4,401 research outputs found

    Sentinel2GlobalLULC: A Sentinel-2 RGB image tile dataset for global land use/cover mapping with deep learning

    Get PDF
    Land-Use and Land-Cover (LULC) mapping is relevant for many applications, from Earth system and climate modelling to territorial and urban planning. Global LULC products are continuously developing as remote sensing data and methods grow. However, there still exists low consistency among LULC products due to low accuracy in some regions and LULC types. Here, we introduce Sentinel2GlobalLULC, a Sentinel-2 RGB image dataset, built from the spatial-temporal consensus of up to 15 global LULC maps available in Google Earth Engine. Sentinel2GlobalLULC v2.1 contains 194877 single-class RGB image tiles organized into 29 LULC classes. Each image is a 224 × 224 pixels tile at 10 × 10 m resolution built as a cloud-free composite from Sentinel-2 images acquired between June 2015 and October 2020. Metadata includes a unique LULC annotation per image, together with level of consensus, reverse geo-referencing, global human modification index, and number of dates used in the composite. Sentinel2GlobalLULC is designed for training deep learning models aiming to build precise and robust global or regional LULC maps.This work is part of the project “Thematic Center on Mountain Ecosystem & Remote sensing, Deep learning-AI e-Services University of Granada-Sierra Nevada” (LifeWatch-2019-10-UGR-01), which has been co-funded by the Ministry of Science and Innovation through the FEDER funds from the Spanish Pluriregional Operational Program 2014-2020 (POPE), LifeWatch-ERIC action line, within the Workpackages LifeWatch-2019-10-UGR-01 WP-8, LifeWatch-2019-10-UGR-01 WP-7 and LifeWatch-2019-10-UGR-01 WP-4. This work was also supported by projects A-RNM-256-UGR18, A-TIC-458-UGR18, PID2020-119478GB-I00 and P18-FR-4961. E.G. was supported by the European Research Council grant agreement n° 647038 (BIODESERT) and the Generalitat Valenciana, and the European Social Fund (APOSTD/2021/188). We thank the “Programa de Unidades de Excelencia del Plan Propio” of the University of Granada for partially covering the article processing charge

    Sentinel2GlobalLULC: A Sentinel-2 RGB image tile dataset for global land use/cover mapping with deep learning

    Get PDF
    Land-Use and Land-Cover (LULC) mapping is relevant for many applications, from Earth system and climate modelling to territorial and urban planning. Global LULC products are continuously developing as remote sensing data and methods grow. However, there still exists low consistency among LULC products due to low accuracy in some regions and LULC types. Here, we introduce Sentinel2GlobalLULC, a Sentinel-2 RGB image dataset, built from the spatial-temporal consensus of up to 15 global LULC maps available in Google Earth Engine. Sentinel2GlobalLULC v2.1 contains 194877 single-class RGB image tiles organized into 29 LULC classes. Each image is a 224 × 224 pixels tile at 10 × 10 m resolution built as a cloud-free composite from Sentinel-2 images acquired between June 2015 and October 2020. Metadata includes a unique LULC annotation per image, together with level of consensus, reverse geo-referencing, global human modification index, and number of dates used in the composite. Sentinel2GlobalLULC is designed for training deep learning models aiming to build precise and robust global or regional LULC maps.Ministry of Science and Innovation through the FEDER funds from the Spanish Pluriregional Operational Program LifeWatch-2019-10-UGR-01LifeWatch-ERIC action line, within the Workpackages LifeWatch-2019-10-UGR-01 WP-8 LifeWatch-2019-10-UGR-01 WP-7 LifeWatch-2019-10-UGR-01 WP-4European Research Council (ERC)European Commission 647038Center for Forestry Research & Experimentation (CIEF) APOSTD/2021/188 A-RNM-256-UGR18 A-TIC-458-UGR18 PID2020-119478GB-I00 P18-FR-496

    Continental-scale land cover mapping at 10 m resolution over Europe (ELC10)

    Get PDF
    Widely used European land cover maps such as CORINE are produced at medium spatial resolutions (100 m) and rely on diverse data with complex workflows requiring significant institutional capacity. We present a high resolution (10 m) land cover map (ELC10) of Europe based on a satellite-driven machine learning workflow that is annually updatable. A Random Forest classification model was trained on 70K ground-truth points from the LUCAS (Land Use/Cover Area frame Survey) dataset. Within the Google Earth Engine cloud computing environment, the ELC10 map can be generated from approx. 700 TB of Sentinel imagery within approx. 4 days from a single research user account. The map achieved an overall accuracy of 90% across 8 land cover classes and could account for statistical unit land cover proportions within 3.9% (R2 = 0.83) of the actual value. These accuracies are higher than that of CORINE (100 m) and other 10-m land cover maps including S2GLC and FROM-GLC10. We found that atmospheric correction of Sentinel-2 and speckle filtering of Sentinel-1 imagery had minimal effect on enhancing classification accuracy (< 1%). However, combining optical and radar imagery increased accuracy by 3% compared to Sentinel-2 alone and by 10% compared to Sentinel-1 alone. The conversion of LUCAS points into homogenous polygons under the Copernicus module increased accuracy by <1%, revealing that Random Forests are robust against contaminated training data. Furthermore, the model requires very little training data to achieve moderate accuracies - the difference between 5K and 50K LUCAS points is only 3% (86 vs 89%). At 10-m resolution, the ELC10 map can distinguish detailed landscape features like hedgerows and gardens, and therefore holds potential for aerial statistics at the city borough level and monitoring property-level environmental interventions (e.g. tree planting)

    TimeSpec4LULC: a global multispectral time series database for training LULC mapping models with machine learning

    Get PDF
    Land use and land cover (LULC) mapping are of paramount importance to monitor and understand the structure and dynamics of the Earth system. One of the most promising ways to create accurate global LULC maps is by building good quality state-of-the-art machine learning models. Building such models requires large and global datasets of annotated time series of satellite images, which are not available yet. This paper presents TimeSpec4LULC (https://doi.org/10.5281/zenodo.5913554; Khaldi et al., 2022), a smart open-source global dataset of multispectral time series for 29 LULC classes ready to train machine learning models. TimeSpec4LULC was built based on the seven spectral bands of the MODIS sensors at 500 m resolution, from 2000 to 2021, and was annotated using spatial–temporal agreement across the 15 global LULC products available in Google Earth Engine (GEE). The 22-year monthly time series of the seven bands were created globally by (1) applying different spatial–temporal quality assessment filters on MODIS Terra and Aqua satellites; (2) aggregating their original 8 d temporal granularity into monthly composites; (3) merging Terra + Aqua data into a combined time series; and (4) extracting, at the pixel level, 6 076 531 time series of size 262 for the seven bands along with a set of metadata: geographic coordinates, country and departmental divisions, spatial–temporal consistency across LULC products, temporal data availability, and the global human modification index. A balanced subset of the original dataset was also provided by selecting 1000 evenly distributed samples from each class such that they are representative of the entire globe. To assess the annotation quality of the dataset, a sample of pixels, evenly distributed around the world from each LULC class, was selected and validated by experts using very high resolution images from both Google Earth and Bing Maps imagery. This smartly, pre-processed, and annotated dataset is targeted towards scientific users interested in developing various machine learning models, including deep learning networks, to perform global LULC mapping.This work was partially supported by DETECTOR (grant no. A-RNM-256-UGR18, Universidad de Granada/FEDER), LifeWatch SmartEcoMountains (grant no. LifeWatch-2019-10-UGR-01, Ministerio de Ciencia e Innovación/Universidad de Granada/FEDER), BBVA DeepSCOP (Ayudas Fundación BBVA a Equipos de Investigación Científica 2018), DeepL-ISCO (grant no. A-TIC-458-UGR18, Ministerio de Ciencia e Innovación/FEDER), SMART-DASCI (grant no. TIN2017-89517-P, Ministerio de Ciencia e Innovación/Universidad de Granada/FEDER), BigDDL-CET (grant no. P18-FR-4961, Ministerio de Ciencia e Innovación/Universidad de Granada/FEDER), RESISTE (grant no. P18-RT-1927, Consejería de Economía, Conocimiento y Universidad from the Junta de Andalucía/FEDER), Ecopotential (grant no. 641762, European Commission), PID2020-119478GB-I00, the Consellería de Educación, Cultura y Deporte de la Generalitat Valenciana, the European Social Fund (grant no. APOSTD/2021/188), the European Research Council (ERC grant no. 647038/BIODESERT), and the Group on Earth Observations and Google Earth Engine (Essential Biodiversity Variables – ScaleUp project)

    Automatic land cover classification with SAR imagery and Machine learning using Google Earth Engine

    Get PDF
    Land cover is the most critical information required for land management and planning because human interference on land can be easily detected through it. However, mapping land cover utilizing optical remote sensing is not easy due to the acute shortage of cloud-free images. Google Earth Engine (GEE) is an efficient and effective tool for huge land cover analysis by providing access to large volumes of imagery available within a few days after acquisition in one consolidated system. This article demonstrates the use of Sentinel-1 datasets to create a land cover map of Pusad, Maharashtra using the GEE platform. Sentinel-1 provides Synthetic Aperture Radar (SAR) datasets that have a temporally dense and high spatial resolution, which is renowned for its cloud penetration characteristics and round-the-year observations irrespective of the weather. VV and VH polarization sentinel-1 time series data were automatically classified using a support vector machine (SVM) and Random Forest (RF) machine learning algorithms. Overall accuracies (OA), ranging from 82.3% to 90%, were obtained depending on polarization and methodology used. RF algorithm with VV polarization dataset stands better in comparison to SVM achieving OA of 90% and Kappa coefficient of 0.86. The highest user accuracy was obtained for the water class with both classifiers

    Deep learning detection of types of water-bodies using optical variables and ensembling

    Get PDF
    Water features are one of the most crucial environmental elements for strengthening climate-change adaptation. Remote sensing (RS) technologies driven by artificial intelligence (AI) have emerged as one of the most sought-after approaches for automating water information extraction and indeed. In this paper, a stacked ensemble model approach is proposed on AquaSat dataset (more than 500,000 images collection via satellite and Google Earth Engine). A one-way Analysis of variance (ANOVA) test and the Kruskal Wallis test are conducted for various optical-based variables at 99% significance level to understand how these vary for different water bodies. An oversampling is done on the training data using Synthetic Minority Oversampling Technique (SMOTE) to solve the problem of class imbalance while the model is tested on an imbalanced data, replicating the real-life situation. To enhance state-of-the-art, the pros of standalone machine learning classifiers and neural networks have been utilized. The stacked model obtained 100% accuracy on the testing data when using the decision tree classifier as the meta model. This study has been cross validated five-fold and will help researchers working in in-situ water bodies detection with the use of stacked model classification

    Cloud-based monitoring and evaluation of the Spatial-temporal distribution of Southeast Asia’s man-groves using deep learning

    Get PDF
    This paper proposes a cloud-based mangrove monitoring framework that uses Google Collaboratory and Google Earth Engine to classify mangroves in Southeast Asia (SEA) using satellite remote sensing imagery (SRSI). Three multi-class classification convolutional neural network (CNN) models were generated, showing F1-score values as high as 0.9 in only six epochs of training. Mangrove forests are tropical and subtropical environments that provide essential ecosystem services to local biota and coastal communities and are considered the most efficient vegetative carbon stock globally. Despite their importance, mangrove forest cover continues to decline worldwide, especially in SEA. Scientists have produced monitoring tools based on SRSI and CNNs to identify deforestation hotspots and drive targeted interventions. Nevertheless, although CNNs excel in distinguishing between different landcover types, their greatest limitation remains the need for significant computing power to operate. This may not always be feasible, especially in developing countries. The proposed framework is believed to provide a robust, low-cost, cloud-based, near-real-time monitoring tool that could serve governments, environmental agencies, and researchers, to help map mangroves in SEA
    corecore