, then every edge Would be 
needed to generate updating evidence in Ej ’s label. The method used to generate updating 
evidence for edges and faces based in their consistency with their siblings is discussed in 
chapter 6,

PSEIKI’s labeler KS also propagates updating bpa’s up the hierarchy in the previously 
discussed manner. For example, if edge E1? one of face Fi’s children, has label Ea and face 
Fi has label Fa, then the following updating bpa for Fx can be created from the updating bpa 
forE]

ti^update ( { } ) — J-^update ( { EA } )
Ei-»Fi Ei

n^update(( 'Fa}) = nidjxiateCt-iEa })
Fi~>pi ei

^update (®Ft ) = ®update (®Et )
Hl-»Fi Ei

The bpa’s are propagated upwards for the reasons discussed earlier. Compatibly labeled 
siblings should provide confirmatory evidence about their parent’s label; conversely, incompa
tibly labeled siblings should provide disconfirmatory evidence about their parent’s label. As in 
the general scheme, changing the bpa for an element on an upper level of the hierarchy will 
force all of its descendents to change their FODs. The FODs are changed to satisfy the heuris
tic which states, for example, that the constituent edges of a mislabeled face also are most 
likely mislabeled.

5.5. Another Application of the Hierarchical Evidence Accumulation Scheme

It is also possible to use the hierarchical evidence accumulation scheme developed here in 
domains suitable for blackboard processing other then computer vision. The scheme is appli
cable to these domains because of their hierarchical nature. For example, the evidence accu
mulation scheme could be used in the domain for which the Hearsay-Il [ErmHay80] black
board system was developed: speech understanding. We will examine how the evidence accu
mulation scheme could be used by a speech understanding system based on Hearsay-II.

Speech is represented hierarchically in the Hearsay-II system on the following 6 levels: 
phrases, word-sequences, words, syllables, segments and parameters. The lowest-level of the 
representation, the parameter level, breaks the speech waveform into five classes: silence,



sonorant peak, sonorant nonpeak, fricative and flap. The next higher level, the segment level, 
is used to label the elements on the parameter level with phoneme-like labels. These labels are 
generated using statistical pattern recognition techniques and can assume 98 different values. 
Hearsay-II forms the elements on the higher levels of the hierarchy (the syllable, word, word- 
sequence and phrase levels) by grouping compatible elements from the lower levels.

To apply the accumulation scheme to Hearsay-II’s task, the statistically-based classifier 
could still be used to generate phoneme-like labels for the parameter elements. However, ini
tial belief values for the segments’ labels could be generated from the probabilities produced 
by the segment classifier. Updating evidence for the elements’ labels could then based on the 
compatibility between the elements and their siblings, as is done in PSEIKI. For example, on 
the word level of the blackboard, if an adjective is followed by a noun then the two should lend 
support to each other.

Updating evidence could be passed up the hierarchy as is done in PSEIKI (for example, 
evidence that a word is correct would also be evidence that its parent phrase is correct). Like
wise, changing the label of an element on an upper level of the blackboard would cause all of 
its descendents to change their FODs.

5.6. Future Work

In this chapter, a new hierarchical evidence accumulation scheme based on a restricted 
form of Dempster’s rule has been developed and informally has been shown to be computa
tionally efficient, This efficiency has been shown to stem direcdy from a restriction on the 
focus of updating evidence; however, research needs to be performed on how restrictions 
placed on the updating evidence affect an element’s belief function. Future work will investi
gate how an element’s belief function changes when the various schemes discussed in this 
chapter are Used for evidence accumulation. This investigation will use techniques developed 
in the past to compare competing models for inexact reasoning [MitHar87]. Another topic that 
may warrant investigation is the performance of the combination scheme when the evidence 
provided by the sources is not independent. Some previous work addressing this topic can be 
found in [DiibPra85], [DubPra86], [HunJay87], [Kyb87], [Sme76], and [Yen86].
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. CHAftfeiiS

GEOMETRIC COMPUTATIONS FOR 
tMtiAL AND UPDATING BELIEF FUNCTIONS

Chapter 5 showed how evidence is used to generate and update belief in a data-element’s 
label; however, rid mention Was made Of hdW that evidence is generated. This chapter Will 
address the process Of generating evidence to choose initial labels for elements and to update 
the confidence values for those labels. In PSEIKI, evidence about an element’s label is gen
erated by measuring how well the element meets geometric constraints betwden itself and 
other elements. These constraints take tWo general forms. Initially when matches are being 
formed, the constraints measure the similarity between an image element and model elements. 
After the initial matches are found and a label for the element has been determined, the con
straints are used to measure how consistent the element’s label is with the labels of its siblings 
in the hierarchy.

There are many techniques available that PSEIKI can use to determine if elements are 
meeting geometric constraints. Besl describes some general techniques to match image data 
and model data at various levels of abstraction (points, curves, surfaces and volumes) using 
geometric constraints [Bes88]. Crowley and Ramparany take a different approach to the pro
cess of generating evidence based on geometric constraints; they model sensor readings as 
samples from a multivariate Gaussian distribution and use this assumption to calculate a "dis
tance" from a feature measurement to its mean value [CroRam87]. They then estimate the 
belief in an entity based on the distance measured. No matter what method is used to measure 
the degree to which the elements are meeting the geometric constraints, the constraint meas
urements must be converted into belief functions. The method used in PSEIKI to convert raw 
confidence values to belief functions is described in appendix B; of course, the conversion 
method described there is only one possible method that could be used to convert the measure
ments into belief functions.

In this chapter the two components bf the evidence generation process will be explored. 
The first section of this chapter addresses the generation of initial labels based on the compati
bility of data-elements with model-elements. Generation Of the initial labels for elements on 
the edge-level and face-level is discussed in detail. The second portion of the chapter 
addresses the process of generating updating evidence for an element’s label based on the 
compatibility between its label and its siblings’ labels,
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6.1. Computing Initial Belief Functions for Data Elements

As described in chapter 5, an iriiage-element’s initial label and belief function are 
obtained by checking constraints between the elBhieht itself and elements on the model panel
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of the blackboard. Obviously, the constraints used to provide initial evidence need not be the 
same for all levels of the hierarchy. The evidence generated by measuring the degree to which 
the constraints are met only needs to focus on members of an element’s FOD or their compli
ments since these are the only subsets of © that can be used by the evidence accumulation 
scheme described in chapter 5. The output of the metrics must range from 0.0 to 1.0 in order 
to use the technique presented in appendix B to convert the measurements into bpa’s.

Before any labels may be generated for an element, its FOD must be determined. If an 
element has a parent, then its FOD is defined to be the children of its parent’s label-element, as 
described in chapter 5. For example, consider Fig. 5.3. If edges {Ei,..., Es} on the data panel 
are grouped into face F^ and Fj is matched with Fa, then the FOD for each edge in the group 
wouldbe

Note that, since label information of elements on upper levels of the blackboard is used to 
determine the FOD for an element’s label, it is advantageous to determine the labels of ele
ments on the higher levels first, and then work down to elements on lower levels.

If an element has not been placed into a group and, therefore, has no parent, then a dif
ferent tack must be taken to form its FOD. In this case, the extents of the elements are used to 
determine their FODs. The term extent is taken from the computer graphics arena [FolVan82] 
and is defined to be the minimum-size rectangle with edges parallel to the coordinate axis that 
contains an object. Examples of the extents for an edge and a face are shown in Fig. 6.1.

FIGURE 6.1This figure shows the extent for an arbitrary face and an arbitrary edge. The objects in this figure are 

drawn using solid lines and their extents are the dashed boxes.

The FOD for an orphan face-element includes any model element whose extent overlaps its 
own. Fig. 6.2 demonstrates the process of determining an orphan face’s FOD. In cases (b) and 
(c) of this figure, FA would be placed in Fj ’s FOD; however, in case (a) it would be excluded



from the FOD because the two extents do not overlap.
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A

(a) (b) (c)

FIGURE 6.2 This figure demonstrates how extents are used to determine a face element’s FOD. In this figure, 
would be placed in Fj’s FOD in cases (b) and (c) because their extents (shown as dashed boxes) 

overlap. Conversely, it would be excluded in case (a) because the two extents do not overlap.

A similar method is used to determine the FODs for orphan edges. However, the method 
must be modified slightly because two edges can be arbitrarily close and not have overlapping 
extents (for example, if they are both parallel to the same coordinate axis). To guarantee that 
all model edges are included in an edge’s FOD that should be, the extent of the edge is 
expanded. Fig. 6.3. shows how the extent of an edge is expanded by adding a border around 
the extent. The size of the border around the edge’s extent, Dmax, is set by the user and reflects 
the maximum expected misregistration between the image and the expected scene. Fig. 6.4 
demonstrates the process used to determine if a model edge is included in an orphan edge’s 
FOD. In panel (a) of this figure, the model edge would not be included in the edge’s FOD 
because the extents do not overlap. However, the model edge would be included on the FOD 
in cases (b) and (c) because the extents overlap. Note that although the image elements and 
the model elements are on different panels of the blackboard, it is possible to speak of dis
tances and angles between them because they are both projected into the same world coordi
nate system.
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(a) (b)

FIGURE 6.3 This figure demonstrates how a border is added to an edge’s extent. Panel (a) Shows the edge’s 

original extent; panel (b) shows the edge’s expanded extent.

(a) (b) , (c)

FIGURE 6.4 This figure demonstrates how extents are used to determine an edge element’s FOD. In this figure, 

Ea would be placed in Ej ’s FOD in cases (b) and (c) because model elements’ extents (shown as 

dashed boxes) overlap with the data edge’s expanded extent. Conversely, it would be excluded in case 

(a) because the two extents do not overlap.

6.1.1. Computing Initial Belief Functions for Edge-Elements

When determining initial matches between edges, PSEIKI’s labeler KS tries to match a 
data edge with the edge in its FOD that lies closest to the same line. To find the match partner 
of a data edge, the KS measures the degree of "collinearity" between the edge and all the 
model edges in its FOD; it then chooses as the match partner the model edge with which the 
data edge is most collinear. The belief of the match made then is set to the degree of .collinear
ity between the two edges.

The following formula is used as the measure of collinearity between an edge detected in 
the image and an edge from the expected scene (edge E, is the model edge and Ej is the data 
edge).
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ES_collinearity (Ej,
c ^ _ ^max Dpcyp ^ Dmax Dpaj-
tj)------- - X

Dmax D„

where Dj*,^ is the distance from the middle of Ei to the line defined by EA, Dpar is the 
misregistration along the direction EA, Dmax is the maximum allowable value for either of the 
two misregistrations, and 0 is the acute angle between the segments (see Fig. 6.5). The value 
for Dmax reflects the maximum expected misregistration between the image and the expected 
scene and is set equal to the amount that the edges’ extents are expanded when their FODs are 
determined.

FIGURE 6.5 This figure shows parameters used in the definition of collinearity.

To determine an edge-element’s label, PSEIKI’s labeler KS computes its bpa over 0 by 
applying the ES_collinearity measure to each element in its FOD. For example, if edge Ei’s 
FOD was determined to be

® = {EA, Eb, Ec, Ej>}

then the formula might produce the following ES_collinearity measurements, 

ES_collinearity(EA, EO = 0.43 

ES_collinearity(EB, Ei) = 0.11 

ES_collinearity(Ec, Ei) = 0.73 

ES_collinearity(Ei), Ei) = 0.56

Using the technique described in appendix B, the ES_collinearity measurements can be con
verted to the following bpa for Ei by normalizing all the values by the total confidence.

niEj (Ea) = ES_collinearity(EA, Ej) / total_confidence = 0.24

mE1 (Eb) = ES_coIlinearity(EB, Ei)/total_confidence = 0.06

mg,(Ec) = ES_collinearity(Ec, Ei) /total_confidence = 0.40

mE, (Ed) = ES_collinearity(Eo, Ej) / total_confidence = 0.30
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mEl (•) = 0.0 for all other subsets of ©

where totaI_confiderice = 0.43 + 0.11 + 0.73 + 0.56 = 1.83

With this bpa, Ei’s label would be set to Ec with a belief of 0.40.

Another procedure is used to initialize the bpa if the ES_collinearity measures sum to less 
than one. Assume for a moment that the distance cutoff, Dmax, is decreased resulting in the 
following ES_collinearity measurements

ES_collinearity(EA, Ei) = 0.23

ES^collinearity(EB, Ei) = 0.11

ES_collinearity(Ee, Ei) = 0 13

ES_collinearity(ED, Ei) = 0.26

In this case, the amount of confidence left uncommitted by the metric, 0.27, is considered to be 
the amount of ignorance in the identity of edge Ei and is set to be the probability mass of the 
FOD, 0. We set the probability mass in 0 to the uncommitted confidence because 
ES_compatibility(Ej, Ei) measures the belief that the edge Ei’s identity is Ei. Clearly, if the 
edge’s identity cannot be determined to be any of the elements in its FOD with a sufficiently 
high degree of confidence, then some belief about its identity should be left uncommitted. 
Using this procedure, the following bpa for Ei is constructed.

mE, (Ea) = ES_collinearity(EA, Ei) = 0.23

mEl (Eb) = ES_collinearity(EB, Ei) = 0.11

thEj(Ec) = ES_collinearity(Ec, Ei) = 0.13

mEl(Ed) = ES_collinearity(ED, Ei) = 0.26

mEl (0) = 1.0- total_confidence = 0.27

: niEi Q = 0.0 for all. other subsets of-0.

where total_confidence = 0.23 + 0.11 + 0.13 + 0.26 = 0.73

6.1.2. Computing Initial Belief Functions for Face-Elements

When determining initial matches between face-elements, PSEIKI’s labeler KS tries to 
maximize the percentage of overlap between matched elements. That is, to determine a face- 
element’s label, the percent of overlap between it and all elements of its FOD is measured and 
the model face-element with maximum overlap is selected. The percentage of overlap 
between two face-elements is defined to be the area of their intersection divided by the area of 
their union. This notion is shown in Fig. 6.6 and can be expressed as



ES_overlap(Fm0(jei, F^agg) —
Area
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intersection

Area,,

(a) Union

FIGURE 6.6 This figure shows the union and intersection of two faces.

To improve the computational efficiency, the percent of overlap between two faces currently is 
approximated by the percentage of overlap of their two extents.

6.2. Computing Updating Belief Functions for Data Elements

After the initial matches are established between elements, the labeler KS provides evi
dence about the validity of the an element’s label based on the label’s consistency with the 
element’s siblings Mabels. In general, two metrics are required for updating an element’s label 
belief function. The two metrics must provide measures of compatibility and incompatibility 
between the element and its siblings. The compatibility metric is used to provide confirmatory 
evidence that the element’s label is correct. Conversely, the incompatibility metric provides 
disconfirmatory evidence about the element’s label. Both metrics should range between 0.0 
and 1.0 to facilitate conversion of their values to an updating bpa. It is illustrative to examine 
how one element can be used to update the belief in another element’s label when both have 
the same label. When this process is understood, the case in which two elements have dif
ferent labels follows naturally.

6.2.1. Computing Updating Belief Functions for Edge-Elements with the Same Label

ColIinearityO) and noncollinearity(’) are the metrics used to determine the 
(in)compatibility between two edges with the same label (the collinearity metric is related to 
the ES_collinearity measure used to establish initial matches). That is, if Ei and Ej are edges



in the data panel and have the same label, then collinearity(Ej, Ej) is the measure of compati
bility between them. Collinearity is defined as

collinearity(Ei, Ej) = —x cos(0)

where 0 is the acute angle between the two edges and Dperp the distance from the middle of Ej 
to the line defining Ej (see Fig. 6.5). Dmax, the maximum allowable value for Dp^s is a user- 
specified heuristic parameter or function. For the computation of updating evidence, Dmax is 
set in a manner different from that described in Section 6.1.1; its value is set equal to the 
length of Ej. Setting Dmax in this manner is justified by the rationale that the maximum allow
able distance between two data-elements with the same label should be a function of the sizes 
of the data-elements.

Likewise, the incompatibility between two edges, can be measured by calculating the 
noncollinearity(Ei, Ej) between them. Noncollinearity is defined as

noncollinearity(Ei, Ej) = perp x scale(Ei) x sin(0)
^max

5fC
where scale(Ej) depends on the length of Ex .

Because the (in)compatibility measures are defined heuristically, it usually is advanta
geous to limit the amount of evidence that they can provide. This is accomplished by scaling 
the measures by a level-specific scale factor SF (O.O < SF < 1.0). Thus the (in)compatibility 
measures for the edge-level can be defined as:

compatibility (Ei, Ej) = collinearity (Ei, Ej) x SF^ge

incompatibility (Ej, Ej) = noncollinearity (E;,Ej) x SFedge

Once the (in)compatibility between the two edges has been determined, the technique 
described in appendix B can be used to convert them into a bpa. For example, assume that Ej 
and E2 exhibit maximal beliefs for the same model edge, EA, and that the labeler KS is using 
E2 to update the belief of Ej’s label. To do so, the labeler measures the collinearity and the 
noncollinearity of Ei and E2, If the results of the (in)compatibility measurements are

:''-/'-.:".;'.:.9omp,atibility(E2,Ei)-:0.8;.----...;..-.v

incompatibility (E2, Ei) = 0.1

the belief in ^ ’s label (say, for example, 0.8) can be used to create an "updating" confidence 
function for Ei as follows:

*—~
The scale factor is provided to limit the amount of disconfirmatory evidence generated by small 

edges which may be due to noise.
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Conf2_>i({EA}) = m2({EA}) x compatibility(E2, Ei) 

= 0.64

Conf2_41({-iEA}) = mE2({EA}) x incompatibility(E2, Ei) 

= 0.08

Since the confidence function has some belief left uncommitted, E^’s updating bpa can be 
defined as

mUgtoe({EA}) = Conf^i ({EA })=0.64 

te ({—>E A}) = Conf2_1({-nEA})= 0.08 

mu^date({©}) = 1.0 - Conf2^!({EA}) - Conf2^1({-,EA})= 0.28 

where the probability mass for the FOD was set to the uncommitted portion of belief.

6.2.2. Computing Updating Belief Functions for Face-Elements with the Same Label

The (in)compatibiiity metrics for face-elements are called colocate(-) and noncolocate(*). 
These two metrics are designed to measure how close two face-elements are to each other by 
measuring the distance between their centroids. The compatibility metric between two face- 
elements, colocate(F!, F2), is defined as

, /t- r- \ ^max — Dceniroid
colocate(Fi, F2) =---- ——------------

^max

where Dcentroid is the distance between the centroids of the two faces. Dmax is the maximum 
allowable value for Dp^o^; currently, it is set to the length of the diagonal of Fj’s extent. 
Again, this is done to scale, by an element’s size, the evidence that the metric can provide. To 
improve computational efficiency, the centroid of a face currently is approximated by the cen
troid of its extent, Similarly, noncolocate(Fi, F2), the face-level incompatibility metric, is 
defined as

noncolocateOFj, F2) =
^centroid

Dm cy

Note that these metrics can be used for range data by extending the definitions to use the 
directions of the normal vectors of the two faces. In the three dimensional case, these metrics 
could be defined as

colocateapCF!, F2) = Dm" ~ x cos(8)

^max
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■and ;

noncolocate3D (Fi, F2) - ^ntTOld x sin(8)
^max

where the distance parameters are defined as before and 0 is the acute angle between the two 
normal vectors. This extension is not needed currently because of the two-dimensional aspect 
of the mobile robotic environment.

Another metric that can be used to compute the incompatibility between two faces, Fi and 
Fj, on the data panel of the blackboard, is the fraction of overlap between them, 
overlap(Fj, Fj). To understand how this metric is used, consider the following example. 
Assume that the incompatibility of two faces on the data panel, Fx and F2, is being computed 
and that the two are thought to correspond with two non-overlapping faces on the data panel, 
Fa and Fb , respectively. If faces Fi and F2 overlap by 10%, then the incompatibility between 
them can be defined to be

incompatibility^!, F2) = overlaps, F2) = 0.1

6.2.3. Computing Updating Belief Functions for Elements with Different Labels

If two elements correspond to different model-elements, a rigid motion transformation is 
applied to one of them before the computation of the (in)Compatibility metrics. This has the 
effect of enforcing relational constraints between the two data-elements. For example, if edges 
Ej and E3 are thought to correspond to model edges Ea and Eb , respectively, then the measure 
of compatibility between Ei and E3 would be defined as

compatibility(E3, Ex) = collinearity(E3, TEa^Eb(E1» x SFgdge

where T^^^ is the rigid motion transformation that makes model edge Ea collinear with 

model edge Ee.

Fig. 6.7 can be used to aid in the explanation of how the transformation is defined. First, 
for a given pair of non-parallel edges, the vertices on the convergent and the divergent sides of 
the edges are distinguished; the convergent side of the two edges is the side on which they 
would meet if extended. The transformation T^^^ is accomplished by rotating edge Ea 
about its convergent vertex through an angle that makes the edges parallel; subsequently, EA is 
translated so that the two convergent vertices coincide. Performing this transformation forces 
model-elements to be compatible; in other words,

collinearity(EB, TEa_^Eb(Ea)) = 1.0

Note that the definition of the transformation is not well defined. There are two transfor
mations that can be used to make the two model edges collinear depending on the direction
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After Translation
EB———o

(a) (b)

FIGURE 6.7 This figure shows the rigid morion transformation that makes two model-elements collinear. Panel 

(a) shows the transformation created by "unfolding" the two edges. Panel (b) shows the transformation created by 

"collapsing" the two edges.

that edge EA is rotated. The first transformation "unfolds" the two model edges by forcing the 
angle between them to be 180 degrees; this type of transformation is shown in panel (a) of Fig.
6.7. The other type of transformation "collapses" the two edges onto each other by forcing the 
angle between them to be 0 degrees. It is impossible to determine completely from the 
geometry of the model edges which transformation will be needed to make two data edges col
linear; the transformation also depends on the direction that the image is misregistered from 
the expected scene. Therefore, the transformation that should be used to make two edges col
linear must be determined at runtime. PSEIKTs labeler KS computes the collinearity of the 
two edges using both transformations and uses the transformation that results in the largest col
linearity measurement. The same transformation is then used to determine the incompatibility 
of the two edges.

Consider, as an example, how the relational constraints are checked by transforming ele
ments and measuring their (in)compatibility. Assume that edge E3 is being used to provide

o—■———o
i E E"

W B Ao------------------- o



updating evidence about the label of edge Ei. Furthermore, assume that edge Ej has label Ea 
and edge E3 has label Eg. To measure the extent to which the geometrical relationship 
between E^ and E3 is the same as the one between Ea and Eg, the labeler carries out the fol
lowing (in)compatibility computations:

compatibility(E3, Ei) = collinearity(E3, TEa_^Eb (Ex)) x SF^

incompatibility(E3, E^) = noncollinearity(E3, x SF^ge

where TEa_»Eb is the transformation that makes the model edges Ea and Eg coincident and 
results in the greatest measured eollinearity between E3 and the transformed version of edge 

■'Ei. Clearly, compatibility^, Ei) = 1.0 implies that the geometrical relationship between Ei 
and E3 in the data is exactly the same as between Ea and Eg in the model (in this case, 
incompatibility(E3, Ei) = 0.0). If the compatibility calculations yielded the following results:

compatibility^, Ei) = 0.7 

incompatibility^,Ei) = 0.4

and the belief in E3’s label was 0.95 then the following confidence function could be defined 
by using the (in)compatibility measures and the belief in E3’s label.

Conf3^i ({EA}) = m^ ({Eg}) x compatibility(E3, Ei)

= 0.7x0.95

. =0.665 .

Conft^i({-.Ea}) = m^({Eg}) x incompatibility(E3, E2)

= 0.4x0.95 

- = 0.38 ^

Since the confidence is overspecified, the updating bpa can be defined by normalizing with the 
total confidence.

mu^iate ({ ^a })= 0.64 

®u^date ( { "^A ) ) 0.36

The same technique of checking relational constraints can be used on the elements resid
ing on the face level. That is, the (ih)c6mpatibility between face elements can be measured by 
applying the (non)colocate metrics to transformed face elements with different labels. How
ever, since the metrics used to calculate the (in)compatibility between face-elements use only 
the distance between Centroids for their computations, only a translational transformation is 
required. Formally, the transformation TF._^F. merely translates Fj’s centroid until it is coin
cident with Fj’s centroid. The transformation used to measure face-level relational constraints
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is shown in Fig. 6.8.

A +
B+

FIGURE 6.8 This figure shows the rigid motion transformation that makes the centroid face Fa coincident With 
the centroid of the transformed version of face Fg. The crosses inside each face indicate the location of 

its centroid.

Note that if the metrics are extended to work in three-space, as previously discussed, then there 
should be a rotational component to the transformation that would make the faces’ normal Vec
tors collinear.

In reality, a single procedure is used for enforcing both the local and die relational con
straints within a group. Note that if the identity transformation, Tgx_4Ex is used, the 
(in)compatibility calculations for relational constraints reduce to the computations required for 
(in)compatibility calculations for mutual consistency in Sections 6.2.1 and 6.2.2.

To make the concepts introduced in this chapter more concrete, we will show an example 
of the how face elements are labeled and hOw the belief in those labels are updated. In this 
example, assume that the expected scene consists of a single object with four faces, as shown 
in the left panel of Fig. 6.9. Also assume that a region-based preprocessor presented PSEIKI 
with the observed scene depicted in the right panel of Fig. 6.9.

The first step in the labeling process consists of determining the frames of discernment 
for the faces on the data panel. As previously described, a model element is include in a face- 
level data element’s FOD if the extents of the two elements overlap. For example, if Fa was 
the only model face whose extent overlapped with face Ft’s extent, then Fj ’s FOD would con
sist entirely of @g1 = {Fa}. On the other hand, if the extent of face Fg overlapped with the
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fb

.. ^

FIGURE 6.9 The left and right panels of this figure show the model and data panels of the blackboard, 

respectively. This figure is used in the example in text which describes how the labeler KS initializes 

and updates the belief in the labels of face-level elements.

extents all of the model faces, then its FOD would be @p6 = {Fa, Fb, Fc, Fd}•

After the initial FODs for the face elements have been determined, the belief function of 
each element is initialized by measuring the percentage that the face’s extent overlaps with the 
extent of each model element in its FOD. For example, the following probability masses could 
result ffoni measuring the percentage of overlap between face Fg and the model faces.

Fi/-\Fa
ES_overlap(FA, F6) =————== 0.05

fiUfa

fiP>fb .
ES_overlap(FB, F6) = —-----— = 0.1

fiUfb

• ■ FmFc
ES_pverlap(Fc,F6) = c _ =0.1

F ^\FES_overlap(FD, F6)=- -1- ° =0.35
... fiUfd ....

The following probability masses are obtained by using the process described in appendix B.
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mF6 {FA} = ES_overlap(FA, F6) = 0.05 

mp6{Fb}= ES_overlap(FB, Fg) = 0.1 

mF(. {Fc} = ES_overlap(Fc, F6) = 0.1

mF6 (Fd } = ES_overlap(FD, F6) = 0.35 

mp6 {@f6 } = 1.0 - 0.05 - 0.1 - 0.1 - 0.35 = 0.4 

mp6 (-) = 0.0 for all other subsets of ©p6

Thus face Fg would be assigned label Fd with belief 0.35. The same process is used to initial
ize the belief functions of the other face elements on the data panel. Assume for the example 
that the other faces received the following labels.

Face Label Belief

Fi Fa 0.30
f2 Fa 0.42
f3 Fb 0.72
f4 Fa 0.33
f5 Fc 0.67
f6 fd 0.26
f7 fd 0.31
f8 Fb 0.20

After each face’s belief function has been initialized, the grouper KS is allowed to group 
compatible faces into objects. If we assume that one of the groups formed by the grouper KS 
consists of faces Fj, ..., F7, then these faces Can be used to update the belief in each other’s 
labels. For our example, we will concentrate on the process used to update the belief in the 
label of face Fg. For each face in the group, excluding face Fg, we measure the 
(in)compatibility of the face with face Fg using the colocate() and noncolocate() metrics and 
appropriate transformations. For example, since Fg and F7 have the same label, the updating 
evidence provided by measuring their consistency is computed as follows (assuming that 
SFface is equal to 1.0)

mu^date({FD}) = mF7({Fd}) x colocate(F7, Fg) x SFface

= 0.31 x 0.4x1.0 

= 0.13
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mu?datc({-FD }) = mp7({FD}) x noncolocate(F7, F6) x SFface

= 0.31 x 0.6 x 1.0

= 0.18

mu^te({®F6 }) = 1.0 - 0.13 -0.18 

= 0.69

However, since the other faces in the group do not have the label Fd, face Fg must be 
transformed before the metrics are applied. For example, the updating evidence for face Fg’s 
label generated by checking its consistency with the label of face F5 can be computed as

mUpdatc({FD}) = mp5 ({FD}) x colocate(F5, TFd^Fc(F6)) x SFface
3->6

= 0.67 x 0.8 x 1.0 

=0.53 ;

mu^date({-'FD}) = mp5({FD}) x noncolocate(F5, TpD_>Fc(F6)) x SFface

= 0.67 x 0.2 x 1.0 

0.14

mu^date({®F6}) = 1-0 - 0-53 - 0.14 

0.33 .

Updating evidence can be generated by checking face Fg’s consistency with the other faces in 
the group in a similar manner. After the all of the faces in the group have been used to provide 
evidence on the validity of face Fg’s label, the resulting updating bpa is combined with Fg’s 
bpa using Barnett’s formulas to yield a new belief function.

Note that, in this example, we have not addressed the effects other KSs would have on the 
processing. For example, the merger KS would most likely merge the following groups of 
faces at some point in the processing because the elements in each group are adjacent and have 
the same label.

(Fi, F2, F4}—>Fp

{F6,F7}—»F10

The composite faces formed by the merger would then be labeled and updated in the manner 
described above. In the next chapter, we will describe the methods used by the splitter, merger 
and grouper KSs to create and modify groups.



CHAPTER 7

EVIDENTIAL ASPECTS OF
THE GROUPER, SPLITTER AND MERGER KNOWLEDGE SOURCES

PSEIKI’s low-level preprocessors produce data only for the lower levels of the black
board; thus, the system needs to generate data elements on higher levels. Furthermore, data 
presented to PSEIKI by its low-level preprocessors is often far from optimal. Many times, 
image structures that should remain separate are merged into a single Structure (i.e. the image 
is undersegmented) or a structure is incorrectly broken into a number of smaller ones (i.e. the 
image is oversegmented). In fact, it is common for a single image to be undersegmented in 
one section and oversegmented in another. The grouper, splitter and merger KSs are designed 
to compensate for these deficiencies by building objects on upper levels of the blackboard 
from elements on lower levels and by correcting segmentation errors.

It is the grouper KS’s task to create data-elements on the upper levels of the hierarchy by 
forming groups of elements on lower levels. Many previous systems that performed element 
grouping used perceptual organization principles descended from Gestalt Theory [Koh47]. 
Gestalt theory is a psychological tenet which states that perception occurs as a whole process 
not the combination of a number of more elemental processes. One of the main products of 
the Gestalt school was a catalog of a large number of phenomena that produced perceptual 
grouping. Fig. 7.1 shows some of the grouping phenomena categorized by the Gestaltists. 
Although this initial thrust into perceptual organization offers little help to computer vision 
systems, some vision systems are able to discover perceptual groups based on the related prin
ciples of "transformations" [WitTen83a], [WitTen83b] and "interestingness" [LawMcC87]. 
The use of perceptual grouping in computer vision systems is also discussed in [Mar82], 
[Low85].

The splitter and merger KSs are designed to correct grouping errors produced by the 
low-level preprocessors, by the grouper KS and by each other. The merger KS tries to correct 
oversegmented images by merging elements on one level of the blackboard into a single group 
on the same level. The splitter KS’s task is to break an element into smaller elements all of 
which reside on the same level of the blackboard as the original element. This splitting is done 
to correct an undersegmented image. These two KSs use many of the classic splitting and 
merging techniques described in [BriFen70], [HorPav74], [Zuc76], and particularly those 
expressed as rules in [NazLev84].

7.1. The Grouper Knowledge Source

The grouper KS builds data elements on the upper levels of the hierarchy from data ele
ments deposited by the low-level vision system. It does this in a data-driven manner by
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Proximity

Closure

■ ■ . . ■ ■ Similarity

Symmetry

FIGURE 7.1 These are some examples of the grouping phenomena cataloged by the Gestaltists.

grouping objects on the lower levels of the hierarchy into progressively higher levels. For 
example, if an edge-based preprocessor is used to generate input data, the grouper first groups 
edge-elements into faces and then groups the faces into objects, and so on.

Fig. 7.2 shows a simple example of how the grouping is performed; panel (a) shows the 
expected scene, panel (b) shows the edges presented to PSEIKI by an edge-based preprocessor, 
and panel (c) shows the initial labels for those edges. The grouper KS is triggered by the 
monitor when the monitor detects an element on the data panel that has no parents. These 
orphan elements can have a number of origins: The low-level preprocessor deposits a large 
number of orphan elements onto the data panel at the beginning of processing; in fact, all 
edge-level elements deposited by an edge-based preprocessor are orphans, as are all face-level 
elements deposited by a region-based preprocessor. Any data element created by the grouper 
KS, splitter KS or merger KS also is an orphan initially. When the KS is triggered by the mon
itor, a knowledge source activation record (KSAR) is built indicating that the orphan element
W ! ‘ :

The labels shown in Fig. 7.2 are intended only for the purpose of explanation here. In actual 
practice, even for simple imagery, the initial label map may be much more chaotic, depending 
upon the extent to which an image is degraded by noise and other artifacts.
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FIGURE 7.2 This figure shows an expected scene in panel (a), the edges produced by an edge-based preprocessor 

in panel (b), and their initial labels in panel (c).

should be used as a seed-element of a group. For example, if we assume that all of the edges 
shown in Fig. 7.2(b) are orphans deposited on the data panel by an edge-based preprocessor at 
the start of processing, then a KSAR is built for each edge indicating that it should be grouped. 
After the monitor triggers the KS by building the KSAR, it is up to the scheduler to determine 
when the KS will fire and form the specified group.

The scheduler fires the grouper KS when a new data element with a particular label is 
needed. At this point, the scheduler determines all of the grouper KSARs whose seed- 
elements can be a child of an element with the desired label and ranks them based on the ele
ments’ belief, size and strength. For example, in Fig. 7.2, at some point in the course of black
board processing, a new data element with label Fq may be desired. To form an element with 
this label, the scheduler would rank the grouper KSARs for edge elements with labels E^, En» 
Eo and Ep, because these are the only elements that could be the children of a face with label 
Fo- The scheduler then chooses the highest ranked KSAR and fires the grouper KS, When the 
grouper KS is fired, it creates a parent-element one level up on the blackboard from the seed- 
element with the seed-element as the parent’s only child. It then determines the set of all ele
ments that could possibly be the siblings of the seed-element, based on their labels. In the 
example, suppose that edge E^ was chosen as the seed-element, then the only edges that could 
possibly become its siblings are edges Ejg, Ejg and E22 because these are the only edges 
whose model elements are siblings of edge E^’s model element. After the set of candidate 
siblings have been determined, the (in)compatibility metrics discussed in chapter 6 are used to 
determine which candidates get grouped with the seed element. A candidate element will be 
grouped with the seed-element only if the compatibility metric yields a value above a user- 
specified threshold. For example, if the compatibility threshold has been set to 0.5 and the
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following compatibility measurements were made

collinearity(E16, Tem_>eo(e19)) = 0^5

colIinearity(E18, (El9)) = 0.55

collinearity(E22, Tej^^EpCE^))- 0.43 

then the grouper could construct the following initial group of data edges.

Ei = (Ei6, E18, E19)

The same process can also be used to find the following initial groups of edges 

F2 = (E3* e4> E8, Ejo, En}

F3 =•■{Ei, E2, Ej4, E^, E20, £21, E23, E24}

F4 = {E5, Eg, E7, E9, Ei2}

Note that the blackboard monitor would trigger the grouper KS as soon as these face elements 
were created because each of them would be an orphan initially. Also note that the grouper 
KS may incorrectly group some edges into the face. For example, small edges generated by 
noise may be accidentally included in a group. Also, the grouper may incorrectly include 
competing elements into a group; two elements are said to compete if they cannot both be 
present in a consistantly labeled scene interpretation. For example, in F3, edges Ei and E24 
compete with each other. Obviously, the grouper KS should include only One of these compet
ing edges in any group. It is the job of the splitter KS to remove the incorrectly grouped edges 
from a face. The splitter KS also has the duty to generate multiple faces from a face contain
ing competing edges; the faces that the splitter generates retain only one competing edge at a 
time. The actions performed by the splitter KS will be explained in greater detail later in the 
chapter.

The grouper KS groups faces into objects using a sitnilar procedure; however, the grouper 
uses the colocate metric introduced in the last chapter to determine if a candidate face should 
be grouped with the seed face. We will use the face elements created by the grouper in the last 
example to explain the processing used by the grouper KS to group face-elements into objects. 
Assume that labeler KS assigned the following labels and belief values to the above faces.

Face Label Belief

Fi FD 0.40
f2 Fa "" 0.42
f3 v; Fc ; 0.72
f4 Fb 0.53

If a data element on the object level with label Oa, which is composed of faces Fa and Fg, is 
desired at some point in the blackboard processing, then the scheduler would rank the



appropriate KSARs based on their face’s size arid belief Values. The scheduler would then fire 
the grouper KS with the highest ranked KSAR. For this example, assume that the scheduler 
fired the grouper with F4 as the seed-element. After the KS is fired, the grouping process 
proceeds as follows: First, the grouper creates an object level data-element and assigns the 
seed-element as its only child. It then collects a set of candidate sibling faces based on the 
their labels. In this example, face F2 would be the only candidate face because it is the only 
face with one of the labels, Fa of Fg. If the compatibility threshold was set to 0.5 and the 
grouper measured the following compatibility measurement

cblocate(F2, TFb^Fa(F4» = 0.69 

then F2 would be grouped with F4 to create the following face 

Oi = {F2,F4)

7.2. The Merger Knowledge Source

The merger KS also performs a grouping process; however, this process does not build 
elements on higher levels of the hierarchy from elements on lower levels, as does the grouper 
KS. Instead, it combines multiple elements on the blackboard into a single, larger element on 
the same level as the original elements. It combines elements if it is believed that they all can 
be represented by a single element on the model panel. This combining process can be used to 
correct grouping errors produced by the low-level preprocessor and the grouper KS. For 
example, the low-level processor sometimes produces artifacts that break edges into smaller 
line segments. The merger KS tries to correct this error by joining broken line segments with 
the same label if they are close together and highly collinear. The merger KS also combines, 
into a single edge, highly collinear edges that are joined at a degree-two vertex and that have 
the same label. On the face level, the merger KS will combine two faces with the same label if 
they are adjacent and grouped in the same object. It will also combine two faces if they have 
the same label and one completely surrounds the other. Some of the merger KS’s actions are 
shown in Fig 7.3.

The first step in the merging procedure consists of determining if the elements under con
sideration really need to be merged. For example, it is not feasible for the monitor to check the 
coilinearity of two edges before it builds KSARs to merge them; thus, the merger KS needs to 
determine if two edges are sufficiently collinear before it merges them. The KS will not merge 
two edges if the coilinearity metric described in chapter 6 yields a value below a user set thres
hold when applied to the two edges in question. This threshold is usually set to a relatively 
high value (above 0.75) to keep the KS from merging two edges that should remain separate. 
For two faces to be merged, it is sufficient that they have the same label, be grouped together 
and be adjacent. Two faces are said to be adjacent if they contain at least one edge in com
mon.
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(a)f ■ . (h) ■/ (c). : ;;

FIGURE 7.3 This figure shows the actions performed by the merger KS. Panel (a) shows how two close, 

collincar edges can be joined together. Panel (b) demonstrates how two collinear edges can be merged 

into a single edge. Finally, panel (c) shows how two adjacent face-elements with the same label can be 

merged if they are grouped together.

Once it has been decided that the elements should be merged, a level-specific procedure 
is used to merge them. When two edges are to be merged, the KS deposits a new edge element 
on the blackboard with one vertex from each of the two old edges; these vertices are chosen to 
give the new edge maximal length. When two faces are to be merged, the merger deposits a 
new face element On the blackboard whose list of children is the exclusive-or of the lists of the 
two old edges. That is, an edge is include in the new face’s list of children only if it is the 
child of only one of the old faces. Forming the new face’s list of children in this manner 
prevents the edges that form the border of the two old faces from being included in the new 
face’s list of children. The new element’s parameters are also initialized when it is deposited 
on the blackboard. For example, the strength of a new edge is set to the weighted average of 
the strengths of the two old edges; likewise, the grey-value of a new face is set to the weighted 
average of the grey-values of the two old faces. After the new element is created by the 
merger, any references to both of the old elements is replaced by a reference to the new ele
ment. Finally, if the two old elements were always referenced as a pair, a flag is set in the ori
ginal objects indicating that they should be ignored in further processing; this flag is used 
because the newly created element superseeds the elements from which it was created.

7.3. The Splitter Knowledge Soured

The splitter KS also tries to correct the grouping of incorrectly grouped elements. How
ever, it performs the opposite action of the merger KS; its task is to split data-elements into 
smaller elements if it is believed that they were incorrectly grouped.

The KS will split an element if it is thought that the element corresponds with more than 
one element on the model panel. It is possible to determine that an element should be split by 
examining its belief function; an element that corresponds to more than one model element
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will have high belief values that are nearly equal for two or more members of its FOD. For 
example, if two edges are configured as shown in Fig. 7.4 (a), and the nearly vertical one is 
believed to correspond with two model-elements because two of the members in its FOD have 
high belief, then the splitter KS will split it near the vertex of the other edge. In this example, 
the preprocessor did not form a junction between the upper and lower halves of the edge 
because it failed to detect the edge’s intersection with another edge. On the face level, the 
splitter KS severs a "peninsula" from a face-element if the two edges on either side of the pen
insula have the same label. This is shown in Fig. 7.4 (b).

FIGURE 7.4 This figure shows the actions performed by the splitter KS. Panel (a) shows how an edge can be 

split to join it with another edge. Panel (b) demonstrates how a "peninsula" can be split from a face.

The splitter KS also corrects elements that were incorrectly formed by the grouper KS. 
For example, one or more of an element’s children may not belong with the rest of the group. 
These elements are relatively easy to spot because the belief in their labels is usually suspi
ciously low when compared to the belief in their siblings’ labels. Once the incorectly grouped 
children are discovered, it is an easy task for the splitter KS to duplicate the old parent element 
with the exception that the incorrectly grouped children are omitted from the duplicate’s list of 
children. The original element is then flagged to be ignored.

It is also common for an initial grouping to be contaminated by competing children. For 
example, when grouping edges into a face, the grouper may include multiple renditions of the 
same edge in the same group. If the gray level variations corresponding to a scene edge do not 
exhibit a monotonic variation in directions perpendicular to the edge, the edge may be detected 
as multiple parallel edges in close proximity to one another. Edges 1 and 24 in Fig. 7.2 could 
be an example of such an artifact. An important job assigned to the splitter is the detection of 
such parallel edges. It does this by measuring the angle and the extent of the overlap between 
two grouped elements with the same label. The overlap is measured by projecting the shorter 
of the edges onto the longer one. When such competing parallel edges are found, multiple 
groupings are formed from an initial group by retaining only one competing parallel edge at a 
time.
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In the above example, edge 24 will compete with edges 1 and 2 in F3; the same will be 
the case with the edges 6 and 9 in F4. So, the above initial groups lead to the following 
groups:

Fi = {E16, Ei8, E19}

^2 = {E3, E4, Eg, E10, En)

F3 = {Ei, E2, Ei4, E^, E20, E21, E23}

F 3 = {E14, E15, E2o, E2i, E23, E24}

F 4 - {E5, E7, E9, E12}
f"4 = {E5, e6, e7, e12}

Note that the splitter KS and the merger KS do not delete elements that they believe to be 
incorrectly grouped; instead they create new elements and set a flag in the old element indicat
ing that the element is no longer in focus. The old elements are not destroyed so that the KSs 
may check to see if a newly created element is identical to an Older element that is no longer in 
focus. The new element is deleted immediately if it is determined to be identical to such an 
element. The older elements are also allowed to remain on the blackboard because, at some 
later time in the processing, it may be decided that they were correct and should be used.
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CHAPTER 8

BLACKBOARD IMPLEMENTATION mOPS83

Philosophically, all blackboard (BB) systems are alike in that they all contain three main 
components. First, they all contain a collection of knowledge sources (KSs) into which the 
domain knowledge is partitioned; that is, each KS is able to solve a small portion of the total 
task. Furthermore, blackboard systems are so named because each contains a blackboard, a 
hierarchical database containing the data for the specific problem on which work is being done. 
To keep the KSs independent, communication between them is allowed to take place only 
through the blackboard database. Finally, each of the systems contains a control mechanism, 
commonly called the scheduler, that can respond opportunistically to data residing on the 
blackboard in order to optimize control flow.

Although all blackboard systems are conceptually similar, implementation details affect 
control strategies, KS granularity, etc. This chapter will address PSEIKI’s implementation in 
OPS83 and the effects of the rule-based programming language on design decisions. The 
chapter will show the working memory data structures used for representing the data-elements 
and the knowledge source activation records . Subsequently, the current implementation of 
the scheduler and the monitor will be described. Finally, KS implementation will be 
described; the operation of the grouper KS will be described in detail and die operation of the 
labeler KS, the splitter KS and the merger KS will also be discussed.

8.1. OPS83 Data Structures Used By PSEIKI

PSEIKI uses the working memory of OPS83 for the BB data structure; each working 
memory element (WME) corresponding to the BB data structure describes a data-element at 
some level of the BB. In addition to being a host for the BB data structure, the working 
memory also stores the knowledge source activation records (KSARs). A KSAR is created by 
the BB monitor when the trigger conditions for a KS are satisfied by some data-element. (It is 
the job of the monitor to keep track of the data on the BB and to constantly check whether a 
newly created data-element satisfies the triggering conditions for a KS.) KSARs also can be 
created by KSs, allowing KSs to trigger other KSs explicidy. Each KSAR holds the identity 
of the data-element that meets the triggering conditions of a KS, the relevant KS, and other 
pertinent information such as the cycle during which the KSAR was created. This information 
w~—1—:------- :—■ "

If not already familiar with terms like "working memory," "production memory," etc. the reader 
is referred to [BroFar85] for a nice exposition on the architecture of a production system. The 
GPS83 used for PSEIKI is a direct descendent of the OPS5 system described in [BroFar85]. Much 
more so than OPS5, OPS83 allows functions and procedures to co-exist with rules and working 
memory elements.



indicates to the KS the object on which work should be performed and aids the scheduler in 
choosing a KSAR to activate.

8.1.1. Working Memory Elements for Representing Data

A single WME class is used to store all data-elements, regardless of the BB level at 
which the data-element resides. In other words, the same WME class is used for edgeSj faces, 
objects and scenes. The distinctions between different types of data-elements are introduced 
by using appropriate values for the level attribute. Using the same WME class allows generic 
functions to be applied to elements from all of the data levels.

-75- andress/kak

Fig. 8.1 shows the definition of the WME class for representing data. Most of the WME 
fields are self-explanatory. The element’s id number is a unique identifier used to keep track 
of individual data-elements; data-elements are always referenced via their id numbers. The 
panel and level fields specify the element’s location on the BB. The type field is used to 
specify the type of data from which the element is derived; the values that it can assume are 
two d, three d and model.

The next two fields specify the sub-elements from which an element is built. The chil
dren field is used to store the list of id numbers of the element’s children. The madeof field 
has a number of uses. If the element is on the data panel and was built by the splitter KS or 
merger KS, then this field stores the id number of the element(s) that were split or merged to 
form this element. However, if the element is on the model panel, then this field is used to 
store the id numbers of all data elements whose labels are equal to this element’s id number.

The next few fields are parameters of the data-element. The value field is a generic attri
bute in which a level specific value is stored. For example, it is used to specify the strength of 
an edge or the average gray level of a face. The size parameter is also generic; this parameter 
is used to specify the degree, length, area or volume if an element is a vertex, edge, face, or an 
object, respectively. The near and far parameters are used to specify the two diagonal ver
tices defining the extent of the element.

The focus field has two functions. If the element is on the data panel, then this field is 
used as a flag indicating if the element is in focus; a zero value indicates that the element is no 
longer in focus and should not be used in further processing. If the element is on the model 
panel, then this field is used to specify the desired number of competing data elements that 
have this element as their model. For example, if the value of this field was set to three for an 
element on the model panel, then there should be at least three in-focus elements on the data 
panel that have this element as their model.

The next two parameters specify the data-element’s location if it is a vertex. The rowcol 
attribute indicates a vertex’s coordinate on the image plane if it was obtained from 2D data.
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type Data=element (
id: integer; — unique id number
panel: integer; --panel in the BB
type: symbol; — type of panel (two_d, three_d, model)
level: symbol; — level in the panel (vertex, edge,...)
source: symbol; — source of the element (original, synthetic)

— Parameters defining the composition of element
children: list; — children of element
madeof: list; — list of elements that were split

— or merged to create this element

— General Parameters
value: integer; — edge strength, face grey-value, etc.
size: integer; — edge length, area of face, etc.
near: vector; — coordinate of extent
far: vector; — coordinate of extent
focus: integer; — flag set if element is in focus

— Parameters valid only for vertex-elements
rowcol: ivector; — (vertex) image coordinate of vertex
coord: vector; -- (vertex) world coordinate of vertex

— Parameters used fdr uncertainty management
frame: list; — frame of discernment
bpa: bpas; — basic probability assignment
positive: real; - updating bpa belief
negative: real; — updating bpa disbelief
label: integer; — label of element
belief: real; — belief in label

FIGURE 8.1 This is the WME class definition for data-elements.

Likewise, the coord attribute specifies the vertex’s location in the 3D world coordinate frame.

The remaining fields shown in Fig. 8.1 hold the uncertainty information about a data- 
element and are used by the labeler KS. The frame attribute holds the list containing the 
element’s frame of discernment and the bpa attribute holds the element’s basic probability 
assignment. An element’s updating bpa is stored in the positive and negative attributes; these



values indicate the new belief and disbelief in the element’s label. Finally, the element’s label 
and belief in that label are indicated by the next two attributes.

8.1.2. The WME Class for Representing KSARs

Fig. 8.2 shows the WME class definition for representing a KSAR. The id field is used to 
keep track of the KSARs while the state of any KSAR is determined by its status field. The 
KS and action fields of the KSAR specify what action is to be performed on its focal-element. 
The object field is used to specify the id number of the KSAR’s focal element; the level and 
panel fields specify the location of the focal element on the BB. The using field is used to 
specify the secondary focal element; for example when the merger KS is to merge two ele
ments, the id number of the second element is stored in this field. PSEIKI’s scheduler uses the 
priority field when ranking KSARs for firing; only the KSARs for the splitter KS and merger 
KS have non-zero priority values for reasons to be discussed later in this chapter. The 
trigger_cycle, the trigger_KSAR and the active_cycle fields are used as a log of the BB 
activities; they are used to record the BB cycle that a KSAR was created, the KSAR that was 
active when the this KSAR was created and the BB cycle on which this KSAR was run, 
respectively. This information has proven useful for debugging the BB.

type KSAR=element (
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id: integer; - KSAR id#
status: symbol; — KSAR status

KS: symbol; — Knowledge source being triggered
action: symbol; *- action KS is to perform

object: integer; -- Object being focused on
using: integer; — Secondary object being focused on
level: symbol; -- Level being focused on
panel: integer; — Panel Being focused on

priority: real; — KSAR priority.

trigger_cycle: integer; — cycle KSAR was formed
trigger_KSAR: integer; KSAR which was active when 

— this one was triggered
active_cycle: integer; - cycle during which KSAR was active

v;; -v-. ... ;;'V \:v:'

FIGURE 8.2 This is the WME class definition for KSAR.



The KSAR originally is created with its status marked as pending. This means that the 
KS has been triggered but has not yet been run. When the scheduler decides to fire on a 
KSAR, it marks the KSAR’s status to active. At this point, the KS’s precondition and poison
ing productions are allowed to fire; it is their job to mark the KSAR’s status to running if the 
preconditions are met or poisoned if they aren’t. If the KSAR is determined to be poisoned, 
the KS ’s body productions are not allowed to fire and control is passed back to the scheduler. 
If the status has been set to running, the KS’s body productions are allowed to fire. After the 
KS has accomplished its goal, it marks the KSAR’s status field to finished and returns control 
to the scheduler.
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8.2. Scheduler and Monitor Operation

8.2.1. Scheduler Operation

The scheduler is the heart of any BB. It is the scheduler’s job to choose what action to 
perform at any cycle of the BB operation. It carries out this job by selecting one of the pend
ing KSARs and activating the corresponding KS. PSEIKI’s scheduler, which consists of a set 
of metarules, runs by default; that is, it runs automatically when no KSs are active. Initially, 
when data is deposited on the BB, the scheduler is invoked to get the entire process started.

PSEIKI’s scheduling strategy can be broken into three phases. The first phase is called 
the initialization phase. In this phase, the labeler KS is used to assign labels to the elements 
deposited on the data panel by the low-level processor, the grouper KS and labeler KS are also 
used to create and assign labels to elements on the upper levels of the data panel, respectively. 
In the second phase, called the updating phase, the belief in the labels of the data elements are 
updated using the techniques presented in chapters 5 and 6. The third phase is called the 
incorporation phase; in this phase, the evidence passed up the hierarchy by the low-level ele
ments is incorporated into the upper-level elements’belief functions.

Although scheduling algorithm follows this three phase pattern in general, the actions 
usually designated to one phase may be performed in another phase if the need arises. For 
example, during the updating phase, if all of the elements with a particular label have their 
label changed, then the grouper KS will be fired to try find another element that can be given 
the desired label. The orderly flow of BB processing may also be interrupted by scheduling 
the splitter KS or the merger KS because these two KSs take scheduling presidence oyer the 
grouper KS and the labeler KS. That is, the scheduler will fire the merger KS or the splitter 
KS as soon as one of their KSARs appears indicating that two elements should be split or 
merged. It seems reasonable to fire these two KSs first because it is their duty to correct mis- 
formed groups. If an element is composed of a misformed group, then any processing 
resources spent labeling that element or including that element in a group will most likely be
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wasted. Thus, it makes sense that we try to correct these misformed groups as soon as possi
ble. ■': V ^ ^/

Two actions are performed during the initialization phase of BB processing: data ele
ments on the lower levels of the BB are grouped into elements on the upper levels by the 
grouper KS and the labels and belief functions of unlabeled data elements are initialized by the 
labeler KS. Backward chaining is used extensively to guide KSAR scheduling during the ini
tialization phase. Scheduling is started with the goal of finding a prespecified number of com
peting scene elements. The number of scene elements that the scheduler tries to find is 
specified by the value of focus field of the only scene-level model element; the value of this 
field is set by the user at the start of processing. To find the competing scene elements, the 
scheduler creates the sub-goal of finding a prespecified number of objects in the scene in order 
to group them into the desired elements; once again, the number of competing object-level ele
ments is specified by the focus field of the appropriate model element. The rule shown in Fig,
8.3 is used to chain down the expected scene creating goals and sub-goals to find elements and 
their children.

: schedule_init_children
: We are trying to find an elements on a label that has nb 
: data-elements on it
: create sub-goals (contexts) to find the element’s kids

rule schedule Jnit_children {
&contxt (ContextbiOTent=schedd|itit_eleiMent);. v-::
&model (Data id=&contxt.object);

(KSAR KS=label; action=initialize; level=&model.level);
&kid (Data in_list(@.id, &model.children));

make (Context current=sched_initielement; object=&kid.id);

FIGURE 8.3 This is the rule that chains down the model hierarchy creating goals to find the children of a model 

■ element.

- RULE 
« IF

- THEN

This rule works as follows: The first two CEs are used to match the model element for the 
current goal. The third CE checks to see if there is an element on the same level as the Current 
goal element; the rule will not fire if there is such an element. If there is data element on the 
current level, then the labeler KS should be fired to label it and this rule need not fire. When 
the rule fires, the RHS merely creates a context element (sub-goal) to find the child.
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Sub-goals are created to find the elements on successively lower levels of the BB until a 
level is reached that contains the data elements deposited by the preprocessor. If an edge- 
based preprocessor was used to generate PSEEKTs input data, then the edge level will be the 
highest level with data elements on it; if a region-based preprocessor was used, then the face 
level will be the highest level with data elements on it. When a sub-goal is created to find an 
element On a level that contains data elements, the rule shown in Fig, 8.4 becomes enabled and 
fires the labeler KS to initialize the labels of the elements on this level. This rule fires once for 
every data element on that level of the BB.

--RULE : schedule_init_label
— IF : The is a goal to find a model element that lies on a level
-- : that contains data elements
— THEN ; Fire the labeler KS to initialize the label

rule schedule_init_label {
&contxt (Context current=sched_init_element);
&model (Data id=&contxt.object);
&ksar(KSAR level=&model.level;

KS=label; action=initialize; status=pending);
~ (KSAR priority > PRIORITYTHRESHOLD);

-->

modify &ksar(status=active; active_cycle=&current_cycle);
};

FIGURE 8.4 This rule is used to schedule the labeler KS to initialize the labels of data elements.

The LHS of this rule is very similar to the LHS of the rule in Fig. 8.3; the main difference 
between the two is found in the third CE. In this rule, the third CE is used to match a labeler 
KSAR; in the previous rule, the third CE was used to prevent the rule from firing if it matched 
a labeler KSAR. The last CE is used to prevent the rule from firing if there is a pending KSAR 
for the splitter KS or the merger KS; we will describe the scheduling algorithm used to fire 
these two KSs later. This rule’s only action is to fire the labeler KS on the element specified 
by the matched KSAR. Note that only the highest level elements deposited onto the data panel 
are labeled at this time (e.g. faces for a region-based preprocessor); the labels for elements on 
the levels lower than this are not initialized until the updating phase of BB processing.

After all of the labels for these elements have been assigned, the grouper is scheduled to 
group them into elements on higher levels of the BB. As soon as the grouper KS forms an ele
ment, the labeler is fired to label it. The grouper is not allowed to be fired to form a new ele
ment on the data panel until each child of that element has the prespecified number of compet
ing elements (as specified by their focus fields). The rule shown in Fig. 8.3 is used to schedule



the labeler KS and one like it is used to determine that the grouper KS should be fired. After it 
has been determined that the grouper should be fired, a number of rules fire that determine the 
child element that will be used as its seed-element. These rules rank the grouper KSARs based 
on the product of the element’s size and the belief in its label. One of the rules used to rank 
the grouper KSARs is shown in Fig. 8.5.

: find_group_candidate
: there is a context to find a candidate for the seed element 
: with a particular label
: Choose, as the candidate, the element with the largest product of 
: Size and belief

rule find_group_candidate {
'.'.';v&eontxt- (Context current=sched_find_candidate);

&model (Data id=&contxt.object);
■ v . (Datalabel=&mckleLid)i

“ (Data children[2]=&el.id);
&ksar(KSAR object=&el.id; KS=group; action=initialize;

status=pending);
[&el.belief * &el.size];

--> ./ . ;
!.:V'modify;..--’ &ksar(status=candidate); 

remove &contxt;

FIGURE 8.5 This is one of the rales used to rank grodper KSARs.

This rule is used to find candidate seed elements that may be used as the seed element of the 
group. It finds one of these candidate elements for each of the children of the model element 
being formed. The firs^ two CEs guarantee that a candidate element with a particular label is 
found. The third CE matches the data element that will become the candidate seed element. 
The fourth CE guarantees that the candidate has not been used as the seed element for another 
group; in effect, this prevents an element from being the seed element for more than one 
group. Finally, the last CE matches the grouper KSAR with the designated seed-element. The 
structure on the hext line uses a feature of (DPS83 to choose, as the candidate, the element with 
the largest product of size and belief. OPS 83 uses the value in the square brackets to rank 
instantiations in the conflict set; everything else being equal, OS 83 selects the rule instantiation 
for firing that yields the greatest value for the expression in the brackets. Thus the construct 
will force the rule to fire on the data element with the largest product of size and belief. When 
this rule fires, it flags the KSAR as a candidate and deletes the context so that the rule will not
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- RULE
- IF

- THEN



fire again. Other rules are also used to in the grouper KSAR ranking and selection process; 
they are not shown here for brevity ’s sake.

The following scheduling scheme is used during the updating phase of BB processing. 
First, the labels of all of the children of the in-focus scene-level elements ape updated (all of 
which will reside on the object-level). Next, the labels of all of the children of the object-level 
children are then updated (all of these elements will reside on the face-level). This updating 
process proceeds down the data-panel hierarchy in a depth-first manner until the edge level is 
reached. If an edge-based preprocessor was used to provide the input data, then labels will 
have been assigned to the edges during the initialization phase; in this case, the edges’ belief 
functions are updated normally. However, if a region-based preprocessor was used to provide 
the input data, then the edges on the data panel will not have been labeled during the initializa
tion phase. In this case, labels are assigned to the edges and then the belief in these labels is 
updated.

The following rule (Fig. 8.6) fires the labeler KS to update the belief in an element’s chil
drens’ labels. The first two CEs in the LHS of this rule are used to match the KSAR to fire. 
The last CE of this rule is used to prevent the rule from firing if there is a pending splitter 
KSAR or merger KSAR. The RHS of this rule changes the status of the labeler KSAR to 
active, causing the KS to fire.
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— RULE : fire_on_update_element
— IF : There is a context to update the children of an object 

— : AND there is also a KSAR to update the children
- THEN : fire the KSAR

rule fire_on_update_element {
&contxt (Context current=sched_update_element);
&ksar(KSARobject=&contxt.object;

KS=label; action=update; status=pending);
(KSAR priority> PRIORITY_THRESHOLD; status=pending);

modify &ksar(status=active);
};

FIGURE 8.6 This rule is used to Are the labeler KS during the updating phase of BB processing.

Note: the labeler KS does not update the belief in the focus element’s label; rather, it updates the 
belief in the labels of the focus element’s children.



The following rule (Fig. 8.7) will fire after an element’s childrens’ labels have been 
updated; this rule generates a context to force the scheduler to fire the labeler KS on the 
element’s grandchildren. The first CE of this rule allows the rule to fire only if the BB is in the 
updating phase of processing. The second CE makes sure that the labeler has fired on an ele
ment before it fixes On the element’s children. The third and forth CEs match the element and 
one of its children, respectively. The last CE makes sure that the rule fires only once with any 
element/child pair. When the rule fires, it creates a context to fire the labeler KS on the child 
found by the forth CE. The context WME matched by its first CE is then modified so that it 
will be the most recent WME in the working memory. Making the context the most recent 
WME forces the rule to generate the update context for all possible element/child pairs before 
any other rule is allowed to fire.

- RULE : schedule_update_children
— IF ... : An element’s children have been updated
- THEN : Generate contexts to update the children of the children

rule schedule_update_children {
&contxt (Context current=sched_update_element);
&ksar(KS AR object=&contxt.object;

KS=label; action=update; statusopending);
(Data id=&contxtobject);

&kid (Data in_list(@.id, &el.children));
(Context current=sched_update_element; object=&kid.id);

-> : . - ■
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— Make the context to schedule the child
— also modify the current context last so that this rule
— will fire next (because of recency) to find any other kids.

make (Context current=sched_update_element; object=&kid.id); 
modify &contxt ();

}; '

FIGURE 8.7 This rule makes the scheduler fire the labeler KS to update the labels of elements on the lower levels 

of the BB.

The incorporation phase of BB processing is used to accumulate, into an element’s belief 
function, the evidence that was generated by checking the consistency of the element’s descen- 
dents. The scheduling scheme used in this phase of processing is identical to that used in the 
updating phase. That is, the labeler KS is fired first on the in-focus scene elements, and then



their children, followed by their children’s children, etc. The similarity of the two scheduling 
schemes is reflected in the similarity of rules implementing the strategies; in fact, the rule used 
in the incorportaupn phase is identical to the rule shown in Fig. 8.6 except that the context is 
called "sched_incorp_elemerit" instead of "sched_update_element" and the KSAR’s action is 
now "ineqip_update." Because, the rules used to perform the scheduling in this phase of BB 
processing are so similar to the rules used in the updating phase, they will not be shown here.

Scheduling the firing of the splitter KS and the merger KS is viewed as an exceptional 
event which is not part of the normal KSAR selection process. These two KSs are viewed in 
the exceptional manner because they are used to correct misformed groups; thus, they would 
not be needed if the low-level preprocessors always produced error-free results and the grouper 
KS always produced correct groupings. Because the splitter and merger are used in this 
manner, PSEIKI’s overall scheduling scheme can best be thought of as the 
label/update/incorporate process described above with opportunistic interruptions made by the 
splitter and merger to correct misformed groups. We will now describe the process used by 
the scheduler to interrupt the normal label/update/incorporate flow of control when the grouper 
or splitter needs to be fired. The orderly flow of BB processing is interrupted as soon as a high 
priority splitter KSAR or merger KSAR appears in the working memory and does not resume 
until all of these exceptional KSARs have been fired upon. When one or more splitter KSARs 
or merger KSARs appears in the working memory, the scheduler ranks them based on the 
value oftheir priority field and chooses the highest ranked KSAR for firing. The priority field 
is used specify the degree to which it is believed that the elements need to split or merged. If 
two or more KSARs have the same maximum priority value, then one is selected at random. 
The scheduler will continue to fire these KSARs until there are no pending splitter KSARs or 
merger KSARs left in working memory that have a priority greater than a predefined threshold. 
Note that the priority field is always zero for labeler KSARs and grouper KSARs because they 
are scheduled using the scheme described above. The rule shown in Fig. 8.8 selects the splitter 
or merger KSAR with highest priority and fires on it.
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8.2.2. Monitor Operation

The monitor is the watchdog of the BB. It is the monitor’s job to keep track of the data 
on the BB and trigger the KSs when specific conditions are met. It also is up to the BB moni
tor to watch the BB and determine if the status of any poisoned KSARs should be reset to 
pending. This resetting of a KSAR’s status occurs if the KS action on the specified data- 
element once again becomes valid. It also is up to the monitor to determine if any poisoned 
KSARs should be deleted; deletion occurs if there is no chance that the KSAR could once 
again become valid.

The BB monitor makes extensive use of OPS83 demons. A demon in OPS83 is a rule 
whose first CE is not a context, goal or KSAR. Because of the OPS83 rule selection strategy,
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— RULE : schedule_fire_interrupt
— IF : If there is splitter or merger KS AR with priority greater than 
— : the priority threshold and there is no KS AR with higher priority
-- THEN : Fire on the KSAR

rule schedule_fire_interrupt {
&ksar(KSAR priority > PRIORITY_THRESHOLD);

(KSAR priority > &ksar.priority);

modify &ksar(status=active);
■■■■ :

FIGURE 8.8 This rale is used to fire the splitter KS or merger KS.

these rules take precedence over ordinary rules (e.g. rules inside of KSs or scheduler rules) and 
fire as soon as they become completely instantiated. Thus a demon in OPS 83 can be thought 
to operate outside of any context, KS or goal search.

As an example of a monitor rule, consider Fig. 8.9. This rule, used to trigger the grouper 
KS, fires when it finds a data-element without any parents (an orphan element). The rule then 
creates a KSAR that directs the grouper KS to find the element’s parents. This rule works as 
follows: The first CE matchs any new data-element if it has a label; this data-element is the 
focus-element of the rule. The second GE allows the rule to fire only if the focus-element is an 
orphan. This CE uses the function injistf) to match any WME that has the first CE’s id 
number in its list of children. The tilde in front of the CE acts as a negation symbol; that is, it 
allows the rule to fire only if no WME matches the CE. Thus the tilde in front of the second 
CE of this rule keeps the rule from firing if the focus-element has a parent. The last CE keeps 
the rule from firing if the grouper KS already has been triggered on this data-element; the rule 
is fired if a pending grouper KSAR focused on the same element can not be found.

8.3. Operation of the KSs

Even though the various KSs perform very different tasks, many common subtasks are 
performed by all of them during KS operation. These subtasks start when the scheduler marks 
a KSAR’s status to active. After a KS becomes active, its poisoning rules are allowed to fire; 
these rules make sure that the KS’s preconditions have not become invalid since the KS was 
triggered. If a poisoning mle does fire, it sets the KSAR’s status to poisoned and returns con
trol to the scheduler. If none of the poisoning rules fire, a rule that marks the KSAR’s status to 
running fires by default.
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’-- RULE : group_trigger
— IF : There is a labeled element that is being focused on but 
— : has not yet been placed in a group

: AND a KSAR saying that it should be grouped has not yet been created 
— THEN : Create a KSAR that indicates that the element should be grouped

rule group_trigger {
&el (Data typeomodel; labeloO; focusoO);

(Data in_list(&el.id, children));
(KS AR KS=group; action=initialize; object=&el4d);

——>

make (KSAR KS=group; action=initialize; 
trigger_cycle=&current_cycle; 
id=&next_KSAR_id; status=pending; 
object=&el.id; panel=&el.panel; level=&el.level; 
priority=0.5);

&next_KSAR_id = &next_KSAR_id + 1;
■. };

FIGURE 8.9 This is a monitor demon that is used to create a KSAR for the grouper KS.

After the KS starts running, the control flow becomes more KS specific, but it still fol
lows the same pattern. The first few rules that fire after the KS starts running usually are 
driver rules. These rules don’t contribute directly to the solution of the KS’s task; instead, 
they initialize, in working memory, the elements that the KS needs to solve the task. These 
driver rules can generate contexts needed by the KS in its problem solving activity. They also 
can put on the BB dummy data-elements that will be "fleshed out" during the course of the 
KS’s processing. After the KS’s driver rules are fired, the control flow becomes very KS 
specific. In the next few sections, the control flow inside each KS will be demonstrated 
through the use of a few examples.

8.3.1. Grouper KS Operation

To illustrate the flow of control inside a KS, the grouper KS’s formation of a face from 
edges will be examined. The example in Fig. 8.10 will be used to make the explanation more 
concrete. Assume for the example that the grouper KS has been activated with a KSAR 
focused on the element E9 of Fig. 8.10. As previously described, the KS’s poisoning rules are 
allowed to fire when it is first activated. Fig. 8.11 is an example of a poisoning rule used by 
the grouper KS. This rule is meant to poison a KSAR if the grouper KS fires on an element
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FIGURE 8.10 This figure shows an example of data on the BB and is used to explain KS operation.

- RULE : edge_group_poison
-- IF : The active KSAR focuses on an edge that is already the seed of a group 
— THEN : Poison the KSAR

rule edge_group_poison {
&ksar(KSAR KS=group; action=initialize; status=active);
~ (Data level=face; children[2]=&ksar.object);

—> ’ '■ . ;

modify &ksar(status=poisoned);
}; : ^

FIGURE 8.11 An example of a poisoning rule.
*

has already been used as the seed of a group . This rule works in the following manner: The 
first CE matches the active KS AR if its action is to initialize a group. The second element 
determines if there is a face-element that has the focus element as its seed. The seed element 
of a group is always stored in the second position the element’s list of children (the position of
W---------———:——

This does not imply that a data-element can participate only in a single group. An edge-element, 
for example, is allowed in two or more groups if it is on the common boundary between them.
However, an edge-element can serve as a seed for only one group. Therefore, an edge-element 
that belongs to two or more groups can trigger the formation of only one of them; other edges 
would have to act as seeds for the other groups.



the last element in a list is stored in its first position). If this CE matches a WME^ then the 
focus-element already was used as a seed; the rule fires, and the KSAR is marked as poisoned. 
If no poisoning rules fire, another rule fires by default and marks the KSAR’s status to running. 
Thus if it is assumed that element E9 has hot been used as the seed for another group, then the 
active KSAR’s status is set to running.

The grouper KS uses a driver rule to initialize internal processing; this rules fire immedi
ately after the KS starts running. The driver rule is used to deposit an element on the BB that 
will be used as the focus element’s parent. The grouper KS then finds other elements on the 
BB that can become siblings of the focus element and groups them into the focus element’s 
parent. Fig. 8.12 shows the driver rule for group initialization.

The rule in Fig. 8.12 works as follows: The first two CEs match the running KSAR and 
the focus-element. The third CE prevents the rule from firing if it detects the focus-element’s 
parent. Because this rule creates the focus element’s parent, the third CE prevents the rule 
from firing more than once during any KS activation. The last CE is designed to find a possi
ble model for the parent-element by finding the parent of the focus-element’s label-element.

The rule performs two actions when it fires. First, it builds the parent-element. As men
tioned previously, the KS’s focus-element and its siblings will be grouped into this element. 
The parent-element is initialized with appropriate parameters: panel, data type, level, id 
number, size, etc. The parent-element’s seed element is set to the focus-element. This is done 
to prevent the driver rule from firing twice and to allow the remaining KS body rules to find 
both the focus and parent-elements easily. The rule also builds a KSAR that requests that the 
parent-element be labeled.
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Because edge E9 is an orphan in the example, this driver rule would fire. When the rule 
fires, a new element, say element F3, is created and depositied on the BB. This new element 
lies on the face level of the data panel with label Fc and, initially, has element E9 as its only 
child. Now it is up to the rest of the KS body rules to find element E9*s siblings and group 
them into face F3.

After the driver rule initializes the parent-element, the remaining KS body rules can fire. 
Only one KS body rule needs to fire to group edge-elements into the face-element. This rule 
(shown in Fig. 8.13) fires at least once for every edge that can be grouped into the face.

The first four CEs of the rule in Fig. 8.13 find the active KSAR, the parent-element, the 
model of the parent-element and the focus-element, respectively. The fifth CE finds a candi
date to group into the parent. This CE makes sure that the candidate is on the same level and 
panel as the focus-element and that it has not yet been grouped into the parent. Furthermore, 
this CE makes sure that the label of the candidate allows it to be grouped into the parent by 
checking to see if the candidate’s label element is a child of the parent’s label element. The 
rest of the CEs merely obtain data needed in the right hand side (RHS) of the rule. The sixth
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- RULE : group_driver v- start up grouping process by creating parent element
- : — also make KSAR to label parent element

— IE : There is a running KSAR that says to initialize a group 
— : AND there is no element with the KSAR’s object as its main child

-- THEN : Make the parent element and a KSAR to label it

rule group_driver {
&ksar(KSAR KS=group; action=initialize; status=running);
&el (Data id=&ksar.object);
~ (Data children[2]=&ksar.object);
&model (Data in_list(«&el.labeL@.children));

&max_id = &max_id + 1;
make (Data id=&max_id; source=synthetic; label=&model.id;

type=&el.type; panel=&el.panel; level=&model,level; 
size=&el.size; value=&el.value; focus=l; 
near[ 1 ] =&el. near[ 1 ]; near[2]=&el.near[2]; 
near[3] =&el.near[3]; near[4]=1.0;

- '■ far[l]=&el.fajtl];'ferE2]=&eLfari;2]; 
far[3]=&el.far[3]; far[4]=1.0; 
children[l] =2; children[2] =&el.id); 

write () initializing I, &model.level, 11, &max_id, ’0; 
write () I grouping I, &el.level, 11, &el.id, ’0; 
make (KSAR KS=label; action=initialize; 

trigger_cycle=&current_cycle; 
id=&next_KSAR_id; status=pending; 
level=&model.level; object=&max_id; priority=0.5);

&next_KSAR_id = &next_KSAR_id + 1;
V' : v;. -v:'/’ -vr ■■■ ■ . .V' ■

FIGURE 8.12 An example of a driver rule.

CE, one of the CEs used to obtain data for the RHS, matches a WME that holds a homogene
ous transformation matrix. The transformation matrix is defined to transform the focus- 
element’s label-element so that it is compatible with the candidate’s label-element.

When the rule fires, the compatibility between the candidate and a transformed version of 
the focus element is computed as described in chapter 5. If this value is greater than a thres
hold, then the add_list() function is used to add the candidate’s id number to the parent’s list of 
children. Notice that if the candidate-element doesn’t meet the criteria to be grouped, then
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group_ihto_face - group edge-elements into a face-element 
We are grhuping edges into a face and there is a compatible edge 
that is hot yet in the face
IF the xformed version of the edge is collinear with the focus 
element, put it into the group

rale group Jnt6_face {
&ksar (KSAR KS=group; action=initialize; status=runnirtg);
&face (Data children [2] =&ksar. object);
&model (Data id=&face.label; level=face);
&edgel (Data id=&ksar.object);
&edge2 (Data typeomodel; level=edjge; ido&edgel.id;

in_list(@.label,&model. children);
(~in__list(@.id, &face.children)));

— get parameters needed in rhs computations
&xfrm (Model_xfmifrdm=&edge2.1abel; to=&edgei.label);
&sl (Data id=&edgelxhildren[l]);
&el (Data id=&edgelxhildren[2]);
&s2 (Data id=&edge2.children[l]);
&e2 (Data id=&edge2xhildreii[2]);

&slop (Constant name=max_dist);
&dist (Constant name=group_threshold);

local &compat, &incompat: real; 
local &belief, &disbelief: real;

call edge_cdmpatibility(&sl.coord, &el .coord; &s2.coord, &e2.coord, 
&xfrm.xfrms, &slop.real_value,
&compat, &incompat);

&belief = &compat * &edge2.belief * &xfrm.scale_fact;
&disbelief = &incompat * 4&;edge2.belief * &xfrm.scale_fact;

-RULE: 
- IF :

-THEN:

if (&Compat > &dist.real_value) {

modify &face (call add_list(&edge2.id, children); 

siie = @.size + &edge2.size; 

call update_belief(@, LEVEL_SCALE * &belief,
LEVEL.SCALE * &disbeiief)); 

write 0i grouping edge I, &edge2.id, *0;
" );

FIGURE 8.13 This rule is used to group edges into faces.

nothing in the working memory is changed and refraction prevents the rule from firing again 
with the same instantiation.

In the example, any edge that has one of the labels Ed, Ep, Eq or E[ is a candidate to be 
grouped with edge E9 into face F3. Edges E7, Eu, E13, E^ and E15 meet this criterion. Thus 
any of these edges that was compatible with the transformed version of the focus-element



would be grouped into the parent. If all but Eu were compatible with the transformed E9 then 
the children of F3 would be edges E7, E9, E13, E^ and Ex5.
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8.3.2. Labeler KS Operation

The labeler KS can perform three actions: It can initialize a data element’s label, update 
the belief in the labels of an element’s children and incorporate, into an element’s belief func
tion, the updating belief generated by the element’s descendants. These three actions are 
specified by setting the action field of a KSAR to initialize, update and incorporate, respec
tively. In this section, we will use the previous example to demonstrate the processing per
formed by the labeler KS to update the belief in the labels of an element’s children. Using this 
example, we will show how the belief in the labels of the children of face F3 are updated.

If we assume that no poisoning rules fire after scheduler activates the labeler KS, then the 
driver rule shown in Fig. 8.14 fires and generates context elements specifying that every child 
of the focus element should be used to update the belief in the label of every other child. This 
rule is easily understood. On the LHS, the first two CEs are used to match the KS’s focus ele
ment and the third CE is used to keep the rule from firing more than once for any KS invoca- 
tion. The RHS of the rule contains a set of nested for loops that index through the focus 
element’s list of children and generate the desired contexts. After the driver rule has fired, the 
contexts are used to specify the elements that can be used to update the belief in other ele
ments. In the example, two contexts would be generated for each pair of elements in 
{E7, E9, E13, E14, EX5} specifying that each element should be used to update the belief in the 
label of every other element.

The rule shown in Fig. 8.15 is used to generate the updating evidence for edge elements. 
This rule fires once for every context generated by the previous rule if the belief in the edge 
providing the evidence is above a user specified threshold. If the belief in the edge is below 
the threshold, then the context is removed automatically. The first two CEs of this rule match 
the edge whose belief is being updated. The third CE matches the edge providing the updating 
evidence and also keeps the rule from firing if the belief in that edge’s label is below a thres
hold. The remaining CEs are used to obtain the data needed by the RHS of the rule. The 
fourth CE is used to obtain the homogeneous transformation matrix needed to determine the 
compatibility of the two edges. Finally, the last four CEs are used to obtain the endpoints of 
the two edges. The RHS of this rule uses the edge_compatibility() function to measure the 
compatibility of the transformed version of the first edge with the second edge based on their 
collinearity. After the compatibility is measured, the update bpaf) function is used to accu
mulate the new evidence into the updating bpa. Finally, the context WME is removed to 
prevent the rule from firing again with the same context.
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-- RULE : update_certainty_driver
-- IF : The labeler KS was just activated

— THEN : Generate a context to update the label of every child using 
-- : the label of every other child.

rule update_ceftainty_driver {
&ksar(KSAR KS=label; action=update; status=running);
&el (Data id=&ksar.object);

(Context current=incorporate_belief);

local &i, &j, &kids: integer,

write () lupdating children of I, &ksar.level, 11, &ksar.object, ’0; 
make (Context current=incorporate_belief; object=&ksar.objeCt);

&kids = &el.children[lj; 
for &i = (2 to &kids)

for &j = (2 to &kids) 
if (&i <> &j)

make (Context current=update_certainty; 
object=&el.children[&i]; 
using =&el.children[&j]);

FIGURE 8.14 This is the driver rule for the labeler KS.

8.3.3. Splitter KS and the Merger KS Operation

We will illustrate the flow of control inside the splitter KS by examining the rules used to 
split a face with competing edges into multiple faces with one competing edge apiece. The 
splitter KS uses a driver rule to initialize processing; this rule is used to generate a context that 
directs the KS to examine the focus element for competing edges. After the driver rule fires, a 
level-specific body rule is allowed to fire that finds all the competing children of an element; 
this rule fires at least once for every pair children that could possibly compete. For example, 
the splitter KS uses the rule shown in Fig. 8.16 to find competing edges that the grouper has 
included in a face. When it finds a pair of competing edges, it creates two new faces each with 
only one of the competing edges; it also resets the focus flag in the original face to prevent its 
use in further BB processing. The rule works as follows: The first two GEs are used to match 
the newly created face element; they also keep the rule from firing more than once. The 
second two CEs are used to match two edges from the face’s list of children if they have
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— RULE : update_edge_certainty
- IF : there is a context to use one edge to update the belief in another’s label
— : AND the belief in the one providing the evidence is > BELIEF_THRESH

— THEN : update certainty based on the (in)compatibility of the two edges

rule update_edge_certainty {
&contxt (Context current=update_certainty);
&ell (Data id=&contxt.object; level=edge);
&el2 (Data id=&contxt.using; belief > BELIEF_THRESH);
— get parameters needed in rhs computations 

;V.:&niodel (Model_xfrmfrom=&ell.label; to=&el2.1abel);
&sl (Dataid=&ell.children[2]);
&el (Data id=&ell.children[3]);
&s2 (Data id=&el2.children[2]);
&e2 (Data id=&el2.children[3J);

-->

•, local &sl_xfrm, &el_xfrm: vector; 
local &pos, &neg: real;

call edge_compatibility(&s2.coord, &e2.coord,
&sl.coord, &el.coord,
&model.xfrms, distance(&s2.coord, &e2.coord),
&pos, &neg);

&pos = &pos * &el2.belief * &model.scale_fact;
&neg = &neg * &el2.belief * &model.scale_fact 

* scale_certainty(&el2);
write () I new evidence for I, &ell.level, 11, &ell.id; 
write () I using I, &el2.1evel, 11, &el2.id,’0; 
modify &ell (call update_belief(@, &pos, &neg)); 
remove &contxt;

v- ^ V; - ■

FIGURE 8.15 This rule is used to update the belief in an edge’s label.

identical labels; these edges could possible compete. When the rule fires, the function 
edge_overlap() is used to determine the overlap of the two edges using the technique described 
in chapter 7. If the overlap is found to be greater than a preset threshold, then the two edges 
are considered to be competing and the face is split into two faces with one competing edge 
apiece. Finally the rale generates a context to cheek each of the new edges for other
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— RULE : faCe_split

— IF : There is a face with two edges that have the same label
— THEN : Check to see if they are competing. If so, create two

: faces with one competing edge apiece. Also reset the original 
: face’s focus flag.

rule face_split {
&contxt (Context current=find_competing);
&face(Data id=&contxt.object; focusoO);
&edgel (Data in_list(@.id, &face.children));
&edge2 (Data label=&edgel.label; in_list(@.id, &face.children);

ido&edge 1 .id; length<&edge 1 .length);

1;

if (edge_overlap(&edge 1, &edge2) > OVERLAP_THRESHOLD) {
— remove the face from the focus set 
modify &face (focus = 0);
— initialize the first face (
&max_id = &max_id + 1;
make (Data duplicate_Data(&face);

&id = &max_id;
call delete_list(@.children, &edgel.id); 
madeof[l]=2; madeof[2]=&face.id); 

make (Context current=find_competing; object=&max_id); 
&max_id = &max_id + 1;
— initialize the second face
make (Data duplicate_Data(&face);

&id = &max_id;
call delete_list(@.children, &edge2.id); 
madeof[l]=2; madeof[2]=&face.id); 

make (Context current=find_competing; object=&max_id);
};

FIGURE 8.16 This rule is used to split a face with competing edges into multiple faces with one of the competing 

edges apiece.

competing edges.



The merger KS does not require any driver rules. When the KS is activated by the 
scheduler, a level-specific rule is fired to merge the KS’s focus element with the secondary 
focus element. For example, the rule shown in Fig. 8.17 is used to merge two faces. The LHS 
side of this rule is used to match the two focus elements and guarantee that the rule will fire 
only once. The RHS of the rule builds an element on the face level of the data panel into 
which the two focus elements are merged. The children of this new element is set to be the 
exclusive-or of the children list of the two focus elements. The focus flags of the original two 
faces are also reset to prevent their use in further BB processing.
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— RULE : face_merge
— IF : The active KSAR indicates that two faces should be merged 
— THEN : merge them

rule face_merge {
&ksar(KSAR KS=merge; status=running; level=face);
&elL (Data id=&ksar.object; focusoO);
&el2 (Data id=&ksar.using; focusoO);

—>
&max_id = &max_id +1;
make (Data id=&max_id; source=synthetic;

type=&ell.type; panel=&ell.panel; level=&ell.level;
size=&el 1. size+&el2. size;
value = weighted_average(&el Lvalue, &ell.size,

&el2.value, &el2.size); 
label=&el 1.label; focus=l;
call near_vert(&ell.near, &el2.near, @.near);
call far_vert(&ell.far, &el2.far, @.far); 
call xor_list(&ell. children, &el2.children, children);
madeof[l]=3; madeof[2]=&ell.id; madeof[3]=<feel2.id); 

modify &ell (focus=0);
modify &el2 (focus=0);
write () Imerging into I, &ell.level, 11, &max_id, ’0; 
write () I merging I, &ell.level, i I, &ell.id, ’0;
write () I and I, &el2.1evel, 11, &el2.id,’0;

' ’};

FIGURE 8.17 This rule is used to merge two faces into a larger face.
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CHAPTER 9

COMPLEXITY ISSUES IN BLACKBOARD PROCESSING

In the most general sense, PSEIKI’s geometric matching activity can be expressed as the 
problem of finding subgraph-isomorphisms, a known NP-complete problem [GarJoh79]. It is 
well known that artificial intelligence’s use of hueristics can greatly improve the computational 
efficiency of the solution to a problem solving task; in fact, it has been shown that some 
heuristics can beat the exponential explosion associated with NP-complete problems [Pea84]. 
It is hoped that the heuristics encoded into the PSEIKI’s Opportunistic control flow and 
geometric constraints, when combined with the hierarchical structure of the matching task, will 
enable PSEIKI to perform matching as scene complexity grows.

There are a number of ways that a system’s time and space complexity can be analyzed. 
If the system’s solution to a task can be expressed in a simple, algorithmic fashion, then its 
complexity often can be calculated theoretically [AhoHop74]. If a system’s solution can not 
be expressed in a way that allows its complexity to be analyzed directly, then the system’s 
major components can be modeled and the model analyzed. Petri net theory [Pet81], one tech
nique for modeling systems, will be explored in this chapter. Particular attention will be 
focused on stochastic Petri nets, an extension to Petri net theory created by associating an 
exponentially distributed firing time with each transition in the net [Mol82]. Stochastic Petri 
nets can be analyzed by mapping the state-space of the net to a Markov-chain and by using 
concepts from queuing-theory to analyze the system. Currently, stochastic Petri nets can 
model only small-scale systems because the state-space of a Petri net grows exponentially with 
the size of the net, (hence, so do the nodes in the Markov-chain).

If a system is too complex to be analyzed theoretically or modeled effectively, as is 
currently the case with blackboard systems, the only resort is to determine empirically the 
system’s computational complexity. In the past, experimental investigations have been used to 
study how control flow [GarCor87] and data locking [FenLes77] affect blackboard perfor
mance. Note, since PSEIKI’s hierarchical structure and geometric constraints have been fixed, 
PSEIKI’s computational efficiency can be increased mainly by optimizing its control flow. At 
this time, PSEIKI’s scheduler is evolving too rapidly to justify an empirical performance 
analysis. However, as PSEIKI’s scheduler becomes more stable, an empirical performance 
study will be undertaken to determine how PSEIKI’s matching scheme scales with problem 
size.

9.1. System Modeling with Petri Nets

Petri Net theory is a graph based modeling technique that has proven very powerful for 
modeling concurrent, synchronous and asynchronous systems. Since their introduction by C.



A. Petri in his Ph.D. dissertation [Pet66], Petri nets have been used to model complex systems 
in many diverse domains, some of these domains include the modeling of production systems, 
chemical reactions and legal systems (see [Pet81] for a bibliography of some domains of appli
cation). Because Petri nets have been used to model such a wide variety of systems and have 
been used by researchers with a wide range of backgrounds, they have been formulated in 
many different ways. The definition and development of Petri nets in this report will follow 
that found in [PetSl]; the reader is referred there for a more complete introduction to Petti net 
theory and some typical applications.

Formally, a Petri net graph is a directed, bipartite multigraph, G = (V, A). Vis the set of 
vertices, V={vi, V2, • • •, vs} and A is the set of arcs, A -{af, a2, • • •, ar} where an arc, aj 
from vertex vj to vertex v^ is expressed as aj = (vj, v^) with vj, v^eV. Since the graph is 
bipartite, the set of vertices, V, can be partitioned into two disjoint parts, 
P= {pi, P2, * • •, pm} and T = {ti, t2, • • •, tn} such that each arc in A contains exactly one 
vertex in P and one vertex in T. Using the normal terminology, the set P is called the set of 
places and the set T is called the set of transitions.

A Petri Pet structure, C, is a four-tuple C = (P, T, I, O). P and T are places and transi
tions as described previously. The input and output functions, I and O, respectively, map tran
sitions, tj, to collections of places. The collection of places I(tj) and O(tj) are called the input 
and output places for transition tj. The multiplicity of the arcs between a transition and one of 
its input places is equal to the number of arcs from the place to the transition. Likewise, the 
multiplicity of the arcs between a transition and one of its output places is equal to the number 
of arcs from the transition to the place . The marking of a Petri net is a mapping, p, from the 
set of places to the non-negative integers, N.

, ji:P-4N

ji(-) defines the state of the net. During execution of the Petri net, the marking of the net may 
change; that is, the function |i(-) may change reflecting the evolving state of the net. The for
mal definition of a marked Petri net structure (hereafter merely called a Petri net) is 
M = (P, T, I, O, |i) where the components previously have been defined.

Although Petri nets are defined in abstract, graph-theoretic terms, it is often helpful to 
draw the mafkbd Petri net graph. When drawing Petri nets, a tar I represents a transition and 
a circle O represents a place. Tokens, drawn as small dots • in a given place, pj, are used to 
represent the value of |i(pj). An input place of a transition is indicated by an arrow from the 
place to the transition. Conversely, an output place of a transition is indicated by an arrow

Note that the input and output multiplicities between a transition and a place need not be equal if 
the place is both an input place and an output place for the transition. The multiplicities will differ 
if the number of arcs from the place to the transition is different from the number of arcs from the 
transition to the place.
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from the transition to the place. Fig. 9.1 shows an example of a simple Petri net; Fig. 9.2 
shows its associated graph.

P= (Pi> P2, P3> P4»P5 } 

T= {ti, t2, t3, t4}

I(tl)=(Pl}

I(t2)= (P2VP3. P4)
I(t3) = {p4, p4}

1(4) = (P5 }

M-(pi) = 1; |x(p2) = 0; li(p3) = 0; 

FIGURE 9.1 This figure shows an example of a simple Petri net.

0(ti)={P2, p3, p4, p4}

o(t2) = {p2)
0(t3) = {p5 } 

0(4) = {p3,p4} 

^t(p4) = 2; M-Cps) = 1

FIGURE 9.2 This figure shows the marked Petri net graph for the Petri net given in Fig. 9.1.

A transition is said to be enabled when the number of tokens in each of the transition’s 
input places is greater than or equal to the multiplicity of the arcs between the transition and 
that input place. For example, if there are two arcs from an input place to a transition, then the 
transition will not be enabled until there are at least two tokens in that input place. An enabled 
transition is fired by removing tokens from the transition’s input places and adding tokens to 
the transition’s output places. The number of tokens removed from or added to the transition’s 
input places or output places, respectively, is equal to the multiplicity of the arcs between the 
transition and the places. If more than one transition is enabled at any time, then the transition 
that is fired is picked at random. In general, the state of the net will change when a transition 
fires. Thus some transitions that were previously enabled may no longer be enabled and some 
new transitions may become enabled. The process of successively firing enabled transitions is
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called executing the Petri net. When there are no enabled transitions, the execution of the Petri 
net halts, Fig. 9.3 shows the execution of the Petri net shown in Fig. 9.1. Panel (a) in this 
figure shows the net’s initial marking. Panel (b) shows the net’s marking after t4 fires and 
panel (c) shows the net’s marking after ti fires.

A marking of a Petri net is said to be reachable from another marking if there is a 
sequence of transition firings that transforms the state of the net from the initial marking to the 
desiredmarking. The reachability set of a marking is defined to be the set of all states reach
able from the initial marking. Note that the reachability set of a Petri net is dependent on the 
original marking. Also note that the reachability set of a Petri net will grow exponentially with 
the number of places, transitions, and tokens present in the net. Both of these effects limit the 
usefulness of Petri nets in the modeling of blackboard systems.

Fig. 9.4 is a simple example of a Petri net that could be used to model PSEIKI’s flow of 
control. The places in this net correspond with the blackboard scheduler and knowledge 
sources. The token represents the locus of processing in the system; a process is considered 
active when its corresponding place contains the token. Notice that the configuration of the net 
forces the control of the system to return to the scheduler between each knowledge source 
activation. The net can be extended to model concurrent blackboards by adding a token for 
each processing thread. Obviously, the model shown here is over-simplified and cannot be 
used in any realistic analysis.

Petri net theory has been extended in a number of ways to make it a more powerful 
modeling tool. Stochastic Petri Nets, an extension first proposed by Molloy [Mol82], are 
created by associating an exponentially distributed firing time with each transition. The firing 
time of a transition specifies the average amount of time that the transition takes to fire. Thus 
the transitions in a stochastic Petri net will fire a random amount of time after they become 
enabled (unless another transition fires first and disables the first transition). If another transi
tion fires but does not disable the first transition, then the timing of the first transition does not 
change (the first transition does not have to be "reset" because of the memoryless property of 
the exponential distribution).

A stochastic Petri net is formally defined as S = (P, T, I, O, |i, X) where X is the mapping 
from the transitions to the real numbers that defines the mean firing time of the exponentially 
distributed random processes. The rest of the components of S have been defined previously. 
Note that the transitions’ firing rates are completely specified by X because an exponential dis
tribution is completely specified by its mean value.

Stochastic Petri nets are useful tools for analyzing complex systems because they are iso
morphic with homogeneous Markov processes but have all the expressive capabilities of the 
original Petri nets [Mol81]. The isomorphic properties of a stochastic Petri net and a Markov 
process can be seen with the help of the following example. In this example, the simple Petri 
net shown in Fig. 9.5 will be converted into an equivalent Markov chain. The first step in the
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FIGURE 9.3 This figure shows the execution of the Petri net from Fig. 9.1.
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Scheduler

Labeler KS Grouper KS Splitter KS Merger KS

FIGURE 9.4 This figure shows a simple Petri net that can be used to model PSEIKI’s control flow.

FIGURE 9.5 This figure shows a simple Petri net that is used in the textual explanation of the isomorphism 

between stochastic Petri nets and Markov processes.
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conversion process is the determination of the reachability set of the net given an initial mark
ing. The reachability set of the example Petri net is given in table 9.1. Each row in this table 
represent a distinct state of the net. The entries in the table represent the number of tokens in a 
place for a given state.

Pi P2 P3 P4 P5

Hi 1 0 0 0 0
M-2 0 1 1 0 0
M-3 0 0 1 1 0
M-4 0 1 0 0 1
H5' 0 0 0 1 1

TABLE 9.1 This table shows the reachability set of the Petri Net shown in Fig. 9.5.

If the mean firing times of the transitions in the stochastic Petri net shown are A,i = 2, = 1,
A.3 = 1, A4 = 3, ^5 = 2, then the following procedure can be used to map the state-space of the 
net to a Markov chain. A state in the chain is created for every distinct marking in the net. A 
state-transition is created between two states in the chain if the firing of a single transition in 
the Petri net will transform the marking of the net from the first state to the second. The mean 
transition time of the state-transition is set to the mean firing time of the transition that must 
fire to transform the state of the net from the first state to the second state. For example, mark
ing |J-2 will be transformed into marking 114 if transition t3 fires; thus, in the Markov chain, 
there is a state-transition from state p.2 to p.4 with an average transition time of 1 second, the 
mean firing time of transition t3. Fig. 9.6 shows a Markov-chain that is isomorphic to the net 
shown in Fig. 9.5. In this figure, the mean transition times between states of the chain are indi
cated by the numbers shown above the state-transitions. The numbers shown below the state- 
transitions are the transition-probabilities of the chain.

1

FIGURE 9.6 This figure shows the Markov equivalent to the stochastic Petr net shown in Fig. 9.5.



Once an equivalent Markov chain is constructed from a stochastic Petri net, classical 
queuing theory techniques [Tri82] may be used to determine the performance of the system by 
analyzing the chain. For example, the throughput of a system can be estimated by determining 
the average amount of time that the system needs to transform from a starting state to an end
ing state and then reset back to the starting state. Queuing theory techniques also can be used 
to determine the the steady-state marking probabilities of the system (the probability that the 
net will have a particular marking at a given time) by determining the equivalent Chain’s limit
ing state probabilities. By finding the limiting state probabilities of the Markov-chain in Fig. 
9.6, the steady-state marking probabilities of the net in Fig. 9.5 can be shown to be

P[pi] =0.1163

P[p2] =0.1860

P[p3]= 0.0465

P[|i4]= 0.5349

P[p5] =0.1163

In their current state of development, stochastic Petri nets have a number of drawbacks 
that limit their use for modeling blackboard systems. First, the reachability set of the net 
depends on the initial marking. Thus if tokens are used to represent data elements on the 
blackboard or other problem dependent information, then a new analysis is needed for each 
problem instantiation. Second, the current formulation of stochastic Petri Nets requires that 
every transition have an exponentially distributed firing time. When modeling complex sys
tems, such as blackboards, it may be neccessary to model transitions that fire immediately on 
enabeling, require a fixed amount of time to fire, or fire in an amount of time that is a function 
of the net marking. In addition to these limitations, a final drawback prohibits the use of sto
chastic Petri Nets for modeling large-scale systems. In general, the size of a Petri net’s reacha
bility set will grow exponentially as the number of tokens, places, or transitions in the net 
increases. Since most queuing theory techniques require the determination of the eigenvalues 
and eigenvectors of an N x N matrix when solving a Markov-chain with N states; the problem 
quickly becomes intractable as the problem size increases. Although stochastic Petri nets Can
not currently model systems as complex as blackboards, most researchers are optimistic about 
the prospect of extending them to handle such large-scale systems. See [RamHo80], [Mar- 
Con84], [Zub85], [DugBob85] for some recent work on extended stochastic Petri nets.
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CHAPTER 10

EXPERIMENTAL RESULTS

PSEIKI was run on a number of images typical of what would be seen by a sidewalk- 
navigating mobile robot with downward-slanted cameras. Figs. 10.1 - 10.4 show the results 
for one such run; Fig. 10.1 shows the edges representing the expected scene and Fig. 10.2 the 
actual image. Note that the expected scene and the observed image are significantly misre- 
gistered. Two of the major edges in the expected scene, in the lower left, are missing entirely 
in the observed image. The reader should also note the presence of shadow edges in Fig. 10.2. 
The output of the edge-based preprocessor described in chapter 3 is shown in Fig. 10.3.

The final result produced by PSEIKI consists of labels with associated belief values 
attached to entities at the edge level and higher levels on the data panel on the blackboard. For 
example, in Figs. 10.1 - 10.3, if the element at the scene level (the highest blackboard level) 
with maximum belief is selected and its component edges are displayed, Fig. 10.4 results. This 
figure shows the edges, their labels, and associated belief values for the scene interpretation 
that PSEIKI found most believable. In line with the earlier chapters, the percentage value 
associated with a label indicates PSEIKI’s belief in the correctness of the label. For example, 
PSEIKI has a belief of 0.53 that the lower right edge can be matched with the right-bottom 
edge of the expected scene. This amount of belief indicates that, at a belief level of 0.47, 
PSEIKI believes that the edges were mismatched or that the system is ignorant about the vali
dity of the match made.
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FIGURE 10.2 A sidewalk image used for illustrating PSEIKFs processing is shown here.
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FIGURE 10.3 This figure shows the input to PSEIKI from the preprocessor.
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APPENDIX A

ABRIEF REVIEW OF DEMPSTER-SHAFER THEORY

In this appendix, we will present a short review of some relevant terminology from the 
Dempster-Shafer (D-S) theory of evidence accumulation. For a detailed presentation of the 
theory, the reader is referred to Shafer [Sha76],

In a random experiment, th $ frame of discernment {FOD),©, is the set of all possible out
comes. For example, if we roll a die, © is equal to the set of possibilities, "the number show
ing is i," where 1 < i< 6; therefore, © may be set equal to the set { !, 2, 3,4, 5, 6}. The 2101 
subsets of © are called propositions and the set of all the .propositions is denoted by 2®. In the 
die example, the proposition “the number showing is even" would be represented by the set 
{2,4,6}.
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In the D-S theory, probability masses are assigned to propositions, meaning to some of 
the sets in 20, and therein lies a major departure of this theory from the Bayesian formalism in 
which probability masses must be assigned to the individual elements of ©. These probability 
masses must add up to one, and the probability mass assigned to © represents ignorance. The 
interpretation to be given to the probability mass assigned to a subset of © is that the mass is 
free to move to any element of the subset; this interpretation being in consonance with the pro
bability mass assigned to © representing ignorance, since this mass may move to any element 
of the entire FOD. When a source of evidence assigns probability masses to the propositions 
discerned by ©, the resulting function is called a basic probability assignment (bpa). Formally, 
a bpa is function m:20-»[0,1] where

0.0<m(-)<1.0, m(0) = 0 artd £ m(X) = 1.0
Xc0

A belief function, Bel(X), over 0 is defined by

Bel(X) = £ m(Y)
YcX

In other words, our belief in a proposition X is the sum of probability masses assigned to all 
the propositions implied by X. Dempster’s rule of combination, also known asDempster’s 
orthogonal sum, states that given two bpa’s, ni] (•) and m2(-), corresponding to two indepen
dent sources of evidence, we may combine them to yield a new bpa m(-) via

m(X) = mi@m2 = K ££ mi (X] )m2(X2) where
x, x2

xinx2=x

K-1 = 1 — £2 m1(X1)m2(X2)
XiX2

xanx2=0



APPENDIX B

CONVERSION OF CONFIDENCE VALUES TO BASIC PROBABILITY ASSIGNMENTS

Many systems face the problem of converting raw evidence to a form that is usable by the 
Dempster-Shafer theory of evidence. Garvey, et. al. were the first to investigate the process of 
converting raw evidence, such as image feature values, into belief functions [GarLowSl]; 
other work on the conversion of sensor readings to belief functions can be found in 
[LehRey86], [ReyStr86] and [SafGot87J. In this appendix, a scheme to convert confidence 
values into a bpa is described. In this scheme a confidence value for any subset of an 
element’s FOD is required to be a value between 0.0 and 1.0. A confidence value of 1.0 for a 
subset of © indicates that the evidence source has conclusive evidence that the element’s iden
tity is in that subset. Conversely, a confidence value of 0.0 indicates a lack of evidence that 
the element’s identity is in the subset. To formalize the notion of confidence values, a 
confidence function, Conf, is defined.

Cbnf: 2e —» [0, 1]

The idea is that the value of this function for any subset represents the amount of evidence pro
vided by a source suggesting that the element’s identity is in the subset. Note that this notion 
is related to the concept of a probability mass in a basic probability assignment; however, a 
bpa has other properties that are not required of a confidence function. Although a confidence 
function may not have all the necessary properties of a bpa;, a bpa can be defined in terms of an 
underlying confidence function. To define a bpa, m(-), in terms of a confidence function, it 
must be defined so that it satisfies three properties.

1) 0.0 <m() <1.0
The confidence function meets this criteria by definition.

2) m(0) = 0.0
This property is obtained by setting the probability mass of the null set to zero. This 
action makes intuitive sense because the null set represents the case in which the 
element’s identity is not a member of the FOD. If this were the case, the FOD would be 
incomplete and a new, more complete one would be needed.

3) x m(y) = 1.0
\|IC©
This requirement states that the evidence source generating the bpa has unity total-belief. 
When forming a bpa with this property, the concept of the source’s total confidence is 
helpful. A source’s total confidence is defined to be

Conftot = X Conf(\|/)
\|/c 0 
\|/*0

This concept can be used to break the problem into three cases.
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1) Conftot = 1.0
In this case, the confidence function is a bpa. Therefore, define 
m(x) = Conf(x) for all x e 2s, x # 0.

2)

3)

Conftot <1.0
In this case, Conf incompletely specifies the source’s belief. A bpa can be defined
by assigning the uncommitted portion of the source’s belief, its ignorance about the 
identity of the element, to the entire FOD, ©.

m(x)
1.0 - Conftot 

* 0.0 
Conf(x)

x = © 
x = 0 
else

Conftot > 1.0
In this case, the evidence source has over-specified its belief. A bpa is defined by 
normalizing all the confidence values by its total confidence.

m(x) = Conf(x)
Conftot

for allxe 20, x^0

After the preceding operations are applied to the confidence function, a bpa for the 
evidence source, m(-), results. Note that defining the bpa in this manner does not 
affect the validity of the first two requirements for a bpa; this is apparent because 
Conftot ^ Conf(-) > 0.

To see more clearly how the conversion process works, consider the following example. 
Assume for this example that an evidence source is being used to determine the identity of an 
object with FOD © = {0a, 9b > 9c, 9d1- If the evidence source provides non-zero weights 
only to members of ©, then the following confidence function might result :

Conf(0A) = 0.7 

Cohf(0B) = 0.1 

Conf(0c) = 0.4 
Conf(0D) = 0.05

If the total confidence exceeds unity, as in this example, the confidence values are normalized 
by the summed value resulting in the following bpa over ©:

Note that, in general, an evidence source could provide values to any element of 2®, not just 
elements of 0.



ixi(0a) = 0.56 
m(0g) = 0.08 

m(0c) = 0.32 

ni(0D) = O.O4
m(-) = 0-0 for all other subsets of 0!

Qn the other hand, the evidence source could have produced values that sum to less than one, 
as in the following case:

Conf(0A) = 0.7 

Conf(0B) = 0.1 

Conf(0c) = 0.0 
Conf(0D) = 0.05

Since the measures now sum to loss than unity, there is no reason to normalize. Instead, they 
are converted directly into a bpa in the following manner:

m(0A) = 0.7 

m(0B) = O.l 

m(0c) = 0.0 

iuCQd) = 0.05 

m(©) = 0.15
m(-) = 0.0 for all other subsets of 0

Note that the amount of belief assigned to 0 is equal to 0.15; this is the difference between 
unity belief and the evidence source’s total confidence. Setting the probability mass in © to 
the difference seems intuitively correct for the simple reason that Conf(0j) is a good measure 
of the confidence that the object’s identity is 0j. Clearly if the object is not thought to 
correspond to any of the elements in its FOD to a sufficiently high degree, then some belief 
may be uncommitted. In the above assignment, m(0) = 0.15 represents the uncommitted por
tion of the belief.
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