45 research outputs found

    Machine learning classification for advanced malware detection

    Get PDF
    This introductory document discusses topics related to malware detection via the application of machine learning algorithms. It is intended as a supplement to the published work submitted (a complete list of which can be found in Table 1) and outlines the motivation behind the experiments. The document begins with the following sections: • Section 2 presents a preliminary discussion of the research methodology employed. • Section 3 presents the background analysis of malware detection in general, and the use of machine learning. • Section 4 provides a brief introduction of the most common machine learning algorithms in current use. The remaining sections present the main body of the experimental work, which lead to the conclusions in Section 10. • Section 5 analyzes different initialization strategies for machine learning models, with a view to ensuring that the most effective training and testing strategy is employed. Following this, a purely dynamic approach is proposed, which results in perfect classification of the samples against benign files, and therefore provides a baseline against which the performance of subsequent static approaches can be compared. • Section 6 introduces the static-based tests, beginning with the challenging problem of zero-day detection samples, i.e. malware samples for which not enough data has been gathered yet to train the machine learning models. • Section 7 describes the testing of several different approaches to static malware detection. During these tests, the effectiveness of these algorithms is analyzed and compared with other means of classification. 7 • Section 8 proposes and compares techniques to boost the detection accuracy by combining the scores obtained from other detection algorithms, with a view to improving static classification scores and thus reach the perfect detection obtained with dynamic features. • Section 9 tests the effectiveness of generic malware models by assessing the detection effectiveness of a generic malware model trained on several different families. The experiments are intended to introduce a more realistic scenario where a single, comprehensive, machine learning model is used to detect several families. This Section shows the difficulty to build a single model to detect several malware families

    Getting to the root of the problem: A detailed comparison of kernel and user level data for dynamic malware analysis

    Get PDF
    Dynamic malware analysis is fast gaining popularity over static analysis since it is not easily defeated by evasion tactics such as obfuscation and polymorphism. During dynamic analysis it is common practice to capture the system calls that are made to better understand the behaviour of malware. There are several techniques to capture system calls, the most popular of which is a user-level hook. To study the effects of collecting system calls at different privilege levels and viewpoints, we collected data at a process-specific user-level using a virtualised sandbox environment and a system-wide kernel-level using a custom-built kernel driver. We then tested the performance of several state-of-the-art machine learning classifiers on the data. Random Forest was the best performing classifier with an accuracy of 95.2% for the kernel driver and 94.0% at a user-level. The combination of user and kernel level data gave the best classification results with an accuracy of 96.0% for Random Forest. This may seem intuitive but was hitherto not empirically demonstrated. Additionally, we observed that machine learning algorithms trained on data from the user-level tended to use the anti-debug/anti-vm features in malware to distinguish it from benignware. Whereas, when trained on data from our kernel driver, machine learning algorithms seemed to use the differences in the general behaviour of the system to make their prediction, which explains why they complement each other so well. Our results show that capturing data at different privilege levels will affect the classifier's ability to detect malware, with kernel-level providing more utility than user-level for malware classification. Despite this, there exist more established user-level tools than kernel-level tools, suggesting more research effort should be directed at kernel-level. In short, this paper provides the first objective, evidence-based comparison of user and kernel level data for the purposes of malware classification

    A Novel Malware Target Recognition Architecture for Enhanced Cyberspace Situation Awareness

    Get PDF
    The rapid transition of critical business processes to computer networks potentially exposes organizations to digital theft or corruption by advanced competitors. One tool used for these tasks is malware, because it circumvents legitimate authentication mechanisms. Malware is an epidemic problem for organizations of all types. This research proposes and evaluates a novel Malware Target Recognition (MaTR) architecture for malware detection and identification of propagation methods and payloads to enhance situation awareness in tactical scenarios using non-instruction-based, static heuristic features. MaTR achieves a 99.92% detection accuracy on known malware with false positive and false negative rates of 8.73e-4 and 8.03e-4 respectively. MaTR outperforms leading static heuristic methods with a statistically significant 1% improvement in detection accuracy and 85% and 94% reductions in false positive and false negative rates respectively. Against a set of publicly unknown malware, MaTR detection accuracy is 98.56%, a 65% performance improvement over the combined effectiveness of three commercial antivirus products

    Latent Representation and Sampling in Network: Application in Text Mining and Biology.

    Get PDF
    In classical machine learning, hand-designed features are used for learning a mapping from raw data. However, human involvement in feature design makes the process expensive. Representation learning aims to learn abstract features directly from data without direct human involvement. Raw data can be of various forms. Network is one form of data that encodes relational structure in many real-world domains. Therefore, learning abstract features for network units is an important task. In this dissertation, we propose models for incorporating temporal information given as a collection of networks from subsequent time-stamps. The primary objective of our models is to learn a better abstract feature representation of nodes and edges in an evolving network. We show that the temporal information in the abstract feature improves the performance of link prediction task substantially. Besides applying to the network data, we also employ our models to incorporate extra-sentential information in the text domain for learning better representation of sentences. We build a context network of sentences to capture extra-sentential information. This information in abstract feature representation of sentences improves various text-mining tasks substantially over a set of baseline methods. A problem with the abstract features that we learn is that they lack interpretability. In real-life applications on network data, for some tasks, it is crucial to learn interpretable features in the form of graphical structures. For this we need to mine important graphical structures along with their frequency statistics from the input dataset. However, exact algorithms for these tasks are computationally expensive, so scalable algorithms are of urgent need. To overcome this challenge, we provide efficient sampling algorithms for mining higher-order structures from network(s). We show that our sampling-based algorithms are scalable. They are also superior to a set of baseline algorithms in terms of retrieving important graphical sub-structures, and collecting their frequency statistics. Finally, we show that we can use these frequent subgraph statistics and structures as features in various real-life applications. We show one application in biology and another in security. In both cases, we show that the structures and their statistics significantly improve the performance of knowledge discovery tasks in these domains

    Software similarity and classification

    Full text link
    This thesis analyses software programs in the context of their similarity to other software programs. Applications proposed and implemented include detecting malicious software and discovering security vulnerabilities

    Reasoning about Cyber Threat Actors

    Get PDF
    abstract: Reasoning about the activities of cyber threat actors is critical to defend against cyber attacks. However, this task is difficult for a variety of reasons. In simple terms, it is difficult to determine who the attacker is, what the desired goals are of the attacker, and how they will carry out their attacks. These three questions essentially entail understanding the attacker’s use of deception, the capabilities available, and the intent of launching the attack. These three issues are highly inter-related. If an adversary can hide their intent, they can better deceive a defender. If an adversary’s capabilities are not well understood, then determining what their goals are becomes difficult as the defender is uncertain if they have the necessary tools to accomplish them. However, the understanding of these aspects are also mutually supportive. If we have a clear picture of capabilities, intent can better be deciphered. If we understand intent and capabilities, a defender may be able to see through deception schemes. In this dissertation, I present three pieces of work to tackle these questions to obtain a better understanding of cyber threats. First, we introduce a new reasoning framework to address deception. We evaluate the framework by building a dataset from DEFCON capture-the-flag exercise to identify the person or group responsible for a cyber attack. We demonstrate that the framework not only handles cases of deception but also provides transparent decision making in identifying the threat actor. The second task uses a cognitive learning model to determine the intent – goals of the threat actor on the target system. The third task looks at understanding the capabilities of threat actors to target systems by identifying at-risk systems from hacker discussions on darkweb websites. To achieve this task we gather discussions from more than 300 darkweb websites relating to malicious hacking.Dissertation/ThesisDoctoral Dissertation Computer Engineering 201

    Machine Learning Methodologies For Low-Level Hardware-Based Malware Detection

    Get PDF
    Malicious software continues to be a pertinent threat to the security of critical infrastructures harboring sensitive information. The abundance in malware samples and the disclosure of newer vulnerability paths for exploitation necessitates intelligent machine learning techniques for effective and efficient malware detection and analysis. Software-based methods are suitable for in-depth forensic analysis, but their on-device implementations are slower and resource hungry. Alternatively, hardware-based approaches are emerging as an alternative approach against malware threats because of their trustworthiness, difficult evasion, and lower implementation costs. Modern processors have numerous hardware events such as power domains, voltage, frequency, accessible through software interfaces for performance monitoring and debugging. But, information leakage from these events are not explored for defenses against malware threats. This thesis demonstrates approach towards malware detection and analysis by leveraging low-level hardware signatures. The proposed research aims to develop machine learning methodology for detecting malware applications, classifying malware family and detecting shellcode exploits from low-level power signatures and electromagnetic emissions. This includes 1) developing a signature based detector by extracting features from DVFS states and using ML model to distinguish malware application from benign. 2) developing ML model operating on frequency and wavelet features to classify malware behaviors using EM emissions. 3) developing an Restricted Boltzmann Machine (RBM) model to detect anomalies in energy telemetry register values of malware infected application resulting from shellcode exploits. The evaluation of the proposed ML methodology on malware datasets indicate architecture-agnostic, pervasive, platform independent detectors that distinguishes malware against benign using DVFS signatures, classifies detected malware to characteristic family using EM signatures, and detect shellcode exploits on browser applications by identifying anomalies in energy telemetry register values using energy-based RBM model.Ph.D

    Proceedings, MSVSCC 2016

    Get PDF
    Proceedings of the 10th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 14, 2016 at VMASC in Suffolk, Virginia
    corecore