
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

5-2018

Latent Representation and Sampling in Network: Application in Latent Representation and Sampling in Network: Application in

Text Mining and Biology. Text Mining and Biology.

Tanay Kumar Saha
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Recommended Citation Recommended Citation
Saha, Tanay Kumar, "Latent Representation and Sampling in Network: Application in Text Mining and
Biology." (2018). Open Access Dissertations. 1817.
https://docs.lib.purdue.edu/open_access_dissertations/1817

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/open_access_dissertations
https://docs.lib.purdue.edu/etd
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1817&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/1817?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F1817&utm_medium=PDF&utm_campaign=PDFCoverPages

LATENT REPRESENTATION AND SAMPLING IN NETWORK:

APPLICATION IN TEXT MINING AND BIOLOGY

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Tanay Kumar Saha

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

May 2018

Purdue University

West Lafayette, Indiana

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Mohammad Al Hasan, Co-Chair

Department of Computer Science, Purdue University Indianapolis

Dr. Jennifer Neville, Co-Chair

Department of Computer Science, Purdue University West Lafayette

Dr. David Gleich

Department of Computer Science, Purdue University West Lafayette

Dr. Xia Ning

Department of Computer Science, Purdue University Indianapolis

Dr. Alex Pothen

Department of Computer Science, Purdue University West Lafayette

Approved by:

Dr. Voicu S. Popescu by Dr. William J. Gorman

Head of the Graduate Program

iii

To my parents and grandparents for their unconditional love, and patience.

iv

ACKNOWLEDGMENTS

First and foremost I want to thank my PhD advisor Dr. Mohammad Al Hasan.

It has been an honor to be his student. He has taught me how to pick important

problems, think critically and independently about the problem, and how to design

good experiments to validate the ideas. He also gave me freedom to investigate

various research domains, and collaborate with many researchers from industry and

academia. Under his supervision, I have worked on various important domains and

tasks which made my PhD journey challenging, but engaging. I appreciate all his

contributions of time, ideas, and funding to make my PhD experience productive and

stimulating. But, mostly I am grateful to him for understanding my excitement and

frustrations, and guide me accordingly. I also learned a lot by taking his graduate

level data mining and algorithm course, and serving as a teaching assistant for his

data mining and artificial intelligence course.

Next I like to pay my gratitude to my co-advisor Dr. Jennifer Neville for her

guidance, and encouragement. I appreciate all her contributions of time and ideas.

I am also indebted to my thesis committee members: Dr. David Gleich, Dr. Alex

Pothen, and Dr. Xia Ning for their time, and suggestions to improve my thesis

work. I also like to thank Dr. William Gorman for his continuous effort and timely

communication to help me on various occasions.

I also would like to thank Dr. Mourad Ouzzani, Dr. Sanjay Chawla, Dr. Fabrizio

Sebastiani, and Dr. Ahmed K. Elmagarmid from Qatar Computing Research Institute

(QCRI) for the stimulating discussion for designing a light-weight abstract screening

platform, Rayyan. Rayyan has now 10000 users from different parts of the world.

I also appreciate Dr. Shafiq Joty who is now in Nanyang Technological University

(NTU) for contributing part of my thesis. The collaboration started when both of us

were working for QCRI. We both were interested in exploring options for incorporating

v

linguistic information while learning the embedding and improve the representation of

textual, and network units. I am grateful to him for all his time, ideas, and motivating

discussions in the field of representation learning, natural language processing, and

neural networks.

I like to thank Dr. Ataur Katebi for introducting me to the problem of finding

functional motif from biological network and also to Dr. Dhifli Wajdi from University

of Lille for his contribution to collect a dataset for the work. Both of them contributed

generously in discussion for the project. Thanks to Dhifli and Katebi for their time.

I also like to thank Dr. Feng Li from School of Engineering and Technology,

IUPUI for introducing me the Android Malware Detection Project. The project was

interesting to me cause the project uses one of my previously developed algorithm.

Thanks Dr. Li for his time and interest in my work.

Also, I like to thank Jianwu, Hui, and Pranay from NEC labs at Princeton, NJ

for giving me the opportunity to work with them during Summer 2017. Under their

support and guidance, I was able to provide a semantic analysis framework for root

cause analysis in the heterogeneous log analysis domain. I learned a lot from the

weekly hour-wide discussion to design the product.

I also would like to thank faculty members of the Department of Computer and

Information Science, Indiana University Purdue University Indianapolis (IUPUI). I

learned a lot from them in the past six years. I appreciate Dr. Murat Dundar for his

Machine Leanring course. I would also like to thank Dr. Xia Ning for serving as a

committee member in my oral qualifier exam, preliminary exam, and final dissertation

exam. I thank her for involvement in every step of my PhD journey. I also like to

thank Dr. Rajeev R. Raje for all the friendly discussion about various topics.

I am also indebted to IUPUI stuff members Nicole, Nancy, and Joan for their

continuous and whole hearted effort to make me feel welcome in the department from

the start of my PhD journey. Additionally, I like to thank Purdue stuff members

Sandra, Kelsey, and Joey for their support in various occasion which made it easier

for me to go through the Purdue system quickly.

vi

Finally, I am grateful to my parents, younger brother, friends, and my lab-mates

for their support. Thanks to my parents for raising me with the love of learning and

being supportive in all my pursuits. Thanks to my close friends Jesun Sahariar Firoz

and Kishwar Ahmed for their companionship which have been my greatest motivation

to complete my PhD degree.

vii

TABLE OF CONTENTS

Page

LIST OF TABLES . xiii

LIST OF FIGURES . xv

ABSTRACT . xx

1 INTRODUCTION . 1

1.1 Models for Latent Representation of Nodes and Edges in an Evolving
Network . 4

1.2 Models for Latent Representation of Sentences 5

1.3 Methods for Frequent Subgraph Mining and Its Applications 6

1.4 Contribution of This Dissertation . 9

1.5 Organization of This Dissertation . 10

2 RELATED WORK . 11

2.1 Representation Learning of Network Units 11

2.2 Representation Learning of Textual Units 14

2.3 Substructure Mining . 16

2.4 Modeling Interface Region as Network and Mining Functional Motif . . 18

2.5 Classifying Android Apps . 19

3 MODELS FOR CAPTURING TEMPORAL SMOOTHNESS IN EVOLV-
ING NEWTORKS FOR LERANING LATENT REPRESENTATION OF
NODES . 22

3.1 Introduction . 22

3.2 Related Work . 27

3.3 Problem Formulation . 28

3.4 Method . 30

3.4.1 Retrofitted Model . 30

3.4.2 Linear Transformation Models 32

viii

Page

3.5 Experimental Settings . 34

3.5.1 Datasets . 35

3.5.2 Evaluation Metrics . 37

3.5.3 Competing Methods . 38

3.5.4 Different Configurations of the Proposed Models 39

3.6 Results and Discussion . 40

3.6.1 Link Prediction in Citation Network 42

3.6.2 Link Prediction in Messaging Network 43

3.6.3 Link Prediction in Social Network 45

3.6.4 Effect of Latent Dimensions . 46

3.7 Dynamic Network Visualization . 46

3.8 Chapter Summary . 49

4 DyLink2Vec: EFFECTIVE FEATURE REPRESENTATION FOR LINK
PREDICTION IN DYNAMIC NETWORKS 50

4.1 Introduction . 50

4.2 Related Work . 53

4.3 Problem Definition . 55

4.4 Metric Embedding of Node-Pairs . 55

4.5 Link Prediction Using Proposed Metric Embedding 62

4.6 Experiments and Results . 64

4.6.1 Dataset Descriptions . 64

4.6.2 Evaluation Metrics . 65

4.6.3 Competing Methods for Comparison 66

4.6.4 Implementation Details . 68

4.6.5 Performance Comparison Results with Competing Methods . . . 69

4.6.6 Performance with Varying Length of Time Stamps 73

4.6.7 Effect of Class Imbalance on Performance 75

4.7 Chapter Summary . 75

ix

Page

5 REGULARIZED AND RETROFITTED MODELS FOR LEARNING SEN-
TENCE REPRESENTATION WITH CONTEXT 77

5.1 Introduction . 77

5.2 Related Work . 80

5.3 Methodology . 82

5.3.1 Content-based Model: Sen2Vec 82

5.3.2 Context Types . 86

5.3.3 Retrofitted Models: Ret-dis, Ret-sim 87

5.3.4 Regularized Models: Reg-dis, Reg-sim 89

5.4 Evaluation Method: Tasks, Datasets and Metrics 90

5.4.1 Extractive Summarization (Ranking) Task 91

5.4.2 Topic Classification and Clustering Tasks 93

5.5 Experimental Settings . 95

5.5.1 Models Compared . 95

5.5.2 Hyper-Parameter Tuning and Training Details 99

5.6 Results and Discussion . 99

5.7 Chapter Summary . 105

6 Con-S2V: A GENERIC FRAMEWORK FOR INCORPORATING EXTRA-
SENTENTIAL CONTEXT INTO Sen2Vec 107

6.1 Introduction . 107

6.2 Related Work . 109

6.3 The Model . 110

6.3.1 Modeling Content . 114

6.3.2 Modeling Context . 114

6.3.3 Context Types . 116

6.3.4 Training . 117

6.4 Evaluation Tasks . 118

6.4.1 Extractive Summarization . 118

6.4.2 Topic Classification and Clustering 121

x

Page

6.5 Experiments . 122

6.5.1 Models Compared . 122

6.5.2 Model Settings . 124

6.5.3 Classification and Clustering Results 125

6.5.4 Summarization Results . 129

6.6 Chapter Summary . 130

7 FS3: A SAMPLING BASED METHOD FOR TOP-K FREQUENT SUB-
GRAPH . 132

7.1 Introduction . 132

7.2 Background . 138

7.2.1 Graph, Induced Subgraph, Frequent Subgraph Mining 138

7.3 Related Works . 140

7.4 Problem Formulation and Solution Approach 141

7.5 Method . 143

7.5.1 MCMC Sampling of a `-subgraph from a Graph Database . . 143

7.5.2 Markov Chains, and Metropolis-Hastings (MH) Method 145

7.5.3 Queue Manager . 150

7.5.4 FS3 Pseudocode . 152

7.5.5 Computation Complexity and the Choice of Parameters 154

7.5.6 Theoretical Analysis of FS3 155

7.6 Experiments . 156

7.6.1 Datasets . 156

7.6.2 Experiment Setup . 157

7.6.3 Correlation between Actual Support and Scores 158

7.6.4 Performance of FS3 for Different Sampling Setups 160

7.6.5 FS3’s Scalability with the Size, ` 165

7.6.6 Impact of Target Distribution and Queue Size 165

7.6.7 Impact of k on FS3 . 166

xi

Page

7.7 Mixing Rate of Random Walk . 167

7.7.1 Percentage of Acceptance . 169

7.7.2 Choosing Iteration Counts . 169

7.8 Chapter Summary . 172

8 DISCOVERY OF FUNCTIONAL MOTIFS FROM THE INTERFACE RE-
GION OF OLIGOMERIC PROTEINS USING FREQUENT SUBGRAPH
MINING . 173

8.1 Introduction . 173

8.2 Background . 179

8.3 Related Work . 180

8.4 Methods . 181

8.4.1 Modeling Protein as Interfacial Network 182

8.4.2 Frequent Subgraph Mining with FS3 184

8.4.3 Finding Sub-Network Embedding in the Interface Graph . . . 187

8.4.4 Statistical Significance Test of Discovered Patterns 188

8.5 Experimental Results . 193

8.5.1 HIV-1 Protease Structures . 193

8.5.2 TIM Structures . 194

8.5.3 Enzymes . 196

8.6 Chapter Summary . 201

9 FINDING NETWORK MOTIFS USING MCMC SAMPLING 203

9.1 Introduction . 203

9.2 Background . 205

9.2.1 Graph, Subgraph, Induced Subgraph 205

9.2.2 Subgraph Concentration . 207

9.2.3 Motif . 207

9.2.4 Markov chains, and Metropolis-Hastings (MH) Method 208

9.3 Methods . 208

9.3.1 Implementation Issues . 214

xii

Page

9.4 Results and Discussion . 214

9.4.1 Error Comparison . 217

9.4.2 Runtime Comparison . 217

9.4.3 Convergence Comparison . 219

9.5 Chapter Summary . 220

10 ACTS: EXTRACTING ANDROID APP TOPOLOGICAL SIGNATURE
THROUGH GRAPHLET SAMPLING . 221

10.1 Introduction . 221

10.2 Preliminaries . 224

10.2.1 Function Call Graph . 224

10.2.2 Graphlets . 224

10.2.3 Graphlet Frequency Distribution (GFD) 225

10.2.4 Metropolis-Hastings (M-H) Algorithm 226

10.3 Method . 227

10.3.1 Overview . 227

10.3.2 Efficient GFD Estimation . 227

10.3.3 FCG-specific GFD Dimension Reduction Heuristics 233

10.4 Experiment Results . 233

10.4.1 Datasets . 233

10.4.2 Procedure . 234

10.4.3 Results . 235

10.5 Further Discussion . 243

10.6 Related Works . 244

10.7 Chapter Summary . 245

11 FUTURE WORK AND CONCLUSION 246

REFERENCES . 249

VITA . 267

xiii

LIST OF TABLES

Table Page

1.1 Various aspects of models and application presented in this dissertation. . 8

3.1 Temporal link prediction datasets. Nodes and edges denote the distinct
number of vertices and edges over all the time-stamps. We also report
the number of distinct interactions after removing self-edges. Number of
snapshots denote the total number of time spans of the data. 36

3.2 Performance of seven of our homogeneous models, 28 of our heterogeneous
models, and 7 of our retrofitted models on citation datasets. The high-
lighted results are statistically significant over the baseline with p < 0.001.
For fair comparison, we set the latent dimension size to 64. 41

3.3 Performance of seven of our homogeneous models, 28 of our heterogeneous
models, and 7 of our retrofitted models on messaging datasets. The high-
lighted results are statistically significant over the baseline with p < 0.001.
For fair comparison, we set the latent dimension size to 64. 44

3.4 Performance of seven of our homogeneous models, 28 of our heterogeneous
models, and 7 of our retrofitted models, on social network datasets. The
highlighted results are statistically significant over the baseline with p <
0.001. For fair comparison, we set the latent dimension size to 64. 45

5.1 Basic statistics of the DUC datasets. 91

5.2 Statistics about Reuters and Newsgroups dataset. 93

5.3 Similarity network statistics. 97

5.4 Optimal values of the hyper-parameters for different models on different
tasks. 98

5.5 Performance of our models on topic classification task in comparison to
Sen2Vec. 100

5.6 Performance of our models on topic clustering tasks in comparison to
Sen2Vec. 100

5.7 ROUGE-1 scores of the models on DUC datasets in comparison with
Sen2Vec. 101

6.1 Basic statistics about the DUC datasets. 119

xiv

Table Page

6.2 Statistics about Reuters and Newsgroups. 120

6.3 Optimal values of the hyper-parameters for different models on different
tasks. 124

6.4 Performance of our models on topic classification task in comparison to
Sen2Vec. 125

6.5 Performance of our models on topic clustering tasks in comparison to
Sen2Vec. 126

6.6 ROUGE-1 scores of the models on DUC datasets in comparison with
Sen2Vec. 129

7.1 Highlights of the lack of scalability of existing frequent subgraph mining
methods while mining the PS dataset. Time indicates the running time of
the fastest version of Gaston [60]. 133

7.2 Probability of acceptance of FS3 for Mutagen and PS Dataset. 168

8.1 Interfacial network statistics for our subset of enzymes from the Dobson
and Doig (D&D) protein structure dataset [209]. 197

8.2 The number of patterns overlaps within different groups for a specific size,
` and top-200 patterns. 199

9.1 Dataset statistics. 214

9.2 Runtime comparison of our methods with FANMOD. 218

10.1 Malware detection false positives (FPs) and false negatives (FNs): SVM-
GFD vs. SVM-DFD with different kernels. 235

10.2 Pair-wise malware family label accuracy (in percentage) of SVM-GFD
(GFD) vs. SVM-DFD (DFD) with the linear kernel of the 8 malware
families that have over 40 samples in the AMGP dataset: DroidKungFu3
(DKF3; 303 samples) AnserverBot (AB; 185 samples), BaseBridge (BB;
118 samples), DroidKungFu4 (DKF4; 96 samples), Pjapps (P; 56 samples),
KMin (KM; 52 samples), GoldDream (GD; 47 samples), and DroidDream-
Light (DDL; 46 samples). Since this matrix is symmetric, we only show
the upper half of it. 236

xv

LIST OF FIGURES

Figure Page

1.1 Visual depiction of the thesis organization. 8

3.1 A conceptual sketch of retrofitting (top) and linear transformation (bot-
tom) based temporal smoothness. 25

3.2 Toy illustration of our method. φ’s represent the embedding vectors of the
vertices. (a) for retrofitted model, we first learn φ1 by using any of static
embedding learning models. We then use retrofitting to learn φ2 and φ3

using (φ1, G2) and (φ2, G3), successively. (b) & (c) for linear transfor-
mation (LT) models, we first learn φ1, φ2, and φ3 by using any of static
embedding models, and use these embeddings to learn a transformation
matrix W . Please see Section 3.4 for details about how to learn W for
homogeneous and heterogeneous transformation models. 30

3.3 Effect on latent dimension. We evaluate the performance of our best
models along with the baseline model to study the effect of different latent
dimensions (in our case, 32, 64, and 128). 47

3.4 2-D dynamic network vizualization of the Enron network. Nodes represent
people in the Enron email network and edges represent an email between
two people. We highlight the red nodes to show how our retrofitted model
smoothly brings two nodes closer together before they form their first edge. 48

4.1 A toy dynamic network. G1, G2 and G3 are three snapshots of the Net-
work. G123 is constructed by superimposing G1, G2 and G3. 51

4.2 A toy dynamic network G with four snapshots G1, G2 , G3 and G4. Note
that the number of nodes remains constant (6) even though the links
(edges) may change over time. 57

4.3 (a) Adjacency matrix A1. Each row represents adjacency vector of the
corresponding node (b) Computation of node-pair adjacency vector a23

1

and a45
1 . 57

4.4 Comparison with competing link prediction methods. Each bar represents
a methods and the height of the bar represents the value of the performance
metrics. The group of bars in a chart are distinguished by color, so the
figure is best viewed on a computer screen or color print. 70

xvi

Figure Page

4.5 Change in link prediction performance with number of time stamps. X-
axis represents size of training window used for link prediction. Largest
possible window size depends on number of time stamps available for the
dataset. 72

4.6 Effect of class imbalance in link prediction performance on Collaboration
network. 74

5.1 Distributed Memory (DM) and Distributed Bag of Words (DBOW) ver-
sions of Sen2Vec. 83

5.2 (c) presents an instance of our regularized model for learning representa-
tion of sentence v in comparison to (b) Sen2Vec (DBOW) model within a
context of two other sentences: u and y in (a). Directed and undirected
edges indicate prediction loss and regularization loss, respectively. (Col-
lected from:newsgroup/20news-bydate-train/sci.space/61019. The central
topic is “science.space”.). 85

6.1 Two instances (see (b) and (c)) of our model for learning representation
of sentence v2 within a context of two other sentences: v1 and v3 (see
(a)). Directed and undirected edges indicate prediction loss and reg-
ularization loss, respectively, and dashed edges indicate that the node
being predicted is randomly sampled. (Collected from: 20news-bydate-
train/misc.forsale/74732. The central topic is “forsale”.). 112

7.1 (a) Graph database with 3 graphs (b) Frequent subgraph of (a) with
minsup = 2. 139

7.2 State transition. 146

7.3 Correlation between support and score of a pattern. 159

7.4 Kendall Tau, precision within first 500 for PS Dataset. 161

7.5 Effect of increasing running time for FS3 versus precision for PS dataset. 161

7.6 Precision for Synthetic and Mutagen dataset. 162

7.7 Runtime performance of FS3 for sampling subgraphs of different size. . . 164

7.8 Effect of queue Size and target distribution. 165

7.9 Performance of FS3 for different k. 166

7.10 Jaccard distance vs iteration count. 170

xvii

Figure Page

8.1 (a) A graph database with 3 graphs (b) All the frequent subgraphs of the
graph database in (a) using a minimum support value of 2. If we want to
obtain only the induced frequent subgraphs, g1-g5, g7, and g13 are frequent
for a minimum support of 2. 174

8.2 (a) Retrieved frequent patterns representing the dimerization lock at the
base of HIV- 1 protease structure and (b) along the dimeric interface of
triosephosphate isomerase. 177

8.3 A pictorial depiction of the proposed method. Given a set of structures of
a protein, we first convert each structure into an interfacial network. Then
we use a frequent pattern mining method for mining a set of fixed-size (user
defined) subgraphs. Finally, for each of the mined frequent subgraphs, we
find their structural embedding in the host graphs. 182

8.4 State transition of the random walk for substructure sampling. (a)(i) A
database graph Gi with the current state of FS3’s random walk (a) (ii)
Neighborhood information of the current state 〈1, 2, 3, 4〉. (b)(i) The state
of random walk on Gi (Figure 8.4a) after one transition (b) (ii) Updated
Neighborhood information. 185

8.5 Subnetwork patches embedded in an interface graph. 187

8.6 Random graph generation from a particular graph. Figure (a) is the input
graph, Figures (b) and (c) are random graphs using switching algorithm
described in Section 8.4.4. Interchanges are shown in blue and green color. 188

xviii

Figure Page

8.7 HIV-1 protease (HIV-1 PR) functional components, interface formation,
and computationally retrieved residues from the interface residue network.
Panel A shows the macromolecular architecture of the protease (based on
PDB: 1a30, a closed conformation), Panel B show the lock formation at
the base, Panel C shows the residues in spheres at the dimeric base, and
Panel D shows the computationally retrieved residues from the interface
networks. (A) Front view of HIV-1 PR dimeric structure (modified from
Fig. 2 of [208]). The functionally important components are colored
and labeled in subunit A. N-terminal (NT) and C-terminal (CT) strands
are colored blue: NT residues 1-4 and CT residues 96-99. NT and CT
strands of one subunit form a ridge where CT strand of the other subunit
is locked, and vice versa. Fulcrum (red, residues 9-21) - at one end of this
component is the C-terminus and on the other end there are the active
site region. Flap domain (orange, residues 37-58) has three main regions.
Cantilever (green, residues 59-75) is located at the C-terminal end of the
Flap domain. (B) Lock formation at the base of the structure - NT and
CT strands of chain A form a ridge where CT from B is inserted and vice
versa. (C) The residues on NT and CT of each chain forming the lock are
identified (PDB 1a30). (D) Blue ones are the correctly recognized interface
residues by graph mining. Three residues forming the lock shown in the
panels B and C that the mining algorithm failed to identify are colored
red. Instead, the mining included the orange residues in the pattern that
are not part of the lock pair. 191

8.8 Type 1 interface of TIM dimeric structure. (A) Loop 3 from subunit A and
Loop 1 and Loop 4 from subunit B form a lock at the interface, and vice
versa. (B) Surface view of Lock 1. (C) Residues of the loops involved in
Lock 1 are shown in spheres. (D) Retrieved residues in Lock 1 are shown
in bright color and others are deemed. 192

8.9 Retrieved frequent pattern representing active site at the L-3-hydroxyacyl-
CoA dehydrogenase protein structure. (a) A front view of the entire struc-
ture with the active site and (b) a zoomed view of the active site with the
catalytic site (in red) and binding site (in blue). 198

9.1 All 3, 4 and 5 node topologies. 206

9.2 Neighbor generation mechanism. 209

9.3 Comparison of percentage error value for various methods. The dataset
name, motif size, and the number of samples (in parenthesis) are given in
figure sub-title. 216

9.4 Runtime performance for different sample sizes and for different subgraph
sizes. 219

xix

Figure Page

9.5 Comparison of convergence trend of our methods with FANMOD using
KL Divergence. 220

10.1 The 13 unique 3-graphlet types ω3,i (i = 1, 2, . . . , 13). 224

10.2 Our running example: A 4-graphlet g (the grey vertices and their induced
edges) embedded in a 6-vertex graph G. 226

10.3 The 5 3-graphlet types that have a greater-than-2% frequency density in
the GFD of at least one app in our experiment, sorted by their average
frequency density across all malware/benign app samples in our experiment.232

10.4 The 20 4-graphlet types that have a greater-than-2% frequency density in
the GFD of at least one app in our experiment, sorted by their average
frequency density across all malware/benign app samples in our experiment.232

10.5 Malware detection accuracy of SVM-GFD (SVMs with GFD-based signa-
ture; dark) and SVM-DFD (SVMs with DFD-based signature; grey) using
C-SVC (C-support vector classification) SVMs (support vector machines)
with different kernels: RBF (radial basis function), linear, polynomial,
and sigmoid. 235

10.6 Accuracy response to different malware/benign-app ratios: SVM-GFD
(full line) vs SVM-DFD (dotted line) vs the naive strategy. Percentage on
the x axis is the ratio of malware over benign apps in the dataset; y axis
is the malware detection accuracy. 240

10.7 The top 5 most frequent graphlet types for benign apps, i.e., the ones that
have the highest average graphlet frequency densities across all benign apps.242

10.8 The top 5 most frequent graphlet types for malware, i.e., the ones that
have the highest average graphlet frequency densities across all malware. 242

xx

ABSTRACT

Tanay Kumar Saha Ph.D., Purdue University, May 2018. Latent Representation and
Sampling in Network: Application in Text Mining and Biology. Major Professor:
Mohammad Al Hasan.

In classical machine learning, hand-designed features are used for learning a map-

ping from raw data. However, human involvement in feature design makes the process

expensive. Representation learning aims to learn abstract features directly from data

without direct human involvement. Raw data can be of various forms. Network is one

form of data that encodes relational structure in many real-world domains. Therefore,

learning abstract features for network units is an important task.

In this dissertation, we propose models for incorporating temporal information

given as a collection of networks from subsequent time-stamps. The primary objective

of our models is to learn a better abstract feature representation of nodes and edges in

an evolving network. We show that the temporal information in the abstract feature

improves the performance of link prediction task substantially.

Besides applying to the network data, we also employ our models to incorporate

extra-sentential information in the text domain for learning better representation of

sentences. We build a context network of sentences to capture extra-sentential in-

formation. This information in abstract feature representation of sentences improves

various text-mining tasks substantially over a set of baseline methods.

A problem with the abstract features that we learn is that they lack interpretabil-

ity. In real-life applications on network data, for some tasks, it is crucial to learn

interpretable features in the form of graphical structures. For this we need to mine

important graphical structures along with their frequency statistics from the input

dataset. However, exact algorithms for these tasks are computationally expensive,

xxi

so scalable algorithms are of urgent need. To overcome this challenge, we provide

efficient sampling algorithms for mining higher-order structures from network(s). We

show that our sampling-based algorithms are scalable. They are also superior to a

set of baseline algorithms in terms of retrieving important graphical sub-structures,

and collecting their frequency statistics.

Finally, we show that we can use these frequent subgraph statistics and structures

as features in various real-life applications. We show one application in biology and

another in security. In both cases, we show that the structures and their statistics

significantly improve the performance of knowledge discovery tasks in these domains.

1

1. INTRODUCTION

In classical machine learning, hand-designed features are used for learning a mapping

from raw data. The raw data can be structured such as, networks or un-structured

such as, text. However, human involvement in feature design makes the process

expensive and time-consuming. With the availability of large amount of data, there

exist a plethora of research works in learning abstract representation. The objective of

these works is to learn abstract features (latent features) from the data without direct

human supervision. This particular area is known as unsupervised feature learning.

The models for unsupervised feature learning are very effective for capturing hidden

relationship among the atomic units (such as nodes and edges in a network) of data

and improving the performance of various downstream tasks in both the structured

and unstructured data representations [1].

Networks are fundamental data structures used for compactly capturing the re-

lational structure in many important real-world domains, such as biology, social,

language, and security. Network data consists of nodes and edges. Nodes represent

entities and edges represent the relationship among the entities. There are plenty of

data around us which can be represented as a network. An important fact of these

networks is that they change over time; for example, in social networks, relationship

among people changes in different phases of life. Anatomical activities among the re-

gions of human brain are also not static rather dynamic in nature [2]. However, until

recently, most of the representation learning works consider a network as static [3].

So, providing models for learning the representation of various network units such as,

nodes and edges that can capture both the temporal connectivity structure and the

higher order relation among the nodes is an important research problem. A solution

to this problem can be used for explaining the dynamics of an evolving network, and

also for solving various prediction tasks in a dynamic network.

2

Understanding the dynamics of temporal evolution of networks can help solve com-

plex tasks involving social and interaction networks. For instance, capturing temporal

dynamics of user interactions can explain how communities are formed and dissolved

in a network over time. Temporal co-movement of financial asset prices explains how

financial assets are clustered pronouncedly during an economic downturn, causing a

cascading effect that leads to a financial crisis. Temporal network models can explain

the way social network topologies facilitate (or inhibit) grievances to intensify col-

lective organization, leading to imminent crisis and conflict in a community [4]. So,

models that can incorporate both the temporal and network proximity information

are of enormous importance.

In evolving network, for any given time-stamp, we have relationship structures

among the entities in that timestamp. Additionally, we have a collection of networks

for the remaining timestamps as external information. Likewise, in text domain, we

have words, phrases, sentences, paragraphs, and documents as content and external

information about the content are often can be presented, or constructed as a network.

For example, synonymy, hypernymy, and hyponymy of words are encoded in semantic

lexicons (like WordNet or Framenet) in the form of networks. This semantic lexicons

can be used as an external information while learning the representation of words.

Recent studies [5–7] on learning distributed representations for words have shown

that lexicons like WordNet [8] or Framenet [9] can improve the quality of word vec-

tors that are trained solely on unlabeled text data. Though the external information

is readily available for the words, it is not the case for the sentences. But, sen-

tences rarely stand on their own in a well-formed text. On a finer level, sentences are

connected with each other by certain logical relations (e.g., elaboration, contrast) to

express the meaning as a whole [10]. On a coarser level, sentences in a text address

a common topic, often covering multiple subtopics [11]. Therefore, constructing con-

text network of sentences and models for incorporating external information in the

sentence representation to improve various information retrieval tasks is important.

3

Unfortunately, features learned from latent representation models lack interpretabil-

ity. For some tasks, such as, finding functional motifs from a set of biological networks

or for classifying mobile apps (given as function call graphs) as malignant or benign,

it is critical to learn interpretable features. To learn interpretable features we may

need to (i) collect statistics (frequency, concentration) about higher-order structures

(involving more than a single node or an edge) such as, a substructure containing

fixed number of nodes, as well as, (ii) mine frequent substructures in a single large

network or in a set of networks.

In this thesis, we have developed machine learning models for learning represen-

tation of dynamic networks incorporating temporal and network proximity. We have

also proposed models for learning sentence representation, where external information

regarding the sentences is provided as a network. Finally, we have proposed efficient

methods for computing interpretable feature representation of a network, which can

be used for building interpretable machine learning models. For each of these tasks,

my proposed solution is novel in its approach, and methodology, and it substantially

improves the existing state-of-the-art methodologies in terms of prediction perfor-

mance and computation cost.

In the following subsections, we provide a short overview of the technical aspects

of my proposed solutions. First, we briefly discuss our models for learning latent

representation of nodes and edges in an evolving network. Second, we present an

overview of our models for learning latent representation of sentences. Finally, we

discuss the challenges of substructure mining from large networks and my approach

for overcoming the challenges, along with a discussion of real-life applications where

my proposed substructure mining methods exert enormous impact.

4

1.1 Models for Latent Representation of Nodes and Edges in an Evolving

Network

Learning latent representation for nodes and edges in an evolving network involves

modeling both the temporal dynamics of network and also the network proximity in-

formation encoded in the structure. Most of the existing latent representation learning

techniques for network units (such as, nodes and edges) consider only the network

topology [12–14], a few consider nodal attributes and topology [15], and almost all

ignore the temporal evolution of a network. In [16], we propose latent representation

learning models for nodes in a dynamic network which overcome the above limita-

tion by considering two different kinds of temporal smoothness: (i) retrofitted, and

(ii) linear transformation.

The retrofitted model tracks the representation vector of a vertex over time, fa-

cilitating vertex-based temporal analysis of a network. On the other hand, linear

transformation based model provides a smooth transition operator which maps the

representation vectors of all vertices from one temporal snapshot to the next (un-

observed) snapshot—this facilitates prediction of the state of a network in a future

time-stamp. Even though our models are task agnostic, we show that our models

perform substantially better than the latent representation methods which capture

both the temporal and network proximity information in the link prediction task.

The task of link prediction is to predict the link state of the network at a future

time given a collection of link states at earlier time points. This is a critical task

along the understanding of dynamic network. Additionally, solving link prediction

task in an evolving network is more difficult than its counterpart in a static network

because an effective feature representation of node-pair instances (edges) for the case

of a dynamic network is hard to obtain. If we restrict our attention only to link

prediction not to learn representation of nodes in each snapshot, then directly learning

the representation of edges can help us improve the task performance.

5

In [17], we propose DyLink2Vec1 to overcome this problem. Our method for

metric embedding of node-pair models the metric embedding task as an optimal

coding problem where the objective is to minimize the reconstruction error, and

it solves this optimization task using a gradient descent method. We validate the

effectiveness of the learned feature representation by utilizing it for link prediction

in various real-life dynamic networks. Specifically, we show that our proposed link

prediction model, which uses the extracted feature representation for the training

instances, outperforms several existing methods that use well-known link prediction

features.

1.2 Models for Latent Representation of Sentences

The retrofitted model that we develop earlier for capturing the temporal smooth-

ness can be used for incorporating extra-sentential context for learning better latent

representation of sentences. The learned representation can be used in various data

mining tasks, such as classification, clustering, summarization, and many others.

Recent studies on learning distributed representations for words have shown that se-

mantic relations between words (e.g., synonymy, hypernymy, hyponymy) encoded in

semantic lexicons (like WordNet or Framenet) can be used as an external information

to improve the quality of the word vectors that are trained solely on unlabeled data.

Our sentence representation learning techniques [18,19] are reminiscent of this line

of research because we give models to incorporate extra sentential context for learning

representation of sentences. However, in terms of learning problem we have a couple

of crucial differences. First, we are interested in the representation of sentences as

opposed to words, for the former such resources are not readily available. Second, our

main goal is to incorporate extra-sentential context in some form of inter-sentence

relations as opposed to semantic relations between words. These differences posit

many new research challenges: (i) how can we obtain extra-sentential context that

1DyLink2Vec stands for Link to Vector in a Dynamic network

6

can capture semantic relations between sentences? (ii) how can we effectively exploit

the inter-sentence relations in our representation learning model?

To solve the first problem we introduce the concept of context-network for sen-

tences and for solving the second problem we propose retrofitting and regularizing

models using the context network [18] as well as through a joint model [19] which

predicts and regularize based on the context network of sentences. The joint model

is generic in terms of context and different modes of data the model can handle. By

employing our models, we show significant improvement over a set of baselines in the

topic classification, clustering, and summarization tasks.

1.3 Methods for Frequent Subgraph Mining and Its Applications

Frequent subgraph mining (FSM) which mines frequent substructures from a set

of networks is an important research task in Network Mining Domain. It has applica-

tion in various disciplines, including cheminformatics for solving QSAR (Quantitative

Structure Activity Relationship) task, and in bioinformatics for finding structural

motifs. Most of the existing methods for this task explicitly or implicitly solve the

subgraph isomorphism task which is computationally expensive, so they suffer from

the lack of scalability problem when the graphs in the input database are large. We

propose FS3, which is a sampling based method and thus scalable 2. It mines a

small collection of subgraphs that are most frequent in the probabilistic sense. FS3

performs a Markov Chain Monte Carlo (MCMC) sampling over the space of a fixed-

size subgraphs such that the potentially frequent subgraphs are sampled more often.

Besides, FS3 is equipped with an innovative queue manager. It stores the sampled

subgraph in a finite queue over the course of mining in such a manner that the top-k

positions in the queue contain the most frequent subgraphs. Our experiments on

database of large graphs show that FS3 is efficient, and it obtains subgraphs that are

the most frequent amongst the subgraphs of a given size.

2The name FS3 should be read as F-S-Cube, which is a compressed representation of the
4-gram composed of the bold letters in Fixed Size Subgraph Sampler

7

To show the effectiveness of FS3, we further study its performance over three

biological databases and also analyze the characteristics of the mined graphs as a

feature for studying the functionality of protein with the help of a human expert.

For this, we model the interface region of a protein complex by graphs [20] and

extract interface patterns of the given complex in the form of frequent subgraphs

using FS3. We show that a systematic review of the mined subgraphs provides an

effective method for the discovery of functional motifs that exist along the interface

region of a given protein complex.

Another important task in graph mining is to find subgraphs which are candidate

for motif in a given network. For this, we need to count each topology’s frequency in

the input network as well as in many randomized networks. Counting a topology’s

frequency in a single network is a challenging task as it requires solving subgraph

isomorphism, a known NP-complete problem. As the size of the motif grows, the

number of candidate motifs increases exponentially, and the task becomes more chal-

lenging. To cope with the enormous computation cost of exhaustive counting of the

frequency of candidate motifs, researchers consider various sampling based methods

that obtain an approximation of relative frequency measure (which we call concentra-

tion) over all the candidates of a given size. In [21], we propose an improved sampling

based method on finding concentration of the prospective motifs.

Small substructures of 3, 4, and 5 nodes (also known as graphlets) have been used

as feature representation for solving various tasks, such as, name disambiguation and

studying network properties. In [22], we propose a novel topological signature of

Android apps based on the function call graphs (FCGs) extracted from their Android

App PacKages (APKs). We use an extended version of the sampling method proposed

in [21] to capture the invocator-invocatee relationship at the local neighborhoods in

the function call graphs (FCG) of Android app.

Android systems are widely used in mobile and wireless distributed systems. How-

ever, with the popularity of Android-based smartphones/tablets comes the rampancy

of Android-based malware. Using function call graphs of benign and malware apps, we

8

Table 1.1.: Various aspects of models and application presented in this dissertation.

Node Edge Link Sentence Topic Classi., Finding freq. Finding Func. Classif.
Embed Embed Predict. Embed Clust, Summa. Substruct Motif Android Apps

Chapter 3 X X
Chapter 4 X X
Chapter 5 X X
Chapter 6 X X
Chapter 7 X
Chapter 8 X X
Chapter 9 X
Chapter 10 X X

Latent Representation
and Sampling in Networks

Latent
Representation

Sampling and
Its Applications

Frequent Subgraph Mining
(Chapter 7)

Functional Motif Detection
(Chapter 8)

Motif Finding
(Chapter 9)

Android App Classification
(Chapter 10)

Latent Representation of
Nodes in an Evolving Network

(Chapter 3)

Latent Representation of
Edges in an Evolving Network

(Chapter 4)

Latent Representa-
tion of Sentences
(Chapter 5, 6)

Fig. 1.1.: Visual depiction of the thesis organization.

demonstrate that our method, ACTS (App topologiCal signature through graphleT

Sampling), can detect malware and identify malware families robustly and efficiently.

More importantly, we show that the statistics and structures retrieved using the sam-

pling algorithm [21] help finding function call structure which discriminates between

the benign and malware app, and thus facilitates the interpretation of the results

which is very important in the security domain.

9

1.4 Contribution of This Dissertation

We summarize the major contributions of this dissertation:

1. We propose latent representation learning models for learning representation of

nodes in a dynamic networks for each snapshot by modeling the temporal evolu-

ation inside the latent representation model. We consider two different kinds

of temporal smoothness models: (i) retrofitted, and (ii) linear transformation.

Please see Chapter 3 for details.

2. We propose DyLink2Vec (Chapter 4) to overcome the problem of learning

an effective feature representation of node-pair instances (edges) for the case

of dynamic network. We show that our proposed link prediction model, which

uses an auto-encoder model to learn latent feature representation for the edges

outperforms several existing methods that use well-known link prediction fea-

tures.

3. We propose models to effectively incorporate extra-sentential context in some

form of inter-sentence relations in the representation learning models for sen-

tences. Please see Chapter 5 and 6 for details.

4. We propose a method for frequent subgraph mining, called FS3(Chapter 7),

that is based on sampling of subgraphs of a fixed size. We also demonstrate

that the algorithm, FS3 can be applied to find essential structures from the

interfacial region of a set of oligomeric proteins (Chapter 8).

5. We also provide sampling based algorithm for finding concentration of prospec-

tive motifs in a single large network (see Chapter 9) and show that the proposed

method can be used to collect features from Function Call Graphs (FCGs) ex-

tracted from their Android App Packages (APKs) to classify apps from google

app store as malignant or benign (Chapter 10).

10

1.5 Organization of This Dissertation

We organize our dissertation into two subparts. From Chapter 3 to Chapter 6,

we describe latent representation methods for network and texual units, and from

Chapter 7 to Chapter 10, we describe the techniques for extracting substructures and

collecting statistics about them and finally present their novel usage in bio-Informatics

and security domain. Finally, in Chapter 11, we give future directions and conclude

the thesis. In order to better understand the topics presented in different chapters, we

summarize various aspects of models, and applications presented in the dissertation

in Table 1.1 and Figure 1.1.

11

2. RELATED WORK

In this chapter, we discuss the related work into the following four categories, namely

(i) Representation learning of network units such as nodes and edges, (ii) Represen-

tation learning of textual units particularly for sentences, (iii) Substructure Mining,

and (iv) , (v) Applications of Substructure Mining.

2.1 Representation Learning of Network Units

Represention learning of network units especially for nodes in a static network is a

very popular research topic. A good number of models for learning latent representa-

tion of vertices [12–14,23–26] in a static network have been proposed. These models

vary in the way they exploit information from the static network as they learn the

low-dimensional representation of the vertices. Most of the models vary based on the

information extracted from the static network and how they are exploited to learn the

low-dimensional representation of the nodes. The learned representation node vec-

tors reflect the proximity and similarity among the nodes from different perspectives.

For example, DeepWalk [12] and Node2Vec [13] design random walks to find the node

pairs that should be considered similar, and then use word2vec’s skip-gram model [27]

to learn representations. LINE [14] extracts two kinds of proximities among the nodes:

(i) direct link (first-order), and (ii) structural (second-order) proximity. SDNE [23]

also captures first and second-order proximity, but it uses an encoder-decoder frame-

work and Laplacian regularization to capture the proximity between a pair of vertices.

Benson’s model [24] extracts proximity among the nodes using network motifs. Qiu

et al. [28] show that DeepWalk, LINE, and Node2Vec models can be unified under

the matrix factorization framework. Most of these methods [12–14, 23, 24] are un-

12

supervised in nature, i.e. they do not use any human supervision to either learn or

improve the representation.

However, when labels are available for a small subset of nodes, the problem of

representation learning on networks can be framed as graph based semi-supervised

learning. The label information is smoothed over the graph via some form of explicit

graph-based regularization. Most of the semi-supervised embedding method [29, 30]

learns embeddings in a neural network through imposing regularization on the graph

structure or use graph structure as feature. A recent method GCN [25] encodes the

graph structure directly using a neural network model and trains on a supervised

target for all nodes with labels and thus can avoid explicit graph-based regularization

in the loss function.

Modeling complex distributions over graphs and then efficiently sampling from

these distributions is challenging due to the non-unique, high-dimensional nature

of graphs and the complex, non-local dependencies that exist between edges in a

given graph. Deep neural network based generative models can capture the complex

distribution [31]. Generative modeling over network is another avenue of research

which is also becoming popular. However, in this dissertation, we only restrict our

attention on unsupervised models for learning representation for nodes and edges.

In early days, the network embedding (Graph Embedding) algorithms mostly aim

to reduce dimensionality and learn the manifold that the data lies in. Manifold

learning models, such as ISOMAP and Locally Linear Embedding (LLE), also aim to

reduce dimensionality. ISOMAP [32] uses the geodesic distances among the nodes to

learn a low-dimensional vector representation for each node. The geodesic distance

is defined as the sum of the edge weights along the shortest path between two nodes

in the network, and can be regarded as a proxy for the proximity among the nodes.

LLE [33] eliminates ISOMAP’s need to estimate the pairwise distances between widely

separated nodes. The model assumes that each node and its neighbors lie on or near a

locally linear patch of a manifold and subsequently, learns a neighborhood preserving

latent space representation by locally linear reconstruction. Please see [3] and [34]

13

for a detailed survey on latent space representation techniques of nodes in a static

network.

Although we found many embedding methods for static networks, we found only

one related work for dynamic networks. Zhu et al. [35] attempt dynamic link-

prediction by adding a temporal-smoothing regularization term to a non-negative

matrix factorization objective. Their goal is to reconstruct the adjacency matrix of

different time-stamps of a graph. They use a Block-Coordinate Gradient Descent

(BCGD) algorithm to perform non-negative factorization. Their formulation is al-

most identical to the algorithm of Chi et al. [36], who perform evolutionary spectral

clustering that captures temporal smoothness. Because matrix factorization provides

embedding vectors of the nodes for each time-stamp, the factorization by-product

from this work can be considered as dynamic network embeddings. In this disserta-

tion, we propose two different models: (i) Retrofitting and (ii) Linear Transforma-

tion to capture temporal smoothness and network proximity simultaneously (please

see Chapter 3). For the retrofitted model [6], we were inspired by its performance

in modeling external information in representation learning of textual unit and for

transformation models [27], we were inspired by its effectiveness in projecting repre-

sentation of words from one languge to another for improving performance in machine

translation. However, none of the existing works use retrofitted models or the linear

transformation models to incorporate the temporal smoothness for learning the node

representation in a dynamic network.

There are few other works which model dynamic networks or solve link prediction

on dynamic networks. But, they do not learn latent vectors of the vertices for each

time-stamps. For instance, the method in [37] computes a number of different node

similarity scores by summing those similarities with weights learned for different time-

stamps of the network. In order to predict the future node similarity scores, a time

series forecasting model, ARIMA is used. But this approach fails to capture signals

from neighborhood topology, as each time-series model is trained on a separate t-size

feature sequence of a node-pair. Tylenda et al. [38] shows that time of interactions

14

between nodes is a dominant feature for ranking neighboring nodes and apply the

time-aware feature representation technique to predict links in bibliographical net-

work. The model assumes external information (such as, last time of collaboration)

about the network is available. Rahman et al. [39] use graphlet transitions over two

successive snapshots to solve the dynamic link prediction problem. A deep learning

solution is proposed in [40], which uses a collection of Restricted Boltzmann Machines

with neighbor influence for link prediction in dynamic networks. Matrix and tensor

factorization based solutions are presented in [41,42].

As described in the earlier paragraphs, there exist a growing list of recent works

which use unsupervised methodologies for finding metric embedding of nodes in the

static graph [12, 14, 43] and to learn representation of node-pair instances they

use some type of compositional method such as, hadamard product, weighted-l1,

weighted-l2 or simple averaging. There are also methods for learning features for

edges in the dynamic network settings as described in the previous paragraph. How-

ever, no such work exists for finding feature representation of node-pair instances for

the purpose of link prediction in a dynamic network. In this dissertation, we propose

one method (please see Chapter 4) for metric embedding of node-pair in dynamic

network by modeling the metric embedding task as an optimal coding problem where

the objective is to minimize the reconstruction error, and it solves this optimization

task using a gradient descent method.

2.2 Representation Learning of Textual Units

Recently, learning distributed representation of textual units such as words, phrases,

and sentences has gained a lot of attention due to its applicability and superior

performance over bag-of-words (BOW) features in a wide range of text processing

tasks [5–7,44–46]. These models can be categorized into two groups: (i) task-agnostic

or unsupervised models, and (ii) task-specific or supervised models. Task-agnostic

models learn general purpose representation from naturally occurring unlabeled train-

15

ing data, and can capture interesting linguistic properties [47–49]. On the other hand,

task-specific models are trained to solve a particular task, e.g., sentiment analysis [50],

machine translation [51], and parsing [52].

The Word2vec model [53] to learn distributed representation of words is very

popular for text processing tasks. The model also scales well in practice due to its

simple architecture. Sen2Vec [44] extended Word2vec [53] to learn the representation

for sentences and documents. The model maps each sentence to a unique id and learns

the representation for the sentence using the contexts of words in the sentence—either

by predicting the whole context independently (DBOW), or by predicting a word in

the context (DM) given the rest. In this dissertation, we extend the DBOW model to

incorporate inter-sentence relations in the form of a discourse context or a similarity

context. We do this using a graph-smoothing regularizer in the original objective

function, or by retrofitting the initial vectors with different types of context.

Retrofitting and regularization methods [5–7] have been explored to incorporate

lexical semantic knowledge into word representation models. Our overall idea of using

external information is reminiscent of these models with two key differences: (i) the

semantic network (WordNet, FrameNet) is given for the case of the existing works,

whereas we construct the network using similarities between sentences (nodes); (ii) we

also explore discourse context that incorporate knowledge from adjacent sentences.

Adjacent sentences have been used previously for modeling task-agnostic repre-

sentation of sentences. For example, Hill et al. [48] proposed FastSent, which learns

word representation of a sentence by predicting words of its adjacent sentences. It

derives a sentence vector by summing up the word vectors. The auto-encode version

of FastSent also predicts the words of the current sentence. FastSent is fundamentally

different from our models as we consider nearby sentences as atomic units, and we

encode the sentence vector directly.

Hill et al. [48] also proposed two other models, Sequential Denoising Autoencoder

(SDAE) and Sequential Autoencoder (SAE). SDAE employs an encoder-decoder

framework, similar to neural machine translation (NMT) [51], to denoise an origi-

16

nal sentence (target) from its corrupted version (source). SAE uses the same NMT

framework to reconstruct (decode) the same source sentence. Both SAE and SDAE

compose sentence vectors sequentially, but they disregard context of the sentence.

Another context-sensitive model is Skip-Thought [54], which uses the NMT frame-

work to predict adjacent sentences (target) given a sentence (source). Since the en-

coder and the decoder use recurrent layers to compose vectors sequentially, SDAE and

Skip-Thought are very slow to train. Furthermore, by learning representations to pre-

dict content of neighboring sentences, these methods (FastSent and Skip-Thought)

may learn linguistic properties that are more specific to the neighbors rather than

the sentence under consideration.

In contrast, we encode a sentence directly by treating it as an atomic unit, and we

predict the words to model its content. Similarly, our model incorporates contextual

information by treating neighboring sentences as atomic units. This makes our model

quite efficient to train and effective for many tasks as we have shown.

2.3 Substructure Mining

Frequent subgraph discovery is a well-studied problem with many existing meth-

ods, including Subdue [55], AGM [56], FSG [57], gSpan [58], DMTL [59], and Gas-

ton [60]. They work well for problem instances where the graphs in the graph database

are small and sparse, but they do not scale well with the size and the density of the

input graphs. Note that, the lack of scalability issue of the existing methods for the

large input graph is not a limitation of the existing methods, rather it is due to the

strict definition of the FSM task itself.

To alleviate the scalability concern, researchers have proposed some alternative

solutions, which do not discover all the frequent subgraphs. The first such attempt

is to discover only a subset of frequent subgraphs, which are maximal [61, 62], or

closed [63]. However for large input graphs, algorithms for finding maximal or closed

frequent subgraphs are not scalable, as they prune only a small part of the search

17

space. Later, Chaoji et al. [64] have proposed ORIGAMI, a graph mining method

that returns a set of random maximal frequent subgraphs. Hasan and Zaki proposed

MCMC sampling based methods for uniform sampling of a set of frequent [65] and

maximal frequent [66] subgraphs. Due to the uniformity guaranty, such methods

provide a small set of frequent subgraphs which are ideal as a representative pattern

set. However, all the above methods still solve subgraph isomorphism test for ensuring

the minimum support threshold, which makes them inefficient when the input graphs

become large. In this dissertation, our proposed subgraph mining method complement

existing works as we are interested to obtain a solution for mining frequent subgraphs

from large input graph, for which existing methods do not scale.

Studying the local topology is an important step for modeling the interaction

among the entities in a network. There exist works [67–71] that mine frequent sub-

graphs from a single input graph. They aim to discover network motifs in a single

network. In a seminal work around a decade ago, Shen-orr et al. [72] hypothesized

that network motifs play an important role in carrying out the key functionalities

that are performed by the entities in a biological network. Since then, researchers

have also discovered that network motifs are building block for complex networks

from many diverse disciplines including biochemistry, neurobiology, ecology, engi-

neering [73], proteomics [74], social sciences [75] and communication [76].

Finding network motifs is computationally demanding. To identify whether a

given subgraph topology is a motif, we need to count the topology’s frequency in

the input network as well as in many randomized networks. Counting a topology’s

frequency in a single network is a challenging task as it requires solving subgraph

isomorphism, a known NP-complete problem. As the size of the motif grows, the

number of candidate motifs increases exponentially, and the task becomes more chal-

lenging. To cope with the enormous computation cost of exhaustive counting of the

frequency of candidate motifs, researchers consider various sampling based methods

that obtain an approximation of relative frequency measure (which we call concentra-

tion) over all the candidates of a given size. Most notable among these methods are

18

MFinder [67], MODA [77], and RAND-ESU [68]. Besides these approximate meth-

ods, exact motif counting methods are also available, such as, GTrieScanner [69],

ESU [68], Grochow-Kellis algorithm [78], Kavosh [70], and NetMODE [79]; However,

their application is limited to small networks only. In this dissertation, we propose

methods which focus on finding concentration of prospective motifs on a single large

network using a novel sampling based method.

2.4 Modeling Interface Region as Network and Mining Functional Motif

There are several works that represent a protein structure as a network consisting

of a set of nodes and the relationship between the nodes. However, the way differ-

ent works model the network differs. Across these works, the nodes can represent

amino acid residues [80–85], functional atoms from the side chains [86,87], secondary

structure elements [88–90], proteins [91, 92], protein complexes [93], and interaction

pseudoatoms [94]. Edges also has different connotations in different works. For in-

stances, edges connect nodes if they interact with each other [80, 81], or if they are

nearer to each other spatially [82, 87], or if they are within the interacting distance

of each other [86]. Some works create edges between two nodes if the nodes are part

of a functional unit in a pathway or in a biological process [91, 92], or if side-chains

interact with each other [95]. Our work [20] differs in the method of construction

and analysis of these networks from previous studies. We use Cα carbon (backbone

carbon) of a particular residue as a node. So, the Cα carbons from all the residues

of a particular protein represent the set of nodes and we connect two nodes if their

Cα carbons are spatially nearer to each other. Existing works use a graph to capture

the entire protein structure, but we capture dense interfacial region between different

subunits of the same structure.

Network representation of proteins has been used for various purposes; for ex-

ample, to study the evolution of protein-protein interactions [82], to summarize how

central network elements are enriched in active centers and ligand binding sites di-

19

recting the dynamics of entire protein [87], to classify protein 3D-structures [84, 85],

to characterize the topological role of residues [83], to offer a comprehensible view of

critical residues and to facilitate the inspection of their organization [96], to detect

cancer-associated functional residues [91], to uncover distinct cancer-specific func-

tional modules [92], to document functional components and sub-components of pro-

teins [97], and to compare two networks (Oligomeric vs Monomeric) [81] for getting

insight into the protein association. Greene et al. [98] authored a good review article

which surveys several key advances in the expanding area of protein structure and

folding research using network approaches. To the best of our knowledge we are the

first to extend graph mining methodologies for mining interfacial networks to discover

important functional units (such as, lock structure in HIV and hugging point in TIM

structure), or to find family specific active sites from enzymes.

2.5 Classifying Android Apps

As the use of Android continues to grow, so does the threat of malware. Malicious

behaviors observed in such malware include the theft of private information stored

on the device, device fingerprinting, abusing premium service, and rooting the device

as a backdoor for further attacks [99]. Detecting such malware is a critical task for

the security research community.

It is observed that variants of malware form families through code sharing and

their common lineage [99]. Therefore, instead of identifying individual malware and

extracting a signature from it, we can identify the commonality within the same mal-

ware family and generate signatures that capture such commonality. Recently, var-

ious machine learning/data mining (i.e., pattern mining) techniques are applied to

detect Android malware [100–105] or closely related tasks such as identifying repack-

aged apps [106, 107]. Beyond the common pattern mining framework, these works

differ significantly in their selection and construction of features, their quantifica-

tion/metrication of such features, their choice of pattern mining algorithms, and, in

20

totality of these fine points of design, their applicability, robustness, and efficiency in

detecting malware.

A number of different app representations have been studied for malware detec-

tion. For example, [101] propose a compact representation of source code, the code

property graph, that combines abstract syntax trees, control flow graphs, and pro-

gram dependence graphs [101]. Other approaches do not require the source, but

instead focus on features at different abstract levels: from the low-level platform op-

code level [104], through the intermediate function call [100] and Android framework

API [103] level, to the high semantic level that includes features such as network

addresses and Android specific artifacts such as permission and intents [102]. Yet,

other works formulate malware detection as different pattern mining tasks such as

frequent subgraph mining [105].

Due to the availability of off-the-shelf obfuscation solutions (such as the free Pro-

Guard [108] and the commercial DexGuard [109]) and the growing number of Android

apps, it is critical for any proposed malware detection algorithm to be robust and

efficient. In practice, efficiency and robustness are often at odds. At one extreme, as

two straightforward examples, cryptographical hashes or package names are highly ef-

ficient but fragile app signatures. They are efficient to obtain/compute but can easily

be changed without essentially affecting the app [104]. At the other extreme, measur-

ing similarities of some high-level graph-based representation of the app, such as code

property graphs [101], are more robust, but, as observed by [100], “is a non-trivial

problem whose complexity hinders the use of these features for malware detection.”

Martinelli et al. [105] formulates the malware detection problem as a subgraph

mining problem. Pržulj et al. [110] first propose and coin the term graphlet. Two

recent advances on graph mining, MHRW [21] and GUISE [111], inspire our use of

GFD as a robust and efficient topological signature for apps.

A related problem to malware detection is app repackaging, in which an app is

transformed for a similar but different app through repackaging [106]. Repackaged

apps are often seen on alternative Android app market, and is a major vector for

21

carrying and propagating malware. Zhou et al. [107] propose a system called AppInk

that applies watermarking to prevent app repackaging.

Tainting analysis (e.g., TaintDroid [112] and FlowDroid [113, 114]) and Android

app analysis frameworks (e.g., DroidScope [115] and CopperDroid [116]) can be used

to further analyze malware families identified by our proposed method, named ACTS

[22].

22

3. MODELS FOR CAPTURING TEMPORAL

SMOOTHNESS IN EVOLVING NEWTORKS FOR

LERANING LATENT REPRESENTATION OF NODES

3.1 Introduction

Accurate modeling of temporal evolution of networks can help solve complex tasks

involving social and interaction networks. For instance, capturing temporal dynamics

of user interactions can explain how communities are formed and dissolved in a net-

work over time. Temporal co-movement of financial asset prices explains how financial

assets are clustered pronouncedly during an economic downturn, causing a cascading

effect that leads to financial crisis. Temporal network models can explain the way

social network topologies facilitate (or inhibit) grievances to intensify collective orga-

nization, leading to imminent crisis and conflict in a community [4]. Unfortunately,

most of the network based analyses consider only the network topology [12–14], a

few consider nodal attributes and topology [15], and almost all ignore the temporal

evolution of a network. The objective of this work is to capture temporal evolution

of networks by learning latent representation of vertices over time.

Over the past few years, there has been a surge in research [12–14, 23, 117] on

embedding the vertices of a network into a low-dimensional, dense vector space.

These embedding models utilize the topological information of a network to max-

imize objective functions that capture the notion that nodes with similar topological

arrangements should be distributed closely in the learned low-dimensional vector

space. The embedded vector representation of the vertices in such a vector space

enables effortless invocation of off-the-shelf machine learning algorithms, thereby fa-

cilitating several downstream network mining tasks, including node classification [26],

link prediction [13], and community detection [117]. However, most of the existing

23

network embedding methods, including DeepWalk [12], LINE [14], and Node2Vec [13]

only consider a static network in which the time-stamp of the edges are ignored.

The embedding vectors of the nodes do not have any temporal connotation. These

time-agnostic models may produce incorrect analysis—for example, in a static link-

prediction task, node vectors might have been learned (inadvertently) by using future

edges, but foreseeing future edges is impossible in a real-time setup. In summary, tem-

poral network models should learn latent representation of vertices by considering the

edges in their temporal order to make the model interpretable along the time axis,

leading to the discovery of temporal evolution patterns of a dynamic network.

If a temporal network is represented as a collection of snapshots at discrete time

intervals, one may attempt to use static network models (e.g., LINE, Node2Vec) for

learning vector representation of vertices at each time-stamp independently. Through

the embedding vectors of each vertices, these models encode useful semantic infor-

mation, specifically, proximity and homophily relation among the vertices. But, the

learning is limited to only one given time-stamp. More importantly, due to the inde-

pendence in learning process across the time-stamps, the latent vectors of the vertices

are embedded in different affine spaces for different temporal snapshots of the net-

work. Therefore, there is no temporal mapping across the affine spaces to connect the

embedding vectors of the same vertex across different time-stamps. Another related

objective that we may have is to capture the temporal progression of the vertices in

a latent space, say, for solving the task of community evolution over time; existing

embedding models for static networks also fail to fulfill this objective.

We want to emphasize the differences between the two objectives which we have

discussed in the above paragraph. For the first objective, we want an operator to

transform the coordinates of the identical vertices (as obtained from the embedding

of a dynamic graph in different time-stamps) from one affine space to another affine

space. We refer to this objective as global temporal smoothness as we achieve this by

considering all the vertices of a network holistically. Transformation here acts as a

smoothness operator to connect the embedding vectors of the vertices over the time

24

space. On the other hand, for the second objective, we apply temporal smoothness

over the vertices independently to ensure that their vectors have a smooth progres-

sion through the time-stamps. We call this local temporal smoothness. The existing

network models fail to return temporal representation vectors of the vertices fulfilling

either of the objectives; overcoming this limitation is the main motivation of this

work. Note that, some earlier works have used temporal smoothness for evolutionary

clustering [36] and link prediction in a dynamic network [35]. Both works use an

identical objective function which minimizes a matrix-factorization coupled with a

temporal smoothing regularization. But, these models only use first-order proximity.

To the best of our knowledge, no models consider higher-order proximities and tem-

poral smoothness to provide latent representation of vertices for each time-stamp of

a dynamic network.

In this work, we propose two embedding models, (i) retrofitted, and (ii) linear

transformation, each fulfilling one of the smoothness objectives. Figure 3.1 gives a

conceptual demonstration of these models. The retrofitted model satisfies the lo-

cal temporal smoothness objective by assuming that the evolution of the network is

vertex-centric. In each time stamp, a small fraction of the vertices experience changes

in their neighborhood. The retrofitted model smoothly updates (retrofits) the embed-

ding vectors of vertices, which are attached to the new edges in a given time stamp.

As shown in the top example of Figure 3.1 the presence of new edges AF and CD in

the graph Gt+1, updates the vector representation of the vertices A,C,D and F from

their prior position corresponding to Gt. For the first time-stamp though, the model

employs an existing latent representation model (neural network, manifold learning,

or matrix-factorization based like PCA or SVD) to learn the representation vector

of the vertices, but for subsequent time-stamps the position of the vectors are up-

dated by a local update method as discussed above. The retrofitted model enables

temporal tracking of the vertices of a network which can be instrumental for solving

an evolutionary clustering of the vertices or to discover the evolution of communities

over time.

25

Fig. 3.1.: A conceptual sketch of retrofitting (top) and linear transformation (bottom)
based temporal smoothness.

26

Our second model, the linear transformation model assumes that the network

evolution over time is a global process, which makes the evolution network-centric,

instead of vertex-centric. To accommodate this assumption, this model attempts to

fulfill the global temporal smoothness objective by considering the temporal evolution

of a network as a linear transformation operator over the vertex embedding vectors

of successive time-stamps, as shown in Figure 3.1(bottom). In this figure we show

the (independently learned) embedding vectors of the vertices in Gt and Gt+1, and

our objective is to learn the transformation operator W, which can map the vectors

of each vertices from its position in Gt to its position in Gt+1. Once learned, the

operator W is able to map the latent representation from a known snapshot to the

next (unobserved) snapshot. The model first obtains embedding functions of all

temporal snapshots of the graph and then it learns the transformation operation

which best explains the evolution of vertex embedding vectors across different time-

stamps. We explore two ways to learn the transformation matrix: homogeneous

and heterogeneous. In homogeneous mapping, we assume that the transformation

operation is the same across any two successive time-stamps. So, we learn a single

(shared) transformation matrix that maps the representation from a snapshot to the

next snapshot. Heterogeneous mapping on the other hand refrains from the uniformity

assumption, considering that every pair of time-stamps has a different transformation

geometry. So, the model learns a projection matrix for every subsequent time-pairs

and then combines them while performing smoothing in the time dimension.

Contributions of this paper are summarized as below.

1. We propose two novel models for learning the vertex representation of a dy-

namic network having many temporal snapshots. In these models we introduce

two different kinds of temporal smoothness concepts: global and local, which

complement each other.

2. We validate our proposed models by utilizing them for solving the temporal link

prediction task on nine different datasets from three different domains: citation,

27

social, and messaging. Experimental results show that when compared against

an existing state-of-the-art temporal smoothness based dynamic link prediction

model, for all datasets our proposed methods improve the link prediction per-

formance by values ranging from 0.20 to 0.60 on different metrics, such as, AUC,

PRAUC, and NDCG.

3. We made our code, datasets, and experimental setups publicly available at

(https://gitlab.com/tksaha/temporalnode2vec.git) to support the spirit

of reproducible research and to enable further development in this area.

3.2 Related Work

Recently, models for learning latent representation of vertices [12–14, 23–26] of

a static networks have become very popular. These models vary in the way they

exploit information from the static network as they learn the low-dimensional rep-

resentation of the vertices. For example, DeepWalk [12] and Node2Vec [13] design

random walks to find the node pairs that should be considered similar, and then use

word2vec’s skip-gram model [47] to learn representations. LINE [14] extracts two

kinds of proximities among the nodes: (i) direct link (first-order), and (ii) structural

(second-order) proximity. SDNE [23] also captures first and second-order proximity,

but it uses an encoder-decoder framework and Laplacian regularization to capture the

proximity between a pair of vertices. Benson’s model [24] extracts proximity among

the nodes using network motifs. Qiu et al. [28] show that DeepWalk, LINE, and

Node2Vec models can be unified under the matrix factorization framework.

Manifold learning models, such as ISOMAP and Locally Linear Embedding (LLE),

also aim to reduce dimensionality. ISOMAP [32] uses the geodesic distances among

the nodes to learn a low-dimensional vector representation for each node. LLE [33]

eliminates ISOMAP’s need to estimate the pairwise distances between widely sepa-

rated nodes. The model assumes that each node and its neighbors lie on or near a

28

locally linear patch of a manifold and subsequently, learns a neighborhood preserving

latent space representation by locally linear reconstruction.

Although we found many embedding methods for static networks, we found only

one related work for dynamic networks. Zhu et al. [35] attempt dynamic link-

prediction by adding a temporal-smoothing regularization term to a non-negative

matrix factorization objective. Their goal is to reconstruct the adjacency matrix

of different time-stamps of a graph. They use a Block-Coordinate Gradient Descent

(BCGD) algorithm to perform non-negative factorization. Their formulation is almost

identical to Chi et al. [36] who perform evolutionary spectral clustering that captures

temporal smoothness. Because matrix factorization provides embedding vectors of

the nodes for each time-stamp, the factorization by-product from this work can be

considered as dynamic network embeddings. In experiment section we compare our

proposed methods with this work.

There are few other works which model dynamic networks or solve link predic-

tion on dynamic networks. But, they do not learn latent vectors of the vertices for

each time-stamps. For instance, the method in [37] computes a number of different

node similarity scores by summing those similarities with weights learned for differ-

ent time-stamps of the network. Rahman et al. [39] use graphlet transitions over two

successive snapshots to solve the dynamic link prediction problem. A deep learning

solution is proposed in [40], which uses a collection of Restricted Boltzmann Machines

with neighbor influence for link prediction in dynamic networks. Matrix and tensor

factorization based solutions are presented in [41,42].

3.3 Problem Formulation

Let T = {1, 2, . . . , T} be a finite set of time-stamps for an evolving (undirected)

network G, and for t ∈ [1, T], Gt = (Vt, Et) denotes the network state at time t with Vt

being the set of vertices and Et being the set of edges of graph Gt at t’th time-stamp.

The sequence of network snapshots is thus represented by G = (G1, G2, . . . , GT). For

29

simplicity, we assume that all the networks in G have the same vertex set, i.e., Gt =

(V,Et) for t = 1, 2, . . . , T .1 We also assume that apart from the link information in a

network, no other attribute data for the nodes or edges are available.

Now, let φt : V → Rd be the mapping function at time-stamp t that returns

the distributed representations, i.e., real-valued d-dimensional vectors representing

the vertices in Gt. In terms of data structure, φt is simply a look-up matrix of

size |V | × d, where |V | is the total number of vertices in the network. The task

of dynamic network embedding is to approximate φt from the sequence of first t

network snapshots, represented as, Gt = (G1, G2, . . . , Gt). Unlike existing embedding

models, for learning embedding function φt, we want to utilize both the topological

information in Gt and the trends in temporal dynamics exhibited by the sequence of

network snapshots up to time t.

In this work, we propose two different models: retrofitted, and linear projection,

each feeding on a specific temporal smoothness assumption.

1. For the retrofitted model, we first learn φ1 from the network information in G1

using any of the state-of-art static network embedding methods (e.g., Node2Vec,

DeepWalk). Then we capture the temporal network dynamics by retrofitting

φ1 successively with the network snapshots G2, G3, . . . , Gt.

2. For the linear transformation model, we learn a linear transformation matrix

W ∈ Rd×d to map φt−1 to φt. The matrix W is trained after all the φi for

1 ≤ i ≤ t are obtained by using one of the existing static embedding methods

on network snapshots in Gt = (G1, G2, . . . , Gt).

To validate our proposed models we use temporal link prediction as an example

task, where we predict the links in a future snapshot of a network, namely GT+1.

However, we would like to point out that our proposed embedding methods are ag-

nostic to the task at hand.

1This assumption is not a limitation, as the proposed models can easily be adapted for the case
when this assumption does not hold.

30

φ1 φ2 φ3

W1 W2

W

Smoothing

(c) Heterogeneous LT

φ2

φ1

φ3

φ2

W

φ1 φ2 φ3

G1 G2 G3A

B E

(a) Retrofitted

D
ee

pW
al

k

RET

A

C D

RET

A

B E

(b) Homogeneous LT

Fig. 3.2.: Toy illustration of our method. φ’s represent the embedding vectors of the
vertices. (a) for retrofitted model, we first learn φ1 by using any of static embedding
learning models. We then use retrofitting to learn φ2 and φ3 using (φ1, G2) and (φ2,
G3), successively. (b) & (c) for linear transformation (LT) models, we first learn φ1,
φ2, and φ3 by using any of static embedding models, and use these embeddings to
learn a transformation matrix W . Please see Section 3.4 for details about how to
learn W for homogeneous and heterogeneous transformation models.

3.4 Method

In the following, we describe our proposed models in detail.

3.4.1 Retrofitted Model

This model is based on the local temporal smoothness assumption, where the

smoothness is applied to different vertices independently. This assumption is needed

to track the embedding vector of the vertices as the network evolves. As shown

in Figure 3.2(a), we do not learn the mapping function, φ, from different temporal

snapshots of the graphs. Instead, we learn φ1 from G1 by using any of the static

network embedding models discussed in Section 3.2. Then, we transform φ1 to φt, by

iteratively retrofitting information from later network snapshots G2, G3, . . . , Gt.

In retrofitting, we revise φt−1(v) by using the neighborhood information available

from the graph snapshot at time t, so that the resulting vector φt(v) is similar to

31

the prior vector φ(t−1)(v) and at the same time close to the vectors of its adjacent

nodes in Gt. The similarity between φt(v) and φt−1(v) enables the vertex v to move

smoothly in the embedded space as time progresses from t − 1 to t. The closeness

of φt(v) with its neighbor at time t satisfies the proximity requirement of any static

network embedding model. Thus, we minimize the objective function:

J(φt) =
∑

v∈V

αv||φt(v)− φ(t−1)(v)||2

︸ ︷︷ ︸
Temporal Smoothing

+
∑

(v,u)∈Et

βu,v||φt(u)− φt(v)||2

︸ ︷︷ ︸
Network Proximity

, (3.1)

where α controls the strength to which the algorithm matches the prior vectors, for

supporting temporal smoothness, and β controls the emphasis on network proximity.

The quadratic cost in Equation 3.1 is convex in φt, and has a closed form solution [118].

The closed form expression requires an inversion operation, which can be expensive

for large networks. The Jacobi method, an online algorithm, is more efficient as it

solves the problem iteratively. The Jacobi method utilizes the following update rule:

φt(v)← αvφ(t−1)(v) +
∑

u βv,uφt(u)

αv +
∑

u βv,u
. (3.2)

Algorithm 1: Jacobi method for retrofitting.

Input :
- Graph Gt = (V,Et)
- Prior vectors φ(t−1)

- Probabilities αv and βv,u
Output: Retrofitted vectors φ
φ← φ(t−1) // initialization

repeat
for all v ∈ Vt do

φt(v)← αvφ(t−1)(v)+
∑

u βv,uφt(u)

αv+
∑

u βv,u

end

until convergence;

In our experiments, we set βv,u = 1
degree(v)

, and use the same α, which we tune using

a held-out validation set, for all nodes v ∈ V . In other words, we vary weights for

32

temporal smoothness while fixing the weights for network proximity. It is clear from

Eq. 1 that φt(v) is a convex combination of v’s embedding at t−1 and the centroid of

u’s neighbors’ embeddings at t. Algorithm 1 formally describes the training procedure

of our retrofitted model. We experiment with several static embedding models to learn

the embeddings of the first snapshot, φ1 (see Section 3.5.4 for details).

Except for the first time-stamp, the retrofitted model does not “learn” from data

about how to transform the embeddings, rather it presumes smoothing criteria. This

presumption is effective when the smoothing criteria are met, but may be ineffective

otherwise. Therefore, retrofitting is not a generic solution. In addition, retrofitting is

limited because it requires a network snapshot Gt to perform inference at time t. To

address these limitations, we propose linear transformation models.

3.4.2 Linear Transformation Models

In a dynamic network, we can expect that the network evolves by following a

domain dependent pattern. So, the vertex representation vectors of two different time-

stamps should have a similar transformation. In our transformation based models, we

exploit this similarity by learning a linear mapping from a source (φt−1) to a target

(φt) embedding space.

Our goal is to learn a transformation matrix, W ∈ Rd×d, that can transform φt−1

to φt, given the network snapshots, G = (G1, G2, . . . , GT), and their corresponding

statically-learned network embedding matrices, Φ = (φ1, φ2, . . . , φT). We explore two

types of models: homogeneous and heterogeneous. In the homogeneous model, we

assume that the transformation matrix is the same for the time-stamps, 1 to T , i.e.,

W is shared across snapshots. On the other hand, for the heterogeneous model,

we assume a different W for each pair of time-stamps, resulting in T − 1 different

transformation matrices. We form the final transformation matrix, W , by combining

the T − 1 matrices.

33

Homogeneous Transformation Model

Our homogeneous transformation model is shown in Figure 3.2(b). First, we

construct both a source matrix X by vertically stacking the embedding matrices

φ1, φ2, . . . , φT−1, and a target matrix Z by vertically stacking the matrices φ2,

φ3, . . . , φT (as shown in Eq. 3.3), given the sequence of (static) embedding matrices

Φ = (φ1, φ2, . . . , φT). Corresponding rows Xu and Zu represent the embedding vectors

for node u at network snapshots Gt and Gt+1, respectively, for t = 1, 2, . . . , T − 1. To

learn the matrix W , we minimize the objective function:

J(W) = ||WX − Z||2, where X =




φ1

φ2

...

φT−1




;Z =




φ2

φ3

...

φT



. (3.3)

We solve Eq. 3.3 with gradient descent. One can use stochastic gradient descent

with minibatch to scale to large X and Z matrices.

Heterogeneous Transformation Model

In our heterogeneous model, we minimize an objective function similar to Eq. 3.3,

but learn a different projection matrix for each pair of network snapshots. Given T

different embedding matrices Φ = (φ1, φ2, . . . , φT), we learn T − 1 different transfor-

mation matrices by minimizing the objective function:

J(Wt) = ||Wtφt − φt+1||2, for t = 1, 2, . . . , (T − 1). (3.4)

Then, we obtain the final transformation matrix W by combining the projection

matrices from times t = 1, 2, . . . , (T − 1). Figure 3.2(c) depicts this process for three

snapshots. To smooth the projection matrices from Eq. 3.4, we experiment with

different smoothing combinations:

34

(a) Uniform smoothing: We weight all projection matrices equally, and linearly com-

bine them:

(avg) W =
1

T − 1

T−1∑

t=1

Wt. (3.5)

(b) Linear smoothing: We increment the weights of the projection matrices linearly

with time:

(linear) W =
T−1∑

t=1

t

T − 1
Wt. (3.6)

(c) Exponential smoothing: We increase weights exponentially, using an exponential

operator (exp) and a weighted-collapsed tensor (wct):

(exp) W =
T−1∑

t=1

exp
t

T−1 Wt (3.7)

(wct) W =
T−1∑

t=1

(1− θ)T−1−tWt. (3.8)

3.5 Experimental Settings

To evaluate the performance of our dynamic network embedding models visually,

we show a network visualization video over time using the Enron email dataset (see

section 3.7). For quantitative evaluation, we solve the temporal link prediction

task using the vertex embedding vectors from our models. Temporal link prediction

is an extension of the well-known missing link prediction problem in a static network.

It is defined as follows. Given a sequence of T snapshots of an evolving network,

G = (G1, G2, . . . , GT), predict the links in GT+1; in other words, construct a function

f(u, v) that predicts whether an edge e(u, v) exists between any two nodes u, v ∈ VT+1.

In our retrofitted model, we use Hadamard product (element-wise multiplication) of

node embeddings of time T (i.e., φT (u) and φT (v)) as the input feature representation

of the node-pair {u, v}. For the transformation models, we use the hadamard product

of node embeddings of time T+1 i.e., φT+1(u) and φT+1(v) learned using W ·φT as the

35

input feature representation. Then, we use a logistic regression model (a Scikit-learn

implementation with default parameter settings) to obtain f .

For each dataset described in Section 3.5.1, we randomly select 50% of the total

positive edges from GT as training and 30% as test, and we leave the remaining as

validation. We randomly select equal amounts of negative edges for the train, test

and validation sets for a balanced classification. We tune the hyper-parameters on

the validation set, and evaluate our models on the test sets. We repeat this process

10 times to get 10 different negative edge sets; and we report our average performance

over these sets.

3.5.1 Datasets

We perform temporal link prediction on nine datasets of three classes of networks:

four academic collaboration networks, three messaging networks, and two social net-

works. The datasets vary in size and density. In Table 3.1, we report the number of

nodes, the number of distinct edges (across all time stamps), and the number of inter-

actions (counting plurality of an edge across different timestamps) for each dataset.

We have published all the processed datasets along with our code release.

(Collaboration Networks) DBLP2, DBLP3, NIPS, HepPH

Both DBLP2 and DBLP3 datasets (obtained from arnetminer.org) have 10 time

stamps with the paper citation information of about 49, 455 author-pairs and around

1.4 million papers. To create the co-authorship network, we add edges between peo-

ple who co-authored a paper. We consider publications between 2000-2009, each year

as a time stamp. Since DBLP2 and DBLP3 datasets are very sparse, we preprocess

the data to retain only the active authors, whose last published papers are on or

after the year 2010. For DBLP2, we retain authors who participated in at least two

publications in seven or more time stamps. For DBLP3, we retain the authors with

at least four publications in seven or more time-stamps. The NIPS [119] dataset con-

36

Table 3.1.: Temporal link prediction datasets. Nodes and edges denote the distinct
number of vertices and edges over all the time-stamps. We also report the number of
distinct interactions after removing self-edges. Number of snapshots denote the total
number of time spans of the data.

Data #Nodes #Edges Interactions #Snapshot

DBLP2 315 943 2552 10
DBLP3 653 3379 9080 10
NIPS 2865 4733 5461 17
HepPH 28093 3148447 3718015 9
CollegeMsg 1899 13838 18127 10
SMS-A 44430 52222 144164 30
Email-EU 986 16064 81147 30
Facebook 63731 817035 817035 5
Facebook2 663 5271 11697 9

37

sists of collaboration information among 2865 NIPS authors. The dataset contains 17

snapshots for volumes 1-17. HepPH is the collaboration graph of authors of scientific

papers from arXiv’s High Energy Physics - Phenomenology. An edge between two au-

thors represents a coauthored publication, and its time-stamp denotes the publication

date. We divide HepPH dataset into nine snapshots.

(Messaging Networks) CollegeMsg, Email-EU, SMS-A [120]

The CollegeMsg dataset is comprised of messages from an online social network

at the University of California, Irvine. An edge represents a private message between

users. Email-EU dataset is a collection of emails between members of a European

research institution, such that an edge represents an email. In the SMS-A dataset,

an edge is an SMS text between persons. We divide CollegeMsg into 10 shapshots,

and the other two datasets into 30.

(Social Networks) Facebook, Facebook2

In the Facebook dataset, a node represents a user in the Facebook friendship

network, and an edge represents a friendship relation between two users. Time-

stamps denote the time the friendship was established. We divide this dataset into

5 snapshots. Facebook2 is a network of Facebook wall posts [121]. Each node is a

Facebook user account, and each edge represents a user’s post on another user’s wall.

Facebook2 has 9 time-stamps because we preprocess this dataset in the same way

as Xu [42], where each time-stamp represents 90 days of wall posts.

3.5.2 Evaluation Metrics

To evaluate link prediction performance, we use three metrics: area under the

Receiver Operating Characteristic (ROC) curve (AUC), area under the Precision-

Recall curve (AUPRC) [122], and Normalized Discounted Cumulative Gain (NDCG),

38

an information retrieval metric. AUC is equal to the probability that a classifier will,

for the link prediction task, rank a randomly chosen positive instance (a node-pair

which has an edge at time T) higher than a randomly chosen negative instance (a

node-pairs with no edge at time T). AUC values range from 0.0 to 1.0. The second

metric AUPRC considers the ranked sequence of node pairs based on their likelihood

to form an edge at time T . We create a precision-recall curve by computing precision

and recall at every position in the ranked sequence of node pairs. AUPRC is the

average value of precision over the interval of lowest recall (0.0) to highest recall (1.0)

AUPRC values range from 0.0 to 1.0. NDCG measures the performance of a link

prediction system based on the graded relevance of recommended links. NDCGP

varies from 0.0 to 1.0, where 1.0 represents the ideal ranking of edges. P , a number

chosen by the user, is the number of links ranked by the method. We choose P = 50

in all our experiments.

3.5.3 Competing Methods

Our objective is to compare the relative quality of latent vertex embeddings in a

dynamic network. So, we only compare our proposed methods with existing vertex

embedding models which can provide explicit latent vectors for all the vertices at

every time-stamp of a dynamic network. The majority of dynamic link prediction

methods [37, 39–42] do not satisfy this requirement, except Zhu et al. [35]. They

propose a method for performing dynamic link prediction called BCGD (Block Co-

ordinate Gradient Descent) which performs non-negative matrix factorization with

temporal smoothness. From the factorization of the adjacency matrix at each time

stamp, we can obtain latent vectors of the vertices. BCGD minimizes the objective

function:

39

JBCGD =
T−1∑

t=1

||Gt − φt(u)φt(v)||2

︸ ︷︷ ︸
Network Proximity

+ λ

T−1∑

t=1

∑

u

1− φt(u)φt−1(u)T

︸ ︷︷ ︸
Temporal Smoothing

s.t. φt ≥ 0. (3.9)

The temporal smoothing part of Equation 3.9 penalizes sharp change of latent

position of a node u, whereas, the first part captures the latent proximity. We use

the author-provided implementation of the incremental-BCGD algorithm and tune

its parameters identically along with our proposed methods.

3.5.4 Different Configurations of the Proposed Models

We vary our three proposed models: Homogeneous (homogeneous transforma-

tion), Heterogeneous (heterogeneous transformation), and Retrofitted models, by

choosing seven different base representation-learning methods: three random-walk

based (Deepwalk, LINE, Node2Vec), two matrix factorization based (PCA, tsvd),

and two manifold based (LLE, ISOMAP). For the transformation models we utilize

the base method to learn the vertex representation vectors on the snapshots 1 to (T-

1). Our retrofitted models use the base representation methods to learn the vertex

representation vectors on the first snapshot of the graph. To vary our heterogeneous

transformation models further, we experiment with different smoothing functions:

Uniform, Linear, and Exponential (exp and wct). For fair comparison, we set the

representation dimensions equal to 64 for all models. However, we have reported

results over other representation dimensions (see Section 3.6.4).

DeepWalk, LINE, and Node2Vec methods are trained with stochastic gradient

descent. We used negative sampling, with 5 noise samples, to significantly decrease

training time. We also used subsampling of frequent words. We tune DeepWalk’s

40

window size parameter from the set {8, 12, 15}. We tune LINE’s iteration param-

eter from the set {5, 10, 20} (millions of iterations). We tune Node2Vec’s p and q

parameters, which control the amount of exploration vs exploitation in the random

walk, from the set {0.1, 0.3, 0.5}. For PCA, tsvd, LLE, and IsoMap, we use the

implementation provided by scikit-learn with the default settings.

In our Retrofitting models, we iterate 20 times. We tune αv, which controls the

weight of the prior vector, from the set of values: {0.1, 1, 10}. For our Homogeneous

and Heterogeneous models, we use Batch Gradient Descent with 10,000 iterations.

We also perform gradient clipping, which clips values of multiple tensors by the ratio

of the sum of their norms, with a clipping ratio of 5.0.

3.6 Results and Discussion

In Table 3.2, 3.3 and 3.4, we show the comparison between the competing method

(BCGD) and our proposed models: retrofitting (RET), homogeneous transformation

(HomoLT), and heterogeneous transformation (HeterLT). Our models’ performances

vary for each base embedding method they implement. Therefore, we only report the

results from the best-performing base embedding model (name in parentheses). In

cases where the best-performing base models differ for different metrics, we present

the results of the base model that is best overall. For all datasets and all metrics the

best performing model’s performance is shown in boldface font.

Table 3.2, 3.3 and 3.4. show that one of our three proposed methods outperforms

BCGD in all three metrics over all datasets. This suggests that the latent embed-

ding vectors from our proposed models are better for link prediction than BCGD’s

embedding vectors. We think BCGD may under-perform because it can only ex-

ploit edge-based proximity when learning latent embedding vectors by factoring the

adjacency matrix. Whereas, our models capture more complex network proximity

by implementing, as base embedding models, state-of-the-art static node embedding

methods. In addition, our local and global temporal smoothness methods provide a

41

Table 3.2.: Performance of seven of our homogeneous models, 28 of our heterogeneous
models, and 7 of our retrofitted models on citation datasets. The highlighted results
are statistically significant over the baseline with p < 0.001. For fair comparison, we
set the latent dimension size to 64.

(a) DBLP2

Method AUC ± sd AUPRC ± sd NDCGP ± sd
BCGD 0.7932 ± 0.03 0.8023 ± 0.03 0.8686 ± 0.02
RET (tsvd) 0.8360 ± 0.02 0.8571 ± 0.01
HomoLT (DeepWalk) 0.7422 ± 0.03 0.7691 ± 0.04 0.8496 ± 0.05
HeterLT (DeepWalk, avg) 0.7413 ± 0.02 0.7798 ± 0.02 0.8662 ± 0.02

(b) DBLP3

Method AUC ± sd AUPRC ± sd NDCGP ± sd
BCGD 0.8564 ± 0.01 0.8599 ± 0.02 0.9524 ± 0.02
RET (LLE) 0.8898 ± 0.01 0.8926 ± 0.01 0.9776 ± 0.01
HomoLT (LINE) 0.7557 ± 0.02 0.7818 ± 0.02 0.9671 ± 0.01
HeterLT (LINE, linear) 0.8301 ± 0.01 0.8680 ± 0.007 0.9934 ± 0.004

(c) HepPH

Method AUC ± sd AUPRC ± sd NDCGP ± sd
BCGD 0.5732 ± 0.003 0.6170 ± 0.003 0.5542 ± 0.02
RET (LINE) 0.5677 ± 0.004 0.5782 ± 0.003 0.8659 ± 0.04
HomoLT (DeepWalk) 0.5889 ± 0.003 0.6269 ± 0.005 0.8376 ± 0.04
HeterLT (DeepWalk, avg) 0.6058 ± 0.02 0.6346 ± 0.02 0.9300± 0.03

(d) NIPS

Method AUC ± sd AUPRC ± sd NDCGP ± sd
BCGD 0.5157 ± 0.002 0.5457 ± 0.02 0.6118 ± 0.02
RET (LLE) 0.5427 ± 0.04 0.5542 ± 0.02 0.5988 ± 0.08
HomoLT (Node2Vec) 0.5633 ± 0.01 0.6123 ± 0.01 0.7947 ± 0.02
HeterLT (Node2Vec, wct) 0.5581 ± 0.01 0.6211 ± 0.01 0.8072 ± 0.03

42

better dynamic network model than BCGD. Below, we present the results in detail

by grouping them over the three different kinds of networks.

3.6.1 Link Prediction in Citation Network

Results of three collaboration networks are given in Table 3.2. Among the citation

networks, DBLP2 and DBLP3 results are similar (see Table 3.2a and 3.2b); for both

the datasets, the retrofitted model (RET) performs the best in all three metrics.

For DBLP2, RET improves the AUC, PRAUC, and NDCG values of the competing

BCGD method by 0.04, 0.06, and 0.06 units, which translates to 5%, 7%, and 7%

improvement, respectively. For DBLP3, the improvement of RET on these three

metrics are 0.04, 0.03, and 0.02. Interestingly, the base learning models of the best

performing RET differs over these datasets, for DBLP2, it is tsvd and for DBLP3, it

is LLE. The performance of HomoLT and HeterLT in comparison to BCGD are mixed

over different metrics. For instance, they are better in NDCG metric, but marginally

worse in the AUC, and PRAUC metrics.

For the NIPS dataset (see Table 3.2d), the transformation models (HomoLT and

HeterLT) are the best performing models. Homogeneous and Heterogeneous models

with Node2Vec as the base embedding model have the best performance; HomoLT is

the winner in AUC and PRAUC, and HeterLT is the winner in NDCG. In fact, the

NDCG value of HeterLT is .8072, which is better than the same for BCGD by 0.19

units, more than 30% improvement! For AUC metric, the improvement is around

0.04 unit, and for PRAUC metric the improvement is around 0.06 unit for both

the homogeneous and heterogeneous models. In NIPS dataset, RET model has a

mixed performance compared to BCGD, the former wins in AUC and PRAUC, but

loses in NDCG, both marginally. An explanation of sub-optimal performance by the

retrofitted model in this dataset may be because of its large number of time snapshots

(17); because of this, the vectors of the last time snapshot, which are obtained by

16 iterations of retrofitting of the base embedding vectors of first snapshot, may

43

have wandered away from their optimal position. Another explanation is that in

this dataset the number of unique edges (4733) is quite close to the number of total

interaction (5461); i.e., edges are not repeated so each new snapshot is very different

than the previous snapshots and retrofitting may not the ideal approach for capturing

the temporal smoothness of this dataset. HepPH dataset also has the same behavior

as NIPS (results are available in the same table). In this dataset the best performing

model is HeterLT with Deepwalk as the base embedding. In fact, for the HepPH

dataset (see Table 3.2c), HeterLT has more than 30% improvement over the BCGD

model in NDCG metric, and around 5% improvement in two other metrics. For this

dataset also, RET has mixed performance with respect to BCGD. The suboptimal

performance of retrofitting models may be due to the very small ratio of the number

of distinct edges and the total number of interactions.

3.6.2 Link Prediction in Messaging Network

The results of the messaging datasets are shown in Table 3.3a, 3.3b and 3.3c.

For Email-EU, all of our proposed methods perform better than the BCGD model

by a substantial margin; HeterLT (LINE) performs the best in all three metrics

combined. For example, HeterLT (LINE) model improves the NDCG value of BCGD

by 0.38 units, from 0.6154 to 0.9959! Similar large improvements can also be seen

in the other two metrics (please see Table 3.3a for the detailed results). For this

dataset, retrofitting models also perform substantially better than BCGD. A possible

explanation is the high ratio of distinct edge and the number of interactions, i.e.,

the earlier edges are repeated in later iterations, so the retrofitting based temporal

smoothness of the node vectors are sufficient for capturing the network dynamics

in this dataset. CollegeMsg dataset (see Table 3.3b) also has similar behavior with

HeterLT (LINE) as the winner among all, again with substantial performance gain

(around 20% to 30% improvement of performance value across all three metrics).

For this dataset, retrofitting results are poor which could be due to small ratio of

44

Table 3.3.: Performance of seven of our homogeneous models, 28 of our heterogeneous
models, and 7 of our retrofitted models on messaging datasets. The highlighted results
are statistically significant over the baseline with p < 0.001. For fair comparison, we
set the latent dimension size to 64.

(a) Email-EU

Method AUC ± sd AUPRC ± sd NDCGP ± sd
BCGD 0.6215 ± 0.01 0.5946 ± 0.02 0.6154 ± 0.13
RET (LINE) 0.9049 ± 0.005 0.9009 ± 0.009 0.9725 ± 0.02
HomoLT (LINE) 0.8789 ± 0.009 0.8694 ± 0.01 0.9705 ± 0.01
HeterLT (LINE, wct) 0.9211 ± 0.008 0.9283 ± 0.006 0.9923 ± 0.008

(b) CollegeMsg

Method AUC ± sd AUPRC ± sd NDCGP ± sd
BCGD 0.6663 ± 0.01 0.6691 ± 0.02 0.7266 ± 0.06
RET (PCA) 0.6291 ± 0.01 0.6435 ± 0.02 0.8381 ± 0.06
HomoLT (LINE) 0.7460 ± 0.01 0.7788 ± 0.01 0.9571 ± 0.01
HeterLT (LINE, wct) 0.7517 ± 0.01 0.7913 ± 0.008 0.9685 ± 0.01

(c) SMS-A

Method AUC ± sd AUPRC ± sd NDCGP ± sd
BCGD 0.7350 ± 0.003 0.7770 ± 0.003 0.9312 ± 0.01
RET (Node2Vec) 0.7737 ± 0.007 0.8089 ± 0.006 1.00 ± 0.00
HomoLT (DeepWalk) 0.6306 ± 0.005 0.6861 ± 0.006 0.9850 ± 0.01
HeterLT (DeepWalk, avg) 0.6413 ± 0.03 0.6969 ± 0.02 0.99 ± 0.03

45

Table 3.4.: Performance of seven of our homogeneous models, 28 of our heterogeneous
models, and 7 of our retrofitted models, on social network datasets. The highlighted
results are statistically significant over the baseline with p < 0.001. For fair compar-
ison, we set the latent dimension size to 64.

(a) Facebook

Method AUC ± sd AUPRC ± sd NDCGP ± sd
BCGD 0.6431 ± 0.002 0.6576 ± 0.003 0.3694 ± 0.02
RET (Node2Vec) 0.859 ± 0.004 0.859 ± 0.005 0.9817 ± 0.006
HomoLT (DeepWalk) 0.6061 ± 0.004 0.6141 ± 0.004 0.7113 ± 0.02
HeterLT (LINE, avg) 0.6258 ± 0.02 0.6983 ± 0.02 0.9823 ± 0.03

(b) Facebook2

Method AUC ± sd AUPRC ± sd NDCGP ± sd
BCGD 0.7537 ± 0.02 0.7190 ± 0.02 0.7957 ± 0.05
RET(PCA) 0.8202 ± 0.01 0.8144 ± 0.01 0.9519 ± 0.02
HomoLT (DeepWalk) 0.7252 ± 0.02 0.7144 ± 0.02 0.8422 ± 0.03
HeterLT (Node2Vec, linear) 0.7792 ± 0.01 0.7788 ± 0.01 0.9200 ± 0.01

distinct edge vs interaction count, and large number of temporal snapshots. For

SMS-A dataset (results is shown on Table 3.3c), retrofitted method with Node2Vec

as the initial representation generator performs the best. The model achieves 0.04

unit improvement in AUC, 0.03 unit in AUPRC and 0.07 unit in NDCG over BCGD.

For this dataset, the ratio of distinct edge vs interaction count is higher than the

CollegeMsg dataset, which could be a reason for the RET model to perform better.

3.6.3 Link Prediction in Social Network

Results on social networks are shown in Table 3.4. For Facebook and Facebook2,

the retrofitted method with Node2Vec and PCA performs better than BCGD. RET

(Node2Vec) performs the best in Facebook dataset. The model gains 0.21 unit im-

provement over BCGD in AUC metric, 0.20 unit in AUPRC, and around 0.60 unit

in NDCG metric. For Facebook2 dataset, RET (PCA) performs the best. RET

(PCA) improves 0.07 unit over BCGD in AUC metric, 0.10 unit in AUPRC met-

46

ric, and 0.16 unit in the NDCG metric. Heterogeneous method with Node2Vec as

the representation generator along with linear or exponential smoothing operator also

performs better than BCGD achieving around 0.06 unit improvement in AUPRC, and

0.13 unit improvement in NDCG metric. The Facebook datasets have small number

of timestamps, which is a likely reason for RET model to perform better than the

transformation based models on these datasets.

3.6.4 Effect of Latent Dimensions

In Figure 3.3, we compare the performance of the baseline model (BCGD) with

our best models for three different dataset (one representative dataset from each

network group) and over three different latent dimension: 32, 64, and 128 using

the NDCG metric. In all three datasets, the performance of multiple of our models

is consistently better than BCGD over all three latent dimensions. BCGD shows

marginal improvement as the latent dimension increases. Most of our models stay

flat or increase slowly as the dimension size increases because our models already

achieve very high NDCG even in the low dimension (at dimension size, 32). The

performance of RET (tsvd) and HeterLT (Node2Vec, avg) decease in DBLP2 and

Facebook2, respectively as the dimension size increases from 64 to 128. However, the

decrement is only around 2 points in both cases. To summarize, our models show

robust and consistently better performance than BCGD for a widely varying number

of latent dimensions.

3.7 Dynamic Network Visualization

To demonstrate the smooth transition of the nodes between snapshots using the

retrofitted model, we created an animation using the Enron dataset. The full video

can be seen at: https://www.youtube.com/watch?v=FtcaF0cv6iU. The dataset was

divided into 18 equal-length time-stamps and the retrofitted model was applied. We

1https://www.cs.cmu.edu/ enron/

47

0.75

0.85

0.95

 32 64 128
N

D
C

G

Latent Dimension

BCGD
RET (tsvd)

HomoLT (DeepWalk)
HeterLT (DeepWalk, avg)

(a) DBLP2

0.65

0.75

0.85

0.95

 32 64 128

N
D

C
G

Latent Dimension

BCGD
RET (PCA)

HomoLT (LINE)
HeterLT (LINE, wct)

(b) CollegeMsg

0.65

0.75

0.85

0.95

 32 64 128

N
D

C
G

Latent Dimension

BCGD
RET (PCA)

HomoLT (DeepWalk)
HeterLT (Node2Vec, avg)

(c) Facebook2

Fig. 3.3.: Effect on latent dimension. We evaluate the performance of our best models
along with the baseline model to study the effect of different latent dimensions (in
our case, 32, 64, and 128).

48

(a) Snapshot 1 (b) Snapshot 11 (c) Snapshot 18

Fig. 3.4.: 2-D dynamic network vizualization of the Enron network. Nodes represent
people in the Enron email network and edges represent an email between two people.
We highlight the red nodes to show how our retrofitted model smoothly brings two
nodes closer together before they form their first edge.

49

then used TSNE to project the nodes into a 2-dimensional space so that they can be

visualized as frames of an animation. Figure 3.4 shows the 2-dimensional network at

time-stamps t = 1, 11, 18. The animation demonstrates how the retrofitting model

brings two faraway nodes (red colored) in close proximity over time before an edge is

created between them in the final snapshot.

3.8 Chapter Summary

In this work we propose models for learning latent embedding vectors of vertices

for all different temporal snapshots of a dynamic network. The proposed models

exploit temporal smoothing either at the node-level through retrofitting, or at the

network level through smooth linear transformation. Extensive experiments over 9

dynamic networks from various domains show that our proposed models generate

superior vertex embedding than existing state-of-the-art methods for solving the task

of temporal link prediction. Visualization of embedding vectors over time shows the

utility of the retrofitted model for tracking the vertices over time to understand the

evolution patterns of a dynamic network.

50

4. DyLink2Vec: EFFECTIVE FEATURE

REPRESENTATION FOR LINK PREDICTION IN

DYNAMIC NETWORKS

4.1 Introduction

Understanding the dynamics of an evolving network is an important research

problem with numerous applications in various fields, including social network analy-

sis [123], information retrieval [124], recommendation systems [125], and bioinformat-

ics [126]. A key task towards this understanding is to predict the likelihood of a future

association between a pair of nodes, having the knowledge about the current state

of the network. This task is commonly known as the link prediction problem. Since,

its formal introduction to the data mining community by Liben-Nowell et al. [127]

about a decade ago, this problem has been studied extensively by many researchers

from a diverse set of disciplines [128–131]. Good surveys [132,133] on link prediction

methods are available for interested readers.

The majority of the existing works on link prediction consider a static snapshot of

the given network, which is the state of the networks at a given time [127,128,130,134].

Nevertheless, for many networks, additional temporal information such as the time of

link creation and deletion is available over a time interval; for example, in an on-line

social or a professional network, we usually know the time when two persons have

become friends; for collaboration events, such as, a group performance or a collabora-

tive academic work, we can extract the time of the event from an event calendar. The

networks built from such data can be represented by a dynamic network, which is a

collection of temporal snapshots of the network. The link prediction1 task on such

1Strictly speaking, this task should be called as link forecasting since the learning model is not
trained on the links at time t; however, we refer it as link prediction due to the popular usage of
this term in the data mining literature.

51

Fig. 4.1.: A toy dynamic network. G1, G2 and G3 are three snapshots of the Network.
G123 is constructed by superimposing G1, G2 and G3.

a network is defined as follows: for a given pair of nodes, predict the link probability

between the pair at time t+ 1 by training the model on the link information at times

1, 2, · · · , t.
Link prediction methods for static networks fail to take advantage of the tempo-

ral link formation patterns that are manifested by the sequence of multiple temporal

snapshots. For illustration, let us consider a toy dynamic network having three tem-

poral snapshots G1, G2 and G3 (see Figure 4.1). A static link prediction which only

considers the latest time stamp G3 forfeits the temporal signals that are available

from prior snapshots G1 and G2. Thus, it is oblivious of the fact that the edge (4, 5)

once existed. On the other hand, if the static link prediction method runs on a

superposition [130] of all the available snapshots (G123), it fails to preserve the tem-

poral variation in the dataset. For example, the superimposed static snapshot fails to

distinguish the link strength between the edges (3, 5) and (4, 5)—even though both

edges appear twice in G1, G2 and G3, the recency of (3, 5) may make it more likely

to re-appear than (4, 5).

A key challenge of link prediction in a dynamic setting is to find a suitable fea-

ture representation of the node-pair instances which are used for training the predic-

tion model. For the static setting, various topological metrics (common neighbors,

Adamic-Adar, Jaccard’s coefficient) are used as features, but they cannot be extended

easily for the dynamic setting having multiple snapshots of the network. In fact, when

multiple (say t) temporal snapshots of a network are provided, each of these scalar

52

features becomes a t-size sequence. Flattening the sequence into a t-size vector dis-

torts the inherent temporal order of the features. Güneş et al. [37] overcome this

issue by modeling a collection of time series, each for one of the topological features.

But such a model fails to capture signals from the neighborhood topology of the

edges. There exist few other works on dynamic link prediction, which use probabilis-

tic (non-parametric) and matrix factorization based models. These works consider

a feature representation of the nodes and assume that having a link from one node

to another is determined by the combined effect of all pairwise node feature interac-

tions [41, 135, 136]. While this is a reasonable assumption to make, the accuracy of

such models are highly dependent on the quality and availability of the node features,

as well as the validity of the above assumption.

There exist a growing list of recent works which use unsupervised methodologies

for finding metric embedding of nodes in a graph [12, 14, 43]. The main idea of

such methods is to discover latent dependency among the graph vertices and find

metric embedding of vertices that captures those relationships. The majority of these

works use training methods inspired from neural-network language modeling, such as

skip-gram with negative sampling. However, no such work exists for finding feature

representation of node-pair instances for the purpose of link prediction in a dynamic

network.

In this work, we propose DyLink2Vec (DyLink2Vec stands for Link to Vector

in a Dynamic network. The proposed methodologies maps node-pairs (links) in a

dynamic network to a vector representation), a novel learning method for obtaining

a feature representation of node-pair instances, which is specifically suitable for the

task of link prediction in a dynamic network. DyLink2Vec considers the feature

learning task as an optimal coding problem, such that the optimal code of a node-

pair is the desired feature representation. The learning process can be considered as

a two-step compression-reconstruction step, where the first step compresses the input

representation of a node-pair into a code by a non-linear transformation, and the

second step reconstructs the input representation from the code by a reverse process

53

and the optimal code is the one which yields the least amount of reconstruction error.

The input representation of a node-pair is constructed using the connection history

and the neighborhood information of the corresponding nodes (details in Section 4.4).

After obtaining an appropriate feature representation of the node-pairs, a standard

supervised learning technique can be used (we use AdaBoost) for predicting link states

at future times in the given dynamic network.

Below we summarize our contributions in this work:

• We propose DyLink2Vec for finding metric embedding of node-pairs for the

task of link prediction over a dynamic network.

• We validate the effectiveness of DyLink2Vec node-pair embedding by utilizing

it for link prediction on four real-life dynamic networks.

• We compare the performance of DyLink2Vec embedding based dynamic link

prediction model with multiple state-of-the-art methods. Our comparison re-

sults show that the proposed method is significantly superior than all the com-

peting methods.

The paper is organized as follows. In Section 4.2 we discuss related work. Sec-

tion 4.3 defines the problem. In Section 4.4 we discuss the proposed learning method

DyLink2Vec. In Section 4.5 we detail the link prediction method using DyLink2Vec.

Section 4.6 presents the experimental results to validate the effectiveness of our

method. Finally, Section 4.7 concludes the paper.

4.2 Related Work

In recent years, the link prediction problem has been studied using a multitude

of methodologies. The earliest link prediction methodologies use topological fea-

tures in a supervised classification setting [127, 132]. More recent methodologies use

matrix factorization based approach [134]. Such methodologies learn latent node

representation and predict link strength by the dot product of the latent vectors of

54

corresponding nodes. The objective function of these methods may contain appro-

priate penalty terms for regularization, and also terms for explicit node and edge

features (if available). Recently, Bayesian nonparametric latent feature models have

also been proposed for link prediction [128]. Unfortunately, all the above methods

fail to capture the temporal evolution of the network on a dynamic network setting.

A few methods have been developed for link prediction on dynamic networks. The

method proposed by Güneş et al. [37] capture temporal patterns in a dynamic network

using a collection of time-series on topological features. But this approach fails to

capture signals from neighborhood topology, as each time-series model is trained

on a separate t-size feature sequence of a node-pair. Matrix and tensor factorization

based solutions are presented in [41]. Given a three dimensional tensor representation

of a dynamic network, the proposed methods use CANDECOMP/PARAFAC (CP)

decomposition to capture structural and temporal patterns in the dynamic network.

We observe that these methods work well for smaller network, but their prediction

performance becomes worse as the network grow larger.

The nonparametric link prediction method presented in [135] uses features of the

node-pairs, as well as the local neighborhood of node-pairs. This method works by

choosing a probabilistic model based on features (common neighbor and last time of

linkage) of node-pairs. Stochastic block model based approaches [42,136] divide nodes

in a network into several groups and generates edges with probabilities dependent on

the group membership of participant nodes. While probabilistic model based link

prediction performs well on small networks, they become computationally prohibitive

for large networks. A deep learning based solution proposed by Li et al. [40] uses a

collection of Restricted Boltzmann Machines with neighbor influence for link predic-

tion in dynamic networks. Tylenda et al. [38] proposed time-aware link prediction

method for evolving social networks with hyper-edges.

55

4.3 Problem Definition

Let G(V,E) be an undirected network, where V is the set of nodes and E is

the set of edges e(u, v) such that u, v ∈ V . A dynamic network is represented as a

sequence of snapshots G = {G1, G2, . . . , Gt}, where t is the number of time stamps

for which we have network snapshots and Gi(Vi, Ei) is a network snapshot at time

stamp i : 1 ≤ i ≤ t. In this work, we assume that the vertex set remains the same

across different snapshots, i.e., V1 = V2 = · · · = Vt = V . However, the edges appear

and disappear over different time stamps. We also assume that, in addition to the

link information, no other attribute data for the nodes or edges are available.

Adjacency matrix representation of a network snapshot Gi is represented by a

symmetric binary matrix Ai(n×n), where n is the number of vertices in Gi. For two

vertices u and v, Ai(u, v) = Ai(v, u) = 1, if an edge exists between them in Gi, and

0 otherwise. The adjacency vector of a node u at snapshot Gi is a 1 × n row vector

defined as aui = Ai(u, 1 : n).

Problem Statement: Given a sequence of snapshots G = {G1, G2, . . . , Gt} of a

network, the task of metric embedding of the node-pairs (u, v) is to obtain a vector

αuv ∈ Rl (l is the dimensionality of embedding) such that node-pairs having similar

local structures across different time snapshots are packed together in the embedding.

Once such metric embedding of a node-pair (u, v) is obtained, we use it as the feature

representation of this node-pair while predicting the link status between u and v in

Gt+1. Note that, we assume that no link information regarding the snapshot Gt+1 is

available, except the fact that Gt+1 contains the identical set of vertices.

4.4 Metric Embedding of Node-Pairs

A key challenge for dynamic link prediction is choosing an effective metric embed-

ding for a given node-pair. Earlier works construct feature vector by adapting various

topological similarity metrics for static link prediction or by considering the feature

56

values of different snapshots as a time-series. DyLink2Vec, on the other hand,

learns the feature embedding of the node-pairs by using an optimization framework,

considering both network topology and link history. Assume a node-pair (u, v) for

which we are computing the metric embedding αuv ∈ Rd. Since we want αuv to fa-

cilitate link prediction on dynamic graphs, the vector αuv must capture two aspects

that influence the possibility of link between u and v in Gt+1. The first aspect is the

similarity between u and v in terms of graph topology across different timestamps,

and the second aspect is the history of collaboration between u and v—both in the

graph snapshots G1, · · · , Gt.

Consideration of first aspect requires to impart topological similarity signals be-

tween u and v into the desired embedded vector αuv by considering u and v’s re-

lation across all the timestamps. To fulfill this objective, we start with a feature

vector, auv[1,t] of size nt for a node pair (u, v) by taking the element-wise summa-

tion of adjacency vectors of u and v over all the timestamps. Thus, for a snapshot

Gi, the adjacency summation vector is auvi = aui + avi , and the entire feature vec-

tor is the concatenation of auvi ’s from a continuous set of network snapshots, i.e.,

auv[1,t] = auv1 || auv2 || . . . || auvt . Here, the symbol || represents concatenation of two

horizontal vectors (e.g., 0 1 0 || 0.5 0 1 = 0 1 0 0.5 0 1).

Example: Consider the toy dynamic network shown in Figure 4.2. The dynamic

network G = {G1, G2, G3, G4} has four snapshots. The task is to predict the edges

in snap G5 (not shown in this figure). The set of nodes does not change over time

(V1 = V2 = · · · = V5). In Figure 4.3(a) we show the adjacency matrix of the dynamic

network G at time-stamp 1. In Figure 4.3(b), we show the computation of adjacency

vectors of two node-pairs, namely a23
1 and a45

1 . .

The second aspect, history of collaboration between a node-pair is captured by

taking cumulative sum of link history, weighted by a time decay function.

wclhuv[1,t] = CumSum(wlhuv[1,t])

57

Fig. 4.2.: A toy dynamic network G with four snapshots G1, G2 , G3 and G4. Note
that the number of nodes remains constant (6) even though the links (edges) may
change over time.

0 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 0 0

0 1 0 1 0 0

1 0 1 0 0 0

0 1 0 0 0 0

1 2 3 4 5 6

a61

a51

a41

a31

a21

a11

0 0 1 0 0 1

0 0 0 0 0 1

0 0 1 0 0 0

1 1 1 1 0 0

0 1 0 1 0 0

1 0 1 0 0 0

a451

+a51

a41

a231

+a31

a21

(a) (b)

Fig. 4.3.: (a) Adjacency matrix A1. Each row represents adjacency vector of the
corresponding node (b) Computation of node-pair adjacency vector a23

1 and a45
1 .

58

Here wlhuv[1,t] = w1 ·A1(u, v) || w2 ·A2(u, v) || . . . || wt ·At(u, v) and wi = i/t is the time

decay function. Time decay function wi prioritize more recent linkage information,

while cumulative sum rewards reappearance of links (between u and v) over different

time snapshots.

Finally, the feature vector for a node-pair (u, v), euv, is the concatenation of auv[1,t]

and (wclhuv[1,t]); i.e., euv = auv[1,t] ||wclhuv[1,t]. DyLink2Vec’s optimization framework

converts euv to the optimal feature representation αuv by using a non-linear trans-

formation function h discussed in Section 4.4. Note that, through h, the proposed

method models complex functions of the entries in euv, which makes the embedded

feature vector αuv very effective for link prediction in dynamic network.

Our proposed method is different—both, in methodologies and also in objective—

from the existing works [12, 14] which construct metric embedding of the vertices

of a network. Existing works find embedding of a vertex from a static network,

whereas we find embedding of a node-pair from a dynamic network. The learning

method of the existing works follow language model, whereas our method follows

a compression-reconstruction framework which preserves higher-order neighborhood

and link history patterns of the node-pair in its embedded representation. Below we

discuss the compression-reconstruction framework which yields the optimal metric

embedding through a principled approach.

Optimization Framework for DyLink2Vec: In this section, we discuss the op-

timization framework which obtains the optimal metric embedding of a node pair by

learning an optimal coding function h. For this learning task, let’s assume Ê is the

training dataset matrix containing a collection of node-pair feature vectors. Each row

of this matrix represents a node-pair (say, u and v) and it contains the feature vector

euv which stores information about neighborhood and link history, as we discussed

earlier. The actual link status of the node-pairs in Ê in Gt+1 is not used for the learn-

ing of h, so the metric embedding process is unsupervised. In subsequent discussion,

we write e to represent an arbitrary node pair vector in Ê.

59

Now, the coding function h compresses e to a code vector α of dimension l, such

that l < k. Here l is a user-defined parameter which represents the code length and

k is the size of feature vector. Many different coding functions exist in the dimen-

sionality reduction literature, but for DyLink2Vec we choose the coding function

which incurs the minimum reconstruction error in the sense that from the code α we

can reconstruct e with the minimum error over all e ∈ Ê. We frame the learning

of h as an optimization problem, which we discuss below through two operations:

Compression and Reconstruction.

Compression: It obtains α from e. This transformation can be expressed as a

nonlinear function of linear weighted sum of the entries in vector e.

α = f(W(c)e + b(c)) (4.1)

W(c) is a (k× l) dimensional matrix. It represents the weight matrix for compression

and b(c) represents biases. f(·) is the Sigmoid function, f(x) = 1
1+e−x .

Reconstruction: It performs the reverse operation of compression, i.e., it obtains e

from α (which was constructed during the compression operation).

β = f(W(r)α + b(r)) (4.2)

W(r) is a matrix of dimensions (l× k) representing the weight matrix for reconstruc-

tion, and b(r) represents biases.

The optimal coding function h constituted by the compression and reconstruction

operations is defined by the parameters (W,b) = (W(c),b(c),W(r),b(r)). The objec-

tive is to minimize the reconstruction error. Reconstruction error for a neighborhood

based feature vector (e) is defined as, J(W,b, e) = 1
2
‖ β − e ‖2. Over all possi-

60

ble feature vectors, the average reconstruction error augmented with a regularization

term yields the final objective function J(W,b):

J(W,b) =
1

|Ê|
∑

e∈Ê

(
1

2
‖ βuv − euv ‖2)

+
λ

2
(‖W(c) ‖2

F + ‖W(r) ‖2
F)

(4.3)

Here, λ is a user assigned regularization parameter, responsible for preventing

over-fitting. ‖ · ‖F represents the Frobenius norm of a matrix. In this work we use

λ = 0.1.

To this end, we discuss the motivation of our proposed optimization framework

for learning the coding function h. Note that, the dimensionality of α is much smaller

than e, so the optimal compression of the vector e must extract patterns composing of

the entries of e and use them as high-order latent feature in α. In fact, the entries in e

contain the neighborhood (sum of adjacency vector of the node pair) and link history

of a node-pair for all the timestamps; for a real-life network, this vector is sparse and

substantial compression is possible incurring small loss. Through this compression

the coding function h learns the patterns that are similar across different node-pairs

(used in Ê). Thus the function h learns a metric embedding of the node-pairs that

packs node-pairs having similar local structures in close proximity in the embedded

feature space. Although function h acts as a black-box, it captures patterns involving

neighborhood around a node pair across various time stamps, which obviates the

manual construction of a node-pair feature—a cumbersome task for the case of a

dynamic network.

Optimization

The training of optimal coding defined by parameters (W,b) begins with random

initialization of the parameters. Since the cost function J(W,b) defined in Equation

(4.3) is non-convex in nature, we obtain a local optimal solution using the gradient

61

descent approach. Such approach usually provides practically useful results (as shown

in the Section 4.6). The parameter updates of the gradient descent are similar to the

parameter updates for optimizing Auto-encoder in machine learning. One iteration

of gradient descent updates the parameters using following equations:

W
(c)
ij = W

(c)
ij − σ

∂

∂W
(c)
ij

J(W, b)

W
(r)
ij = W

(r)
ij − σ

∂

∂W
(r)
ij

J(W, b)

b
(c)
i = b

(c)
i − σ

∂

∂b
(c)
i

J(W, b)

b
(r)
i = b

(r)
i − σ

∂

∂b
(r)
i

J(W, b)

(4.4)

Here, l appropriately identifies the weight and bias parameters l ∈ {1, 2}. σ is the

learning rate. W
(1)
ij is the weight of connection between node j of the input layer to

node i of the hidden layer.

Now, from Equation (4.3), the partial derivative terms in equations (4.4) can be

written as,

∂

∂W
(c)
ij

J(W, b) =
1

|Ê|
∑

e∈Ê

∂

∂W
(c)
ij

J(W,b, e) + λW
(c)
ij

∂

∂W
(r)
ij

J(W, b) =
1

|Ê|
∑

e∈Ê

∂

∂W
(r)
ij

J(W,b, e) + λW
(r)
ij

∂

∂b
(c)
i

J(W, b) =
1

|Ê|
∑

e∈Ê

∂

∂b
(c)
i

J(W,b, e)

∂

∂b
(r)
i

J(W, b) =
1

|Ê|
∑

e∈Ê

∂

∂b
(r)
i

J(W,b, e)

(4.5)

The optimization problem is solved by computing partial derivative of cost func-

tion J(W,b, e) using the back propagation approach [137].

62

Once the optimization is done, the metric embedding of any node-pair (u, v) can

be obtained by taking the outputs of compression stage (Equation (4.1)) of the trained

optimal coding (W,b).

αuv = f(W(c)euv + b(c)) = h(euv) (4.6)

Complexity Analysis

We use Matlab implementation of optimization algorithm L-BFGS (Limited-memory

Broyden-Fletcher-Goldfarb-Shanno) for learning optimal coding. We execute the al-

gorithm for a limited number of iterations to obtain unsupervised features within a

reasonable period of time. Each iteration of L-BFGS executes two tasks for each

node-pair: back-propagation to compute partial differentiation of cost function, and

change the parameters (W,b). Therefore, the time complexity of one iteration is

O(|NPt|kl). Here, NPt is the set on node-pairs used to construct the training dataset

Ê. k is the length of e (dimensionality of initial edge features), and l is length of α

(optimal coding).

4.5 Link Prediction Using Proposed Metric Embedding

For link prediction task in a dynamic network, G = {G1, G2, . . . , Gt}; we split the

snapshots into two overlapping time windows, [1, t − 1] and [2, t]. Training dataset,

Ê is feature representation for time snapshots [1, t− 1], the ground truth (ŷ) is con-

structed fromGt. DyLink2Vec learns optimal embedding h(·) using training dataset

Ê. After training a supervised classification model using α̂=h(Ê) and ŷ, prediction

dataset E is used to predict links at Gt+1. For this supervised prediction task, we

experiment with several classification algorithms. Among them SVM (support vector

machine) and AdaBoost perform the best.

63

Algorithm 2: Link Prediction using DyLink2Vec.

1: procedure LPFS3(G, t) Input : G: Dynamic Network, t: Time steps
Output: y: Forecasted links at time step t+ 1

2: Ê=NeighborhoodFeature(G,1,t− 1)
3: ŷ=Connectivity(Gt)
4: E=NeighborhoodFeature(G,2,t)

5: h=LearningOptimalCoding(Ê)

6: α̂=h(Ê)
7: α=h(E)
8: C=TrainClassifier(α̂, ŷ)
9: y=LinkForecasting(C, α)

10: return y
11: end procedure

64

The pseudo-code of DyLink2Vec based link prediction method is given in Algo-

rithm 2. For training link prediction model, we split the available network snapshots

into two overlapping time windows, [1, t − 1] and [2, t]. Neighborhood based fea-

tures Ê and E are constructed in Lines 2 and 4, respectively. Then we learn optimal

coding for node-pairs using neighborhood features Ê (in Line 5). Embeddings are

constructed using learned optimal coding (Lines 6 and 7) using output of compres-

sion stage (Equation 4.6). Finally, a classification model C is learned (Line 8), which

is used for predicting links in Gt+1 (Line 9).

4.6 Experiments and Results

We demonstrate the performance of DyLink2Vec using four real world dynamic

network datasets: Enron, Collaboration, Facebook1 and Facebook2. We show

performance comparison between DyLink2Vec based link prediction method and

existing state-of-the-art dynamic link prediction methodologies. Experimental re-

sults also include the discussion of DyLink2Vec’s performance for varying length

of time stamps in the network, and varying degree of class imbalance in training

dataset. Bellow, we discuss the datasets, evaluation metrics, competing methods,

implementation details and results.

4.6.1 Dataset Descriptions

Here we discuss the construction and characteristics of the datasets used for ex-

periments.

Enron email corpus [138] consists of email exchanges between Enron employees. The

Enron dataset has 11 time stamps and 16, 836 possible node-pairs; the task is to

use first 10 snapshots for predicting links in the 11th snapshot. Following [136], we

aggregate data into time steps of 1 week. We use the data from weeks 147 to 157 of

the data trace for the experiments. The reason for choosing that window is that the

snapshot of the graph at week 157 has the highest number of edges.

65

Collaboration dataset has 10 time stamps with author collaboration information

about 49, 455 author-pairs. The Collaboration dataset is constructed from citation

data containing 1.4 million papers [139]. We process the data to construct a network

of authors with edges between them if they co-author a paper. Considering each

year as a time stamp, the data of years 2000-2009 (10 time stamps) is used for this

experiment, where the data from the first nine time stamps is used for training and

the last for prediction. Since this data is very sparse, we pre-process the data to

retain only the active authors, who have last published papers on or after year 2010;

moreover, the selected authors participate in at least two edges in seven or more time

stamps.

Facebook1 and Facebook2 are network of Facebook wall posts [121]. Each vertex

is a Facebook user account and an edge represents the event that one user posts a

message on the wall of another user. Both Facebook1 and Facebook2 has 9 time

stamps. Facebook1 has 219, 453 node-pairs. Facebook2 is an extended version of

Facebook1 dataset with 883, 785 node-pairs. For pre-processing Facebook1 we follow

the same setup as is discussed in [42]; wall posts of 90 days are aggregated in one

time step.

We filter out all people who are active for less than 6 of the 9 time steps, along

with the people who have degree less than 30. Facebook2 is created using a similar

method, but a larger sample of Facebook wall posts is used for this dataset.

4.6.2 Evaluation Metrics

For evaluating the proposed method we use two metrics, namely, area under

Precision-Recall (PR) curve (PRAUC) [122] and an information retrieval metric, Nor-

malized Discounted Cumulative Gain (NDCG). PRAUC is best suited for evaluating

two class classification performance when class membership is skewed towards one of

the classes. This is exactly the case for link prediction; the number of edges (|E|)
is very small compared to the number of possible node-pairs

(|V |
2

)
In such scenarios,

66

area under the Precision-Recall curve (PRAUC) gives a more informative assessment

of the algorithm’s performance than other metrics such as, accuracy. The reason why

PRAUC is more suitable for the skewed problem is that it does not factor in the

count of true negatives in its calculation. In skewed data where the number of neg-

ative examples is huge compared to the number of positive examples, true negatives

are not that meaningful.

We also use NDCG, an information retrieval metric (widely used by the recom-

mender systems community) to evaluate the proposed method. NDCG measures the

performance of link prediction system based on the graded relevance of the recom-

mended links. NDCGk varies from 0.0 to 1.0, with 1.0 representing ideal ranking of

edges. Here, k is a parameter chosen by user representing the number of links ranked

by the method. We use k = 50 in all our experiments.

Some of the earlier works on link prediction have used area under the ROC curve

(AUC) to evaluate link prediction works [37,140]. But recent works [141] have demon-

strated the limitations of AUC and argued in favor of PRAUC over AUC for evaluation

of link prediction. So we have not used AUC in this work.

4.6.3 Competing Methods for Comparison

We compare the performance of DyLink2Vec based link prediction method with

methods from four categories: (1) topological feature based methods, (2) feature time

series based methods [37], (3) a deep learning based method, namely DeepWalk [12],

and (4) a tensor factorization based method CANDECOMP/PARAFAC (CP) [41].

Besides these four works, there are two other existing works for link prediction

in dynamic network setting; one is based on deep Learning [40] (Conditional Tem-

poral Restricted Boltzmann machine) and the other is based on a signature-based

nonparametric method [135]. We did not compare with these models as implemen-

tations of their models are not readily available, besides, both of these methods have

numerous parameters which will make reproducibility of their results highly improb-

67

able and thus, conclusion derived from such experiments may not align with true

understanding of the usefulness of the methods. Moreover, none of these methods

give unsupervised feature representation for node-pairs in which we claim our main

contribution.

For topological feature based methods, we consider four prominent topolog-

ical features: Common Neighbors (CN), Adamic-Adar (AA), Jaccard’s Coefficient

(J) and Katz measure (Katz). However, in existing works, these features are defined

for static networks only; so we adapt these features for the dynamic network setting

by computing the feature values over the collapsed2 dynamic network.

We also combine the above four features to construct a combined feature vector

of length four (Jaccard’s Coefficient, Adamic-Adar, Common Neighbors and Katz),

which we call JACK and use it with a classifier to build a supervised link prediction

method, and include this model in our comparison.

Second, we compare DyLink2Vec with time-series based neighborhood simi-

larity scores proposed in [37]. In this work, the authors consider several neighborhood-

based node similarity scores combined with connectivity information (historical edge

information). Authors use time-series of similarities to model the change of node sim-

ilarities over time. Among 16 proposed methods, we consider 4 that are relevant to

the link prediction task on unweighted networks and also have the best performance.

TS-CN -Adj represents time-series on normalized score of Common Neighbors and

connectivity values at time stamps [1, t]. Similarly, we get time-series based scores

for Adamic-Adar (TS-AA-Adj), Jaccard’s Coefficient (TS-J-Adj) and Preferential

Attachment (TS-PA-Adj).

Third, we compare DyLink2Vec with DeepWalk [12], a latent node represen-

tation based method. We use DeepWalk to construct latent representation of nodes

from the collapsed dynamic network. Then we construct latent representation of

node-pairs by computing cross product of latent representation of the participating

nodes. For example, if the node representations in a network are vectors of size l, then

2Collapsed network is constructed by superimposing all network snapshots(see Figure 4.1).

68

the representation of a node-pair (u, v) will be of size l2, constructed from the cross

product of u and v’s representation. The DeepWalk based node-pair representation

is then used with a classifier to build a supervised link prediction method. We choose

node representation size l = 2, 4, 6, 8, 10 and report the best performance.

Finally, we compare DyLink2Vec with a tensor factorization based method,

called CANDECOMP/PARAFAC (CP) [41]. In this method, the dynamic net-

work is represented as a three-dimensional tensor Z(n×n× t). Using CP decomposi-

tion Z is factorized into three factor matrices. The link prediction score is computed

by using the factor matrices. We adapted the CP link prediction method for unipar-

tite networks; which has originally been developed for bipartite networks.

4.6.4 Implementation Details

We implemented DyLink2Vec algorithm in Matlab versionR2014b. The learning

method runs for a maximum of 100 iterations or until it converges to a local optimal

solution. We use coding size l = 100 for all datasets3. For supervised link prediction

step we use several Matlab provided classification algorithms, namely, AdaBoostM1,

RobustBoost, and Support Vector Machine (SVM). We could use neural network

classifier. But, as our main goal is to evaluate the quality of unsupervised feature

representation, so, we use simple classifiers. Supervised neural network architecture

may result in superior performance, but, it is out of scope of the main goal of the

paper. We use Matlab for computing the feature values (CN, AA, J, Katz) that

we use in other competing methods. Time-series methods are implemented using

Python. We use the ARIMA (autoregressive integrated moving average) time series

model implemented in Python module statsmodels. The DeepWalk implementation

is provided by the authors of [12]. We use it to extract node features and extend

3We experiment with different coding sizes ranging from 100 to 800. The change in link prediction
performance is not sensitive to the coding size. At most 2.9% change in PRAUC was observed for
different coding sizes.

69

it for link prediction (using Matlab). Tensor factorization based method CP was

implemented using Matlab Tensor Toolbox.

4.6.5 Performance Comparison Results with Competing Methods

In Figure 4.4 we present the performance comparison results of DyLink2Vec

based link prediction method with the four kinds of competing methods that we have

discussed earlier. The figure have eight bar charts. The bar charts from the top to the

bottom rows display the results for Enron, Collaboration, Facebook1 and Facebook2

datasets, respectively. The bar charts in a row show comparison results using PRAUC

(left), and NDCG50 (right) metrics. Each chart has twelve bars, each representing

a link prediction method, where the height of a bar is indicative of the performance

metric value of the corresponding method. In each chart, from left to right, the first

five bars (blue) correspond to the topological feature based methods, the next four

(green) represent time series based methods, the tenth bar (black) is for DeepWalk,

the eleventh bar (brown) represents tensor factorization based method CP, and the

final bar (purple) represents the proposed method DyLink2Vec.

DyLink2Vec vs. Topological

We first analyze the performance comparison between DyLink2Vec based method

and topological feature based methods (first five bars). The best of the topological

feature based methods have a PRAUC value of 0.30, 0.22, 0.137 and 0.14 in Enron,

Collaboration, Facebook1, and Facebook2 dataset (see Figures 4.4(a), 4.4(c), 4.4(e)

and 4.4(g)), whereas the corresponding PRAUC values for DyLink2Vec are 0.531,

0.362, 0.308, and 0.27, which translates to 77%, 65%, 125%, and 93% improvement

of PRAUC by DyLink2Vec for these datasets. Superiority of DyLink2Vec over

all the topological feature based baseline methods can be attributed to the capability

of Neighborhood based feature representation to capture temporal characteristics of

70

0.10

0.20

0.30

0.40

0.50

0.60

C
N

AA J Katz
JAC

K

TS-C
N
-Adj

TS-AA-Adj

TS-J-Adj

TS-PA-Adj

D
eepw

alk

C
P

D
yLink2Vec

P
R

A
U

C

Features

(a) Enron Network

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

C
N

AA J Katz
JAC

K

TS-C
N
-Adj

TS-AA-Adj

TS-J-Adj

TS-PA-Adj

D
eepw

alk

C
P

D
yLink2Vec

Topological Time-Series

D
e
e
p
W

a
lk

N
D

C
G

5
0

Features

(b) Enron Network

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
N

AA J Katz
JAC

K

TS-C
N
-Adj

TS-AA-Adj

TS-J-Adj

TS-PA-Adj

D
eepw

alk

C
P

D
yLink2Vec

P
R

A
U

C

Features

(c) Collaboration Network

0.30

0.40

0.50

0.60

0.70

0.80

C
N

AA J Katz
JAC

K

TS-C
N
-Adj

TS-AA-Adj

TS-J-Adj

TS-PA-Adj

D
eepw

alk

C
P

D
yLink2Vec

N
D

C
G

5
0

Features

(d) Collaboration Network

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

C
N

AA J Katz
JAC

K

TS-C
N
-Adj

TS-AA-Adj

TS-J-Adj

TS-PA-Adj

D
eepw

alk

C
P

D
yLink2Vec

P
R

A
U

C

Features

(e) Facebook1 Network

0.20

0.30

0.40

0.50

0.60

0.70

0.80

C
N

AA J Katz
JAC

K

TS-C
N
-Adj

TS-AA-Adj

TS-J-Adj

TS-PA-Adj

D
eepw

alk

C
P

D
yLink2Vec

N
D

C
G

5
0

Features

(f) Facebook1 Network

0.00

0.05

0.10

0.15

0.20

0.25

0.30

C
N

AA J Katz
JAC

K

TS-C
N
-Adj

TS-AA-Adj

TS-J-Adj

TS-PA-Adj

D
eepw

alk

C
P

D
yLink2Vec

P
R

A
U

C

Features

(g) Facebook2 Network

0.10

0.20

0.30

0.40

0.50

0.60

0.70

C
N

AA J Katz
JAC

K

TS-C
N
-Adj

TS-AA-Adj

TS-J-Adj

TS-PA-Adj

D
eepw

alk

C
P

D
yLink2Vec

N
D

C
G

5
0

Features

(h) Facebook2 Network

Fig. 4.4.: Comparison with competing link prediction methods. Each bar represents
a methods and the height of the bar represents the value of the performance metrics.
The group of bars in a chart are distinguished by color, so the figure is best viewed
on a computer screen or color print.

71

local neighborhood. Similar trend is observed using NDCG50 metric, see Figures

4.4(b), 4.4(d), 4.4(f) and 4.4(h).

DyLink2Vec vs. Time-Series

The performance of time-series based method (four green bars) is generally bet-

ter than the topological feature based methods. The best of the time-series based

method has a PRAUC value of 0.503, 0.28, 0.19, and 0.19 on these datasets, and

DyLink2Vec’s PRAUC values are better than these values by 6%, 29%, 62%, and

42% respectively. Time-series based methods, though model the temporal behavior

well, probably fail to capture signals from the neighborhood topology of the node-

pairs. Superiority of DyLink2Vec over Time-Series methods is also similarly indi-

cated by information retrieval metric NDCG50.

DyLink2Vec vs. DeepWalk

The DeepWalk based method (black bars in Figure 4.4) performs much poorly in

terms of both PRAUC and NDCG50—even poorer than the topological based method

in all four datasets. Possible reason could be the following: the latent encoding of

nodes by DeepWalk is good for node classification, but the cross-product of those

codes fails to encode the information needed for effective link prediction.

DyLink2Vec vs. CANDECOMP/PARAFAC (CP)

Finally, the tensor factorization based method CP performs marginally better

(around 5% in PRAUC, and 6% in NDCG50) than DyLink2Vec in small and sim-

ple networks, such as Enron (see Figure 4.4(a, b)). But its performance degrades

on comparatively large and complex networks, such as Collaboration, Facebook1 and

Facebook2. On Facebook networks, the performance of CP is even worse than the

time-series based methods (see Figures 4.4(e) and 4.4(g)). DyLink2Vec comfort-

72

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

1 2 3 4 5 6 7 8
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
D

C
G

5
0

P
R

A
U

C

Number of Time Stamps

NDCG50
PRAUC

(a) Collaboration Network

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

1 2 3 4 5 6 7
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

N
D

C
G

5
0

P
R

A
U

C

Number of Time Stamps

NDCG50
PRAUC

(b) Facebook1 Network

Fig. 4.5.: Change in link prediction performance with number of time stamps. X-axis
represents size of training window used for link prediction. Largest possible window
size depends on number of time stamps available for the dataset.

ably outperforms CP on larger graphs, see Figures 4.4(c, d, e, f, g, h). In terms of

PRAUC, DyLink2Vec outperforms CP by 28%, 94%, and 120% for Collaborative,

Facebook1 and Facebook2 networks respectively. This demonstrates the superiority

of DyLink2Vec over one of the best state-of-the-art dynamic link prediction. A rea-

son for CP’s bad performance on large graphs can be its inability to capture network

structure and dynamics using high-dimensional tensors representation.

Performance across datasets

When we compare the performance of all the methods across different datasets,

we observe varying performance. For example, for both the metrics, the performance

of dynamic link prediction on Facebook graphs are lower than the performance on

Collaboration graph, which, subsequently, is lower than the performance on Enron

graph, indicating that link prediction in Facebook data is a harder problem to solve.

In these harder networks, DyLink2Vec perform substantially better than all the

other competing methods that we consider in this experiment.

73

4.6.6 Performance with Varying Length of Time Stamps

Besides comparing with competing methods, we also demonstrate the performance

of DyLink2Vec with varying number of available time snapshots. For this purpose,

we use DyLink2Vec with different counts of past snapshots. For example, Collab-

oration dataset has 10 time stamps. The task is to predict links at time stamp 10.

The largest number of past snapshots we can consider for this data is 8, where Ê is

constructed using time stamps [1−8], and E is constructed using time stamps [2−9].

The smallest number of time stamps we can consider is 1, where Ê is constructed

using [8 − 8], and E is constructed using [9 − 9]. In this way, by varying the length

of historical time stamps, we can evaluate the effect of time stamp’s length on the

performance of a link prediction method.

The result is illustrated in Figure 4.5. The x-axis represents the number of time

stamps used by DyLink2Vec, the left y-axis represents the NDGC50 and the right

y-axis represents the PRAUC. Figures 4.5(a), and 4.5(b) corresponds to the results

obtained on Collaboration and Facebook1, respectively.

We observe from Figure 4.5 that the performance (NDGC50 and PRAUC) of link

prediction increases with increased number of time stamps. But beyond a given num-

ber of snapshots, the performance increment becomes insignificant. The performance

starts to deteriorate after certain number of snapshots (see Figure 4.5(a)). This may

be because of the added complexity of the optimization framework with increased

number of time stamps. We also observe consistent improvement of performance

with the number of snapshots for the Facebook1 data (Figure 4.5(b)), which indi-

cates that for this dataset link information from distant history is useful for dynamic

link prediction. We do not show results of Enron and Facebook2 for this experiment,

because of space constraint, however, they show similar trends.

74

0.00

0.20

0.40

0.60

0.80

1.00

1
:1

1
:2

1
:3

1
:4

1
:5

1
:6

1
:7

1
:8

1
:9

1
:1

0

0.00

0.10

0.20

0.30

0.40

0.50

N
D

C
G

5
0

P
R

A
U

C
Class Ratio

NDCG50

PRAUC

Fig. 4.6.: Effect of class imbalance in link prediction performance on Collaboration
network.

75

4.6.7 Effect of Class Imbalance on Performance

In link prediction problem, class imbalance is a prevalent issue. The class imbal-

ance problem appears in a classification task, when the dataset contains imbalanced

number of samples for different classes. In link prediction problem, the number of

positive node-pairs (with an edge) is very small compared to the number of negative

node-pairs (with no edge), causing class imbalance problem.

To demonstrate the effect of class imbalance in link prediction task, we perform

link prediction using DyLink2Vec embeddings with different level of class imbalance

in the training dataset. We construct the training dataset by taking all positive node-

pairs and sampling from the set of negative node-pairs. For a balanced dataset, the

number of negative samples will be equal to the number of all positive node-pairs

considered. Thus, the balanced training dataset has positive node-pairs to negative

node-pairs ratio 1 : 1. At this point, the only way to increase the size of the data is

to increase the sample size for negative node-pairs. Consequently, the ratio of classes

also increases towards negative node-pair. Figure 4.6 shows gradual decrease in link

prediction performance in Collaboration network with the increase of imbalance (see

ratios in X-axis) in the dataset (despite the fact that the dataset gets larger by adding

negative node-pairs).

This result advocates towards the design choice of under-sampling [130] of negative

node-pairs by uniformly sampling from all negative node-pairs, so that the training

set has equal numbers of positive and negative node-pairs. Under-sampling, helps to

mitigate the problem of class imbalance while also reducing the size of the training

dataset.

4.7 Chapter Summary

In this paper, we present DyLink2Vec a learning method for obtaining feature

representation of node-pairs in dynamic networks. We also give classification based

link prediction method, which uses DyLink2Vec feature representation for future

76

link prediction in dynamic network setup. The proposed link prediction method

outperforms several existing methods that are based on topological features, time

series, deep learning and tensor analysis.

77

5. REGULARIZED AND RETROFITTED MODELS FOR

LEARNING SENTENCE REPRESENTATION WITH

CONTEXT

5.1 Introduction

Many sentence-level text processing tasks rely on representing the sentences using

fixed-length vectors. For example, classifying sentences into topics using a statistical

classifier like Maximum Entropy requires the sentences to be represented by vectors.

Similarly, for the task of ranking sentences based on their importance in the text using

a ranking model like LexRank [142] or SVMRank [143], one needs to first represent the

sentences with fixed-length vectors. The most common approach uses a bag-of-words

or a bag-of-ngrams representation, where each dimension of the vector is computed

by some form of term frequency statistics (e.g., tf*idf).

Recently, distributed representations, in the form of dense real-valued vectors,

learned by neural network models from unlabeled data, has been shown to outperform

traditional bag-of-words representation [44]. Distributed representations encode the

semantics of linguistic units and yield better generalization [47, 144]. However, most

existing methods to devise distributed representation for sentences consider only the

content of a sentence, and disregard relations between sentences in a text by and

large [44, 48]. But, sentences rarely stand on their own in a well-formed text. On a

finer level, sentences are connected with each other by certain logical relations (e.g.,

elaboration, contrast) to express the meaning as a whole [10]. On a coarser level,

sentences in a text address a common topic, often covering multiple subtopics; i.e.,

sentences are also topically related [11]. Our main hypothesis in this paper is that

distributed representation methods for sentences should not only consider the content

of the sentence but also the contextual information in the text.

78

Recent studies [5–7] on learning distributed representations for words have shown

that semantic relations between words (e.g., synonymy, hypernymy, hyponymy) en-

coded in semantic lexicons like WordNet [8] or Framenet [9] can improve the quality

of word vectors that are trained solely on unlabeled data [5–7]. Our work in this pa-

per is reminiscent of this line of research with a couple of crucial differences. Firstly,

we are interested in representation of sentences as opposed to words, for the former

such resources are not readily available. Secondly, our main goal is to incorporate

extra-sentential context in some form of inter-sentence relations as opposed to se-

mantic relations between words. These differences posit a number of new research

challenges: (i) how can we obtain extra-sentential context that can capture semantic

relations between sentences? (ii) how can we effectively exploit the inter-sentence

relations in our representation learning model? and finally, (iii) how can we evaluate

the quality of the vectors learned by our model?

To tackle the first issue, we explore two different methods to obtain extra-sentential

context. In our first method, we consider the adjoining sentences of a sentence in a

text as the context. We call this discourse context since it captures the actual order

of the sentences. In our second method, we build a similarity network of sentences,

and consider adjacent nodes (i.e., one-hop neighbors) of a sentence as its context. We

call this similarity context since it is based on a direct measure of similarity. Our

choice of network to encode context is due to the fact that networks provide flexible

ways to represent relations between any pair of sentences [142,145].

We address the second challenge by proposing two different approaches to exploit

the context information. In our first approach, we first learn sentence vectors using

an existing content-based model, Sen2Vec [44]. Then, we refine these vectors to

encourage the new estimated vectors to be similar to the vectors of its neighbors and

similar to their prior Sen2Vec representations. The refinement is performed by using

an efficient iterative algorithm [6, 118]. We call this model retrofitted model since it

retrofits the initially learned Sen2Vec vectors using contextual information. In our

second approach, we alter the objective function of Sen2Vec with a regularizer or

79

prior that encourages neighboring sentences to have similar vector representations.

We call this regularized model. In this approach, the vectors are learned from scratch

by jointly modeling the content of the sentences and the relation between sentences.

Several recent methods also exploit contextual information to learn sentence vec-

tors, e.g., FastSent [48] and Skip-Thought [54]. These methods learn sentence rep-

resentations by predicting content (words or word sequences) of adjoining sentences.

By learning representations that can predict contents of adjacent sentences, these

methods may learn semantic and syntactic properties that are more specific to the

neighbors rather than the sentence under consideration. Furthermore, these meth-

ods either make simple BOW (bag of words) assumption or disregard context when

extracting a sentence vector. By contrast, our models learn sentence representations

directly, and they treat adjacent sentences as atomic linguistic units.

Different approaches to evaluate sentence representation methods have been pro-

posed in the past including sentence-level prediction tasks (e.g., sentiment classifica-

tion, paraphrase identification) and sentence-pair similarity computation task [44,48].

These approaches evaluate sentences independently out of context. Instead, in this

paper, we propose an evaluation setup, where extra-sentential context is available

to infer sentence vectors. We evaluate our models on three different types of tasks:

classification, clustering and ranking. In particular, we consider the tasks of classi-

fying and clustering sentences into topics, and of ranking sentences in a document

to create an extractive summary of the document (i.e., by selecting the top-ranked

sentences). There are standard datasets with document-level topic annotations (e.g.,

Reuters-21578, 20 Newsgroups). However, to our knowledge, no dataset exists with

topic annotations at the sentence level. We generate sentence-level topic annotations

from the document-level ones by selecting subsets of sentences that can be consid-

ered as representatives of the document and label them with the same document-level

topic label. We use the standard DUC 2001 and 2002 datasets to evaluate our models

on the summarization task, where we compare the system-generated summaries with

the human-authored summaries.

80

Our evaluation on these tasks across multiple datasets shows impressive results

for our model, which outperforms the best existing models by up to 6.29 F1-score in

classification, 12.78 V -score in clustering, 2.90 ROUGE-1 score in summarization. We

found that the discourse context perform better on topic classification and clustering

tasks, and similarity context performs better on summarization. We have imple-

mented all our proposed models in a flexible software stack, which enables effective

evaluation of existing or future sentence representation learning models. We make

our code1 publicly available.

The rest of the paper is organized as follows. In Section 5.3, we present a content-

only model followed by two extensions of this model, which incorporate contextual

information. In Sections 5.4, 5.5 and 5.6, we discuss experimental settings and results.

Section 5.2 gives an account on related work, and finally, we conclude with a discussion

of future work in Section 5.7.

5.2 Related Work

Recently, learning distributed representation of words, phrases, and sentences has

gained a lot of attention due to its applicability and superior performance over bag-

of-words (BOW) features in a wide range of text processing tasks [5–7,44–46]. These

models can be categorized into two groups: (i) task-agnostic or unsupervised mod-

els, and (ii) task-specific or supervised models. Task-agnostic models learn general

purpose representation from naturally occurring unlabeled training data, and can

capture interesting linguistic properties [47–49]. On the other hand, task-specific

models are trained to solve a particular task, e.g., sentiment analysis [50], machine

translation [51], and parsing [52]. Our focus in this paper is on learning distributed

representation of sentences from unlabeled data.

The Word2vec model [53] to learn distributed representation of words is very

popular for text processing tasks. The model also scales well in practice due to its

1https://github.com/tksaha/con-s2v/tree/jointlearning

81

simple architecture. Sen2Vec [44] extended Word2vec [53] to learn the representation

for sentences and documents. The model maps each sentence to an unique id and

learns the representation for the sentence using the contexts of words in the sentence

– either by predicting the whole context independently (DBOW), or by predicting a

word in the context (DM) given the rest. In our work, we extend the DBOW model to

incorporate inter-sentence relations in the form of a discourse context or a similarity

context. We do this using a graph-smoothing regularizer in the original objective

function, or by retrofitting the initial vectors with different types of context.

In [5–7], retrofitting and regularization methods have been explored to incorporate

lexical semantic knowledge into word representation models. Our overall idea of using

external information is reminiscent of these models with two key differences: (i) the

semantic network (WordNet, FrameNet) is given in their case, whereas we construct

the network using similarities between sentences (nodes); (ii) we also explore discourse

context that incorporate knowledge from adjacent sentences.

Adjacent sentences have been used previously for modeling task-agnostic repre-

sentation of sentences. For example, Hill et al. [48] proposed FastSent, which learns

word representation of a sentence by predicting words of its adjacent sentences. It

derives a sentence vector by summing up the word vectors. The auto-encode version

of FastSent also predicts the words of the current sentence. FastSent is fundamentally

different from our models as we consider nearby sentences as atomic units, and we

encode the sentence vector directly.

Hill et al. [48] also proposed two other models, Sequential Denoising Autoen-

coder (SDAE) and Sequential Autoencoder (SAE). SDAE employs an encoder-decoder

framework, similar to neural machine translation (NMT) [51], to denoise an origi-

nal sentence (target) from its corrupted version (source). SAE uses the same NMT

framework to reconstruct (decode) the same source sentence. Both SAE and SDAE

compose sentence vectors sequentially, but they disregard context of the sentence.

Another context-sensitive model is Skip-Thought [54], which uses the NMT frame-

work to predict adjacent sentences (target) given a sentence (source). Since the en-

82

coder and the decoder use recurrent layers to compose vectors sequentially, SDAE and

Skip-Thought are very slow to train. Furthermore, by learning representations to pre-

dict content of neighboring sentences, these methods (FastSent and Skip-Thought)

may learn linguistic properties that are more specific to the neighbors rather than

the sentence under consideration.

In contrast, we encode a sentence directly by treating it as an atomic unit, and we

predict the words to model its content. Similarly, our model incorporates contextual

information by treating neighboring sentences as atomic units. This makes our model

quite efficient to train and effective for many tasks as we have shown.

5.3 Methodology

Let φ : V → Rd be the mapping function from sentences to their distributed

representations, i.e., real-valued vectors of d dimensions. Equivalently, φ can be

thought of as a look-up matrix of size |V | × d, where |V | is the total number of

sentences. Our goal is to learn φ by exploiting information from two different sources:

(i) the content of the sentence, v = (v1, v2 · · · vm); and (ii) the context of the sentence,

N(v). In the following subsections, we first describe an existing model that considers

only the content of a sentence (Subsection 5.3.1). We then formalize types of extra-

sentential context (Subsection 5.3.2). Finally, we present our models that extend

the content-based model to incorporate contextual information (Subsections 5.3.3 –

5.3.4).

5.3.1 Content-based Model: Sen2Vec

Le and Mikolov [44] proposed two log-linear models for learning vector represen-

tation of sentences: (a) a distributed memory (DM) model, and (b) a distributed bag

of words (DBOW) model. As shown in Figure 5.1, both models are trained solely

based on the content of the sentences. In the DM model, every sentence in V is rep-

resented by a d dimensional vector in a shared lookup matrix φ ∈ R|V |×d. Similarly,

83

v he works in

φ ψ ψ ψ

Averaging

woodworking

(a) Sen2Vec (DM)

classifier

he works in woodworking

v

φ : V → Rd

(b) Sen2Vec (DBOW)

Fig. 5.1.: Distributed Memory (DM) and Distributed Bag of Words (DBOW) versions
of Sen2Vec.

84

every word in the vocabulary D is represented by a d dimensional vector in another

shared lookup matrix ψ ∈ R|D|×d. Given an input sentence v = (v1, v2 · · · vm), the

corresponding sentence vector from φ and the corresponding word vectors from ψ

are averaged to predict the next word in a context. More formally, the DM model

minimizes the following loss (negative log likelihood):

Lc(v) =
m−k∑

t=k

− logP (vt|v; vt−k+1, · · · , vt−1)

=
m−k∑

t=k

− log
exp(ω(vt)

Tz)∑
vi∈D exp(ω(vi)Tz)

(5.1)

where z is the average of φ(v), ψ(vt−k+1), · · · , ψ(vt−1) input vectors, and ω(vt) is

the output vector representation of word vt. The sentence vector φ(v) is shared

across all (sliding window) contexts extracted from the same sentence, thus acts as a

distributed memory. Instead of predicting the next word in the context, the DBOW

model predicts the words in the context independently given the sentence id as input.

More formally, DBOW minimizes the following loss:

Lc(v) =
m−k∑

t=k

t∑

j=t−k+1

− logP (vj|v)

=
m−k∑

t=k

t∑

j=t−k+1

− log
exp(ω(vj)

Tφ(v))∑
vi∈D exp(ω(vi)Tφ(v))

(5.2)

Training of the models is typically performed using gradient-based online methods,

such as stochastic gradient descend (SGD). Unfortunately, this could be impractically

slow on large corpora due to summation over all vocabulary items D in the denomina-

tor (Equations 5.1 and 5.2), which needs to be performed for every training instance

(v, vj). To address this, Mikolov et. al [47] use negative sampling, which samples neg-

ative examples to approximate the summation term. For instance, for each training

85

y : Or is it discarded to
burn up on return to LEO?

v : Is it reusable?

u : And I was wondering
about the GD LEV.

(a) A Collection of Sentences

v

φ

is it reusable

(b) Sen2Vec (DBOW)

Lc
is it reusable

u y

v

φ

(c) Reg-dis

Lc
Lr Lr

Fig. 5.2.: (c) presents an instance of our regularized model for learning representation
of sentence v in comparison to (b) Sen2Vec (DBOW) model within a context of two
other sentences: u and y in (a). Directed and undirected edges indicate prediction
loss and regularization loss, respectively. (Collected from:newsgroup/20news-bydate-
train/sci.space/61019. The central topic is “science.space”.).

instance (v, vj) in Equation 5.2, we add S negative examples {(v, vsj)}Ss=1 by sampling

vsj from a known noise distribution µ (e.g., unigram, uniform). The log probability is

then formulated as such to discriminate a positive instance vj from a negative one vsj .

logP (vj|v) = log σ
(
ω(vj)

Tφ(v)
)

+ log
S∑

s=1

Evsj∼µ σ
(
−ω(vsj)

Tφ(v)
)

(5.3)

where σ is the sigmoid function defined as σ(x) = 1/(1 + e−x). The loss in Equation

5.3 can be optimized efficiently as S is a small number (5 – 10) compared to the

vocabulary size |D| (26K – 139K).

Both DM and DBOW models attempt to capture the overall semantics of a sen-

tence by looking at its content words. However, sentences in a well-formed text are

rarely independent, rather the meaning of one sentence depends on the meaning of

other sentences in its context. For instance, consider the sentences in Figure 5.2(a),

which are taken from the science.space category of the Newsgroups dataset. Here, the

paragraph is talking about shuttle’s reusability for the missions in space. If we con-

86

sider the sentences independently, it is very hard to understand the topic. Sentence,

u is talking about shuttle, v is raising concern about its reusability and sentence y is

elaborating on v to convey the concern more straightforwardly. When the sentences

are considered together, it becomes easier to interpret. This suggests that represen-

tation learning models should also consider extra-sentential context to learn better

representations for sentences.

5.3.2 Context Types

We distinguish between two types of context: discourse context and similarity

context, as we elaborate on them below.

Discourse Context

Sentences in a text segment (e.g., paragraph) are semantically related by certain

coherence relations (e.g., elaboration, contrast), and they address a common topic [11].

This indicates that adjacent sentences of a particular sentence is essential to better

understand the meaning of the sentence. The discourse context of a sentence is

comprised by its previous and the following sentences in a text.

Similarity Context

While the sequential order of the sentences carries important information, sen-

tences that are far apart in the temporal order can also be related. In an empirical

evaluation of data structures for representing discourse coherence, [146] advocates

for a graph representation of discourse allowing non-adjacent connections. Moreover,

graph-based methods for topic segmentation [145] and summarization [142] rely on

complete graphs of sentences, where edge weights represent cosine similarity between

sentences. Therefore, we consider a context type that is based on a direct measure of

87

similarity, and considers relations between all possible sentences in a document and

possibly across multiple documents.

Our similarity context allows any other sentence in the corpus to be in the con-

text of a sentence depending on how similar they are. To measure the similarity, we

first represent the sentences with vectors learned by Sen2Vec [44], then we measure

the cosine distance between the vectors. We restrict the context size of a sentence

for computational efficiency, while still ensuring that it is informative enough. We

achieve this by imposing two kinds of constraints. First, we set thresholds for intra-

and across-document connections: sentences in a document are connected only if their

similarity value is above a pre-specified threshold δ, and sentences across documents

are connected only if their similarity value is above another pre-specified threshold γ.

Second, we allow up to 20 most similar neighbors. We call the resulting network sim-

ilarity network. Equation 5.4 formalizes the similarity network construction strategy

explained above.

(u,v) =





1, if σ(u,v) ≤ δ | u ∈ D`,v ∈ Dm, ` = m,v ∈ top20

1, if σ(u,v) ≤ γ | u ∈ D`,v ∈ Dm, ` 6= m,v ∈ top20

0, otherwise

(5.4)

where Dl and Dm refer to l-th and m-th documents in the corpus, respectively. In the

following two subsections, we present two different methods to incorporate context

(discourse or similarity) for learning vector representation of sentences.

5.3.3 Retrofitted Models: Ret-dis, Ret-sim

We explore the general idea of retrofitting [6] to incorporate information from both

the content and context of a node (sentence) in a joint learning framework. Let φ′(v)

denote the vector representation for sentence v that has already been learned by our

content-based model (Sen2Vec) in Section 5.3.1. Our aim is to retrofit this vector

88

using either discourse context or similarity context such that the revised vector φ(v):

(i) is similar to the prior vector φ′(v), and (ii) is also similar to the vectors of its

adjoining sentences (discourse context) or its adjacent nodes (similarity context). To

this end, we define the following objective function to minimize:

Algorithm 3: Jacobi method for retrofitting.

Input :
- Graph G = (V,E)
- Prior vectors φ′

- Probabilities αv and βv,u
Output: Retrofitted vectors φ
φ← φ′ // initialization

repeat
for all v ∈ V do

φ(v)← αvφ′(v)+
∑

u βv,uφ(u)

αv+
∑

u βv,u

end

until convergence;

J(φ) =
∑

v∈V

αv||φ(v)− φ′(v)||2 +
∑

(v,u)∈E

βu,v||φ(u)− φ(v)||2 (5.5)

where α values control the strength to which the algorithm should match the prior

vectors, and β values control the degree of smoothness based on the graph similarity.

The quadratic cost in Equation 5.5 is convex in φ, and has a closed form solution [118].

The closed form expression requires an inversion operation, which could be expensive

for big graphs. A more efficient way is to use the Jacobi method, an online algorithm

to solve the Equation iteratively. The Jacobi method leads to following update rule:

φ(v)← αvφ
′(v) +

∑
u βv,uφ(u)

αv +
∑

u βv,u
(5.6)

In our case, we set αv = 1, and βv,u = 1
degree(v)

, i.e. we give higher weights to

vectors learned from Sen2Vec than to its contextual counterpart. Similar settings

have been used in [6]. In Algorithm 3, we formally describe the training procedure

of our retrofitted model. We use the DBOW model to learn the prior vectors φ′. We

89

name the model that consider discourse context as Ret-dis and the model considering

similarity context as Ret-sim.

5.3.4 Regularized Models: Reg-dis, Reg-sim

Rather than retrofitting the vectors learned from a content-based model using con-

text as a post-processing step, we can incorporate neighborhood information directly

into the objective function of the content-based model as a regularizer, and learn the

sentence vectors in a single step. We define the following objective to minimize:

J(φ) =
∑

v∈V

[
Lc(v) + βLr(v, N(v))

]
(5.7)

=
∑

v∈V

[
Lc(v) + β

∑

(v,u)∈E

||φ(u)− φ(v)||2
]

(5.8)

where the first component Lc(v) refers to the loss of the content-based model de-

scribed in Section 5.3.1. The second component Lr(v, N(v)) is a Laplacian regu-

larizer with β being the regularization strength. The regularizer brings the vector

representation of a sentence closer to its context. Depending on the context type,

this leads to different objectives. The model that uses discourse context (call this

Reg-dis) trains the vectors to be closer to the adjacent sentences in a text. Similarly,

the model with similarity context (call this Reg-sim) trains the vectors to be closer

to its neighbors in the similarity network. As in the retrofitted models, we use DBOW

as our content-based model.

Since the regularized models learn the vectors from scratch in one shot by consid-

ering information from both sources, the two components can be better adjusted to

produce better quality vectors. Figure 5.2 (c) shows one instance of our model with

discourse context (u and y are the adjoining sentences of sentence v). Algorithm 4

formally describes the training procedure for the regularized models. First, we ini-

tialize the model parameters: φ, ψ and ω, and compute the unigram distribution over

90

words as our noise distribution µ. In each epoch of SGD (Line 3), we iterate over the

sentences, and take one gradient step to learn word embeddings (Step b) and take

two gradient steps (Steps d and e) to learn sentence embeddings: one for the content

prediction loss, and the other for the regularization loss.

Algorithm 4: Training REG with SGD.

Input : set of sentences V , graph G = (V,E), window size k
Output: learned sentence vectors φ
1. Initialize model parameters: φ, ψ and ω’s;
2. Compute noise distribution: µ
3. repeat

for each sentence v ∈ V do
for each content word v ∈ v do

// for word vectors

for each word vi around v for window k do
(a) Generate a positive pair (vi, v) and S negative pairs
{(vi, vs)}Ss=1 using µ;

(b) Take a gradient step for Lc(vi, v)
end
// for sentence vectors

(c) Generate a positive pair (v, v) and S negative pairs {(v, vs)}Ss=1

using µ;
(d) Take a gradient step for Lc(v, v);
(e) Take a gradient step for Lr(v, N(v));

end

end

until convergence;

5.4 Evaluation Method: Tasks, Datasets and Metrics

We evaluate our representation learning models on three different tasks that in-

volve classification, clustering, and ranking sentences. These are the three fundamen-

tal information system tasks, and good performance over these tasks will indicate the

robustness of our models in a wide range of downstream applications.

For classification (or clustering), we measure how effective the learned vectors are

when they are used for classifying (or clustering) sentences based on their topics. Text

91

Table 5.1.: Basic statistics of the DUC datasets.

Dataset # Doc. # Sen. (Avg) # Sum. (Avg)

DUC 2001 486 40 2.17
DUC 2002 471 28 2.04

categorization is now a standard task for evaluating cross-lingual word embeddings

[147]. For ranking, we evaluate how effective the vectors are when they are used to

rank sentences for generating an extractive summary [148] of a document.

As our representation learning models exploit inter-sentence relations,2 which can

possibly be constrained by document boundaries (e.g., similarity context), therefore,

for topic classification and clustering, we require datasets containing documents with

sentence-level annotations. However, to the best of our knowledge, no dataset ex-

ists with topic annotations at the sentence level. We generate sentence-level topic

annotations from the document-level ones by selecting subsets of sentences that can

be considered as representatives of the document using an extractive summarization

tool, and label the selected sentences with the same document-level topic. In both of

our tasks, extractive summarization is a key component, therefore in the following,

we first describe the summarization task.

5.4.1 Extractive Summarization (Ranking) Task

The Extractive Summarizer

Extractive summarization is often considered as a ranking problem with the goal

to select the most important sentences to form a compressed version of the source

document. Unsupervised methods are the predominant paradigm for determining

sentence importance [148]. We use popular graph-based algorithm LexRank [142] for

this purpose. To get the summary sentences of a document, we first build a weighted

2For this reason, we did not evaluate our models on tasks previously used to evaluate sentence
representation models.

92

graph, where nodes represent the sentences of a document and edge weights represent

cosine similarity between learned vector space representations (using any vector space

representation models of our choice) of the two corresponding sentences. To make the

graph sparse, we avoid edges with weight less than 0.10. We then run the PageRank

algorithm [149] on the graph to determine the rank of each sentence in a document,

and thereby extract the key sentences as summary of that document. The dumping

factor in PageRank was set to 0.85.

Datasets

We use the benchmark datasets from DUC 2001 and 2002, where the task3 is

to generate a 100-words summary for each document in the datasets. Table 5.1

shows some basic statistics about the datasets. DUC-2001 and DUC-2002 has 486

and 471 documents respectively. The average number of sentences per document is

40 and 28, respectively. For each document, 2-3 short reference (human authored)

summaries are available, which we use as gold summaries in our evaluation. The

human authored summaries are of approximately 100 words. On average, the datasets

have 2.17 and 2.04 human authored summaries per document, respectively. The

sentence representations are learned independently a priori from the same source

documents.

Metrics

We use the widely used automatic evaluation metric ROUGE [150] to evaluate

the system-generated summaries. ROUGE is a recall oriented metric that computes

n-gram recall between a candidate summary and a set of reference (human authored)

summaries. Among the variants, ROUGE-1 (i.e., n = 1) has been shown to correlate

well with human judgments for short summaries [150]. Therefore, we only report

ROUGE-1 in this paper. The configuration for ROUGE in our case is: -c 99 -2 -1 -r

3http://www-nlpir.nist.gov/projects/duc/guidelines

93

Table 5.2.: Statistics about Reuters and Newsgroups dataset.

Dataset #Doc. Total Annot. Train Test #Class
#sen. #sen #sen. #sen.

Reuters 9,001 42,192 13,305 7,738 3,618 8
Newsgroups 7,781 95,809 22,374 10,594 9,075 8

1000 -w 1.2 -n 4 -m -s -a -l 100. Depending on the task at hand, ROUGE collects

the first 100 words from the summary after removing the stop words to compare with

the corresponding reference summaries.

5.4.2 Topic Classification and Clustering Tasks

Classification and Clustering Tools

We train a maximum entropy (MaxEnt) classifier using the vectors learned from

the models with no additional fine-tuning for evaluation. Following [54], we restrict

ourselves to linear classifier. The two main reasons are: (i) it makes reproducing

results of experiments straight-forward, and (ii) it allows us to better analyze the

quality of the learned vector representation. For clustering, we use k-means++ [151]

algorithm for producing the clusters given the vector representation from the models.

One can use non-linear classifiers (e.g., neural networks) or spectral clustering algo-

rithms [152,153] to achieve additional performance gain, but it is not the goal of our

paper.

Datasets

We use 20-Newsgroups and Reuters-21578 datasets for the classification and clus-

tering tasks. These datasets are publicly available and widely used for text catego-

rization tasks.

94

20 Newsgroups

This dataset is a collection of approximately 20, 000 news documents4. The doc-

uments are organized into 20 different topics. Some of these topics are closely re-

lated (e.g., talk.politics.guns and talk.politics.mideast), while others are diverse in

nature (e.g., misc.forsale and soc.religion.christian). We selected 8 diverse topics

in our experiments from the 20 topics. The selected topics are: talk.politics.mideast,

comp.graphics, soc.religion.christian, rec.autos, sci.space, talk. politics.guns, rec.sport.

baseball, and sci.med.

Reuters-21578

Reuters Newswire5 has 21578 documents covering 672 topics. We use “ModApte”

train-test split and selected documents only from the most 8 frequent topics. The

selected topics are: acq, crude, earn, grain, interest, money-fx, ship, and trade.

Generating Sentence-level Topic Annotations

As discussed earlier, for our evaluation on topic classification and clustering tasks,

we have to create topic annotations at the sentence-level from the document-level

topic labels. One option is to assume that all the sentences from a document have the

same topic label as the document. However, this naive assumption propagates a lot of

noises. Although sentences in a document collectively address a common topic, not all

sentences are directly linked to that topic, rather some of them play supporting roles.

To minimize this noise, we use the extractive (unsupervised) summarizer described in

Section 5.4.1 to select the top P% (in our case, P = 20) sentences as representatives

of the document and label them with the same topic label as the document. We

used Sen2Vec [44] representation to compute cosine similarity between two sentences

in LexRank. Table 5.2 shows statistics of the resulting datasets. Note that the

4http://qwone.com/ jason/20Newsgroups/
5http://kdd.ics.uci.edu/databases/reuters21578/

95

sentence vectors are learned independently from an entire dataset (Total #sen.), and

the annotated part (Annot. #sen.) is used for topic classification and clustering

evaluation.

Metrics

We use accuracy (Acc), Macro-averaged F1 measure (F1), and Cohen’s Kappa

(κ) as evaluation metrics for comparing the performance of various vector represen-

tation methods on topic classification task. For measuring topic clustering perfor-

mance [154], we use V-measure (V), and adjusted mutual information (AMI) score.

V-measure is the harmonic mean of the homogeneity and completeness score. The idea

of homogeneity is that the topic distribution within each cluster should be skewed to

a single topic. Completeness score determines whether all members of a given topic

are assigned to the same cluster. On the other hand, AMI measures the agreement of

two assignments, in our case the clustering and the topic distribution. It is normal-

ized against chance. All these measures are bounded by [0, 1]. Higher score means a

better clustering.

5.5 Experimental Settings

In this section, we briefly discuss the models that we compare with and the settings

(hyperparameters, training) for our models.

5.5.1 Models Compared

We compare our models against a non-distributed baseline and a number of ex-

isting distributed representation models.

96

Non-Distributed Baseline

We implement a TF-IDF model as our non-distributed baseline. The model

encodes representation of a sentence as the count of a set of word-features weighted

by tf-idf. We use all the words in the corpus as features.

Sen2Vec

We described Sen2Vec in details as a content-only model in Section 5.3.1. We use

Mikolov’s implementation6 of Sen2Vec as it gave better results than gensim’s 7 ver-

sion when validated on the sentiment treebank [155]. Following the recommendation

by [44], we concatenate the vectors learned by DM and DBOW models. The con-

catenated vectors gave improvements over individual ones on our tasks. The vector

dimensions in DM and DBOW were fixed to 300, thus the concatenation yields vectors

of 600 dimensions. For this model, we only tune the window size (k) hyper-parameter.

W2V-avg

Sen2Vec model learns word representation along with the sentence representation.

To encode a sentence using W2V-avg, we perform an averaging operation on the vector

representation (learned from Sen2Vec) of all the words in a particular sentence. For

this model, we consider window size (k) as a tuning parameter.

C-PHRASE

C-PHRASE [156] learns vector representation of words. It extended the CBOW

model [47] to consider the hierarchical nature of syntactic phrasing. As the imple-

mentation of this model is not publicly available, we use pretrained word vectors from

6https://code.google.com/archive/p/word2vec/
7https://radimrehurek.com/gensim/

97

Table 5.3.: Similarity network statistics.

Dataset # Nodes # Edges Avg. # Edges

20 Newsgroups 95809 1370149 14.03
Reuters-21578 42192 471163 11.17
DUC 2001 19549 321423 20.15
DUC 2002 13129 216492 16.49

author’s webpage.8 We first perform simple addition of word sequences of a sentence

for obtaining vector representation of a sentence, and then normalize the vector. Nor-

malized vectors performed better on our tasks than the ones obtained through simple

addition. The latent dimension of the pretrained word vectors is 300.

FastSent

FastSent [48] is an additive model that learns representation of words in a sentence

by predicting words of adjacent sentences. We use the autoencode version of the

model, which also predicts the words of the current sentence. In FastSent, a sentence

vector is obtained by adding the word vectors. We run the model on our corpus

to learn sentence representations of 600 dimensions, and tune the window size (k)

hyperparameter on the dev. set.

Skip-Thought

Skip-Thought [54] uses an encoder-decoder approach to reconstruct adjacent sen-

tences of an input sentence. Training Skip-Thought is computationally expensive [48],

and it requires a lot of data to learn an effective model. We use the pre-trained

combine-skip model9, which was trained on the book corpus [157] along with vocab-

ulary expansion. Skip-thought vectors are of 4800 dimensions.

8http://clic.cimec.unitn.it/composes/cphrase-vectors.html
9https://github.com/ryankiros/skip-thoughts

98

Table 5.4.: Optimal values of the hyper-parameters for different models on different
tasks.

Dataset Task Sen2Vec FastSent W2V-avg Reg-sim Reg-dis
(win. size) (win. size, reg. str.)

Reuters
clas. 8 10 10 (8, 1.0) (8, 1.0)
clus. 12 8 12 (12, 0.3) (12, 1.0)

Newsgroups
clas. 10 8 10 (10, 1.0) (10, 1.0)
clus. 12 12 12 (12, 1.0) (12, 1.0)

DUC 2001 rank. 10 12 12 (10, 0.8) (10, 0.5)
DUC 2002 rank. 8 8 10 (8, 0.8) (8, 0.3)

99

5.5.2 Hyper-Parameter Tuning and Training Details

All of our models except the retrofitted ones (i.e., Ret-sim, Ret-dis) are trained

with stochastic gradient descent (SGD), where the gradient is obtained via back-

propagation. We used subsampling of frequent words in the classification layer as

described in [47], which together with negative sampling give significant speed-ups in

training. The number of noise samples (S) in negative sampling was 5. In all our

models, the embeddings vectors (φ, ψ) were of 600 dimensions, which were initialized

with random numbers sampled from a small uniform distribution, U (−0.5/d, 0.5/d).

The weight vectors ω’s were initialized with zero. Increasing the dimension may in-

crease performance, however, it also increases the complexity of the model. So, we

keep it 600, which is a reasonable size [48]. For Ret-sim, and Ret-dis, the number

of iteration was set to 20 following [6]. For the similarity context, the intra- and

across-document thresholds δ and γ were set to 0.5 and 0.8, respectively. Table 5.3

shows the basic statistics of the resultant similarity network for all of our datasets.

For each dataset, we randomly selected 20% documents from the whole set to form

a held-out validation set on which we tune the hyperparameters of the models. To

find the best parameter values, we optimize F1 for classification, AMI for clustering

and ROUGE-1 for summarization on the validation set. Window size (k) parameter

for our model and the baselines were tuned over {8, 10, 12 } and the regularization

strength parameter was tuned over {0.3, 0.6, 0.8, 1.0}. Table 5.4 shows the optimal

values of each hyper-parameter for the four datasets. We evaluate our models on

the test set with these optimal values, run each test experiment five times and take

the average to avoid any random behavior appearing in the results. We observed the

standard deviation to be quite low.

5.6 Results and Discussion

We present our results on topic classification and clustering in Table 5.5 and

Table 5.6, and results on ranking (summarization) in Table 5.7. The results in each

100

Table 5.5.: Performance of our models on topic classification task in comparison to
Sen2Vec.

Topic Classification Results

Reuters Newsgroups
F1 Acc κ F1 Acc κ

Sen2Vec 83.25 83.91 79.37 79.38 79.47 76.16

TF-IDF (−) 3.51 (−) 2.68 (−) 3.85 (−) 9.95 (−) 9.72 (−) 11.55
W2V-avg (+) 2.06 (+) 1.91 (+) 2.51 (−) 0.42 (−) 0.44 (−) 0.50
C-PHRASE (−) 2.33 (−) 2.01 (−) 2.78 (−) 2.49 (−) 2.38 (−) 2.86
FastSent (−) 0.37 (−) 0.29 (−) 0.41 (−) 12.23 (−) 12.17 (−) 14.21
Skip-Thought (−) 19.13 (−) 15.61 (−) 21.8 (−) 13.79 (−) 13.47 (−) 15.76

Ret-sim (+) 0.92 (+) 1.28 (+) 1.65 (+) 2.00 (+) 1.97 (+) 2.27
Ret-dis (+) 1.66 (+) 1.79 (+) 2.30 (+) 5.00 (+) 4.91 (+) 5.71

Reg-sim (+) 2.53 (+) 2.53 (+) 3.28 (+) 3.31 (+) 3.29 (+) 3.81
Reg-dis (+) 2.52 (+) 2.43 (+) 3.17 (+) 5.41 (+) 5.34 (+) 6.20

Table 5.6.: Performance of our models on topic clustering tasks in comparison to
Sen2Vec.

Topic Clustering Results

Reuters Newsgroups
V AMI V AMI

Sen2Vec 42.74 40.00 35.30 34.74

TF-IDF (−) 21.34 (−) 20.14 (−) 29.20 (−) 30.60
W2V-avg (−) 11.96 (−) 10.18 (−) 17.90 (−) 18.50
C-PHRASE (−) 11.94 (−) 10.80 (−) 1.70 (−) 1.44
FastSent (−) 15.54 (−) 13.06 (−) 34.40 (−) 34.16
Skip-Thought (−) 29.94 (−) 28.00 (−) 27.50 (−) 27.04

Ret-sim (+) 3.72 (+) 3.34 (+) 5.22 (+) 5.70
Ret-dis (+) 4.56 (+) 4.12 (+) 6.28 (+) 6.76

Reg-sim (+) 4.76 (+) 4.40 (+) 12.78 (+) 12.18
Reg-dis (+) 7.40 (+) 6.82 (+) 12.54 (+) 12.44

101

Table 5.7.: ROUGE-1 scores of the models on DUC datasets in comparison with
Sen2Vec.

DUC’01 DUC’02

Sen2Vec 43.88 54.01

TF-IDF (+) 4.83 (+) 1.51
W2V-avg (−) 0.62 (+) 1.44
C-PHRASE (+) 2.52 (+) 1.68
FastSent (−) 4.15 (−) 7.53
Skip-Thought (+) 0.88 (−) 2.65

Ret-sim (−) 0.62 (+) 0.42
Ret-dis (+) 0.45 (−) 0.37

Reg-sim (+) 2.90 (+) 2.02
Reg-dis (−) 1.92 (−) 8.77

102

table are shown in four groups. Sen2Vec belongs to the first group. The second group

contains other existing models described in Section 5.5.1. The third group contains

our retrofitted models with discourse context (Ret-dis) and similarity context (Ret-

sim). Finally, the fourth group contains our regularized models, again considering

discourse (Reg-dis) and similarity (Reg-sim) contexts. We report absolute value of

the performance metrics for Sen2Vec, and for other models, we present their scores

relative to Sen2Vec. In the following, we highlight the key points of our results.

Skip-Thought and FastSent perform poorly on our tasks

Unexpectedly, FastSent and Skip-Thought perform quite poorly on our tasks.

Skip-Thought, in particular, has the worst performance on topic classification and

clustering tasks. The model gives small improvement over Sen2Vec on ranking task

in one of the datasets (DUC’01). These results contradict the claim made by [54] that

skip-thought vectors are generic. To investigate if the poor results are due to shift

of domains (book vs. news), we also trained Skip-Thought on our training corpora

with vector size 600 and vocabulary size 30K. The performance was even worse.

We hypothesize, this is due to our training set size, which may not be enough for

the heavy model. Another reason could be that Skip-Thought does not perform any

inference to extract the vector using a context – although the model was trained to

generate neighboring sentences, context was ignored when the encoder was used to

extract the sentence vector. Also, by learning representations to predict contents of

adjacent sentences, the learned vectors might capture linguistic properties that are

more specific to the neighbors than the current sentence. Similar justification holds for

FastSent, which performed quite poorly in five out of six settings (Tasks + Datasets

combinations). Furthermore, FastSent does not learn sentence representation directly,

rather it adds word vectors to get sentence representations.

103

Existing distributed methods show promising results

Apart from Skip-Thought and FastSent, other existing distributed models show

promising results. As Table 5.5 shows, Sen2Vec outperforms TF-IDF representation

by a good margin on both classification and clustering tasks – up to 11.6 points on

classification, and up to 30.6 points on clustering. W2V-avg shows 2 points improve-

ment over Sen2Vec in topic classification on Reuters. The performance of C-PHRASE

and W2V-avg is close to Sen2Vec for classification, however, the models lag substan-

tially behind on clustering. Overall, Sen2Vec appears to be the strongest baseline for

these two tasks.

In the ranking task (Table 5.7), Sen2Vec gets ROUGE-1 scores of 43.88 and 54.01

on DUC’01 and DUC’02 datasets, respectively. C-PHRASE outshines other dis-

tributed models on this task, and provides 2.52 and 1.68 points improvements over

Sen2Vec. W2V-avg shows mixed results in summarization; it performs better than

Sen2Vec on one dataset and worse on the other. Surprisingly, TF-IDF becomes the

best performer on DUC’01, and gives improvements of 4.15 points over Sen2Vec.

Overall, the results indicate that TF-IDF is a strong baseline for the summarization

task.

Regularized and Retrofitted models outperform Sen2Vec

The retrofitting and regularized models improve over Sen2Vec on both classifica-

tion and clustering tasks, showing gains of up to 6.2 points on classification and up

to 12.8 points on clustering. We observe similar patterns in ranking given that the

model considers the right context (ignoring the mixed results for retrofitted models).

The improvements in most cases are significant. This demonstrates that contextual

information is beneficial for these tasks.

104

Regularized models are the best performer

Our regularized models (Reg-sim, Reg-dis) performs best in five out of six set-

tings (Dataset + Task combination). From the results presented in Table 5.5, we

observe that regularized models are the top-performer in topic classification and clus-

tering tasks. For topic classification on Newsgroups, our model gives around 6 points

improvement over Sen2Vec and 8 points over C-PHRASE in all the metrics (F1,

Acc and κ). The improvements are even larger for clustering – about 13 points

over Sen2Vec and 15 points over C-PHRASE. Similarly, on Reuters dataset, Reg-dis

gives around 3 and 7 points improvements over Sen2Vec in topic classification and

clustering tasks, respectively.

Regularized models also perform well on summarization task in Table 5.7 – best

in DUC’02 and second best in DUC’01. Given that the existing models fail to beat

the TF-IDF baseline on this task, our results are rather encouraging.

Regularization is better than retrofitting given the right context

From the third and fourth groups of results in Table 5.5, it is clear that Reg-dis

and Reg-sim are better models than their retrofitted counterparts. Reg-sim also

outperforms Ret-sim in ranking (Table 5.7) by 2 to 3 points. The good performance

comes from the fact that regularized models consider contextual information during

training rather than in the post-processing step. Thus, the model can better adjust

contributions from different components (prediction vs. regularization) accordingly.

Discourse context is good for topic classification and clustering

Discourse context perform better than similarity context in most cases on clas-

sification and clustering tasks. From Table 5.5, we notice that, Ret-dis outper-

form Ret-sim by up to 3 points in classification and by about 1 point in clustering.

Reg-dis and Reg-sim perform similarly on Reuters dataset for classification and on

105

Newsgroup dataset for clustering. However, Reg-dis outperform Reg-sim by a wide

margin on Newsgroup dataset for classification and on Reuters dataset for clustering.

The primary reason is that sentences appearing together in a discourse tend to ad-

dress the same (sub)topic [11]. Discourse context is cheaper to obtain as it is readily

available (consider only adjoining sentences). For obtaining similarity context, we

need to obtain the similarity network as described in Section 5.3.2.

Similarity context is good for summarization

Similarity context is more suitable than discourse context for summarization –

Reg-sim is the best performer in DUC’02 dataset and the second best in DUC’01

dataset. Similarity context is based on a direct measure of similarity, and consider

relations beyond adjacency. From a context of topically similar sentences, our model

learns representations that capture linguistic aspects related to information centrality.

Other comments

We also experimented with Sequential Denoising Autoencoder (SDAE) and Se-

quential Autoencoder (SAE) models proposed in [48]. However, they performed poorly

on our tasks (thus not shown in the table). For example, SAE gave accuracies of

around 40% on reuters and 18% on newsgroups. This is similar to what [48] ob-

served. They propose to use pretrained word embeddings to improve the results. We

did not achieve significant gains by using pretrained embeddings on our tasks.

5.7 Chapter Summary

In this paper, we have proposed a set of novel models for learning vector represen-

tation of sentences that consider not only content of a sentence but also context of a

sentence in the text. We have explored two different ways to incorporate contextual

information: (i) by retrofitting the initial vectors learned from a content-based model

106

using context, and (ii) by regularizing the content-based model with a graph smooth-

ing factor. We have also introduced two types of context: (i) discourse context, and

(ii) similarity context.

While existing evaluation methods ignore contexts, we created an evaluation setup

that allows one to infer sentence vectors using contextual information. We evaluated

our models on tasks involving classifying and clustering sentences into topics, and

ranking sentences for extractive single-document summarization. Our results across

multiple datasets show impressive gains over existing distributed models in all evalu-

ation tasks. The discourse context was found to be beneficial for topic classification

and clustering, whereas the similarity context was beneficial for summarization.

In this study, we restrict the evaluation of our models on topic classification and

clustering using automatically annotated dataset. We would like to explore further

how our models perform compared to the existing compositional models [50, 54],

where documents with sentence-level sentiment annotation exists. Existing datasets

– IMDB [158] or Sentiment Treebank [50], are not suitable for our purpose because

in IMDB, there is no sentence-label annotation, and in sentiment treebank, there is

no contextual information. We plan to create a dataset through manual annotation

in the future.

107

6. Con-S2V: A GENERIC FRAMEWORK FOR

INCORPORATING EXTRA-SENTENTIAL CONTEXT

INTO Sen2Vec

6.1 Introduction

For many text processing tasks that involve classification, clustering, or ranking of

sentences, vector representation of sentences is a prerequisite. Bag-of-words (BOW)

based vector representation has been used traditionally in these tasks, but in recent

years, it has been shown that distributed representation, in the form of condensed real-

valued vectors, learned from unlabeled data outperforms BOW based representations

[44]. It is now well established that distributed representation captures semantic

properties of linguistic units and yields better generalization [144,159].

However, most of the existing methods to devise distributed representation for

sentences consider only the content of a sentence or its grammatical structure [44,155]

disregarding its context. But, sentences rarely stand on their own in a text, rather

the meaning of one sentence depends on the meaning of others within its context. For

example, sentences in a text segment address a common topic [11]. At a finer level,

sentences are connected by certain coherence relations (e.g., elaboration, contrast)

and acts together to express a coherent message holistically [10].

Our work is built on the following hypothesis: since the meaning of a sentence can

be best interpreted within its context, its representation should also be inferred from

its context. Several recent works attempt to learn sentence representations which

support the above hypothesis by utilizing words or word sequences of neighboring

sentences [48, 54]. However, by learning representations to predict content of neigh-

boring sentences, existing methods may learn semantic and syntactic properties that

are more specific to the neighbors rather than the sentence under consideration. Fur-

108

thermore, these methods either make a simple BOW assumption or disregard context

when extracting a sentence vector.

In contrast to the existing works, we consider neighboring sentences as atomic

linguistic units, and propose novel methods to learn the representations of a given

sentence by jointly modeling content and context of a sentence. Our work considers

two types of context: discourse and similarity. The discourse context of a given

sentence v comprises with its previous and the following sentence in the text. On the

other hand, the similarity context is based on a user defined similarity function; thus

it allows any sentences in the text to be in the context of v depending on how similar

that sentence is with v based on the chosen function.

Our proposed computational model for learning the vector representation of a

sentence comprises three components. The first component models the content by

asking the sentence vector to predict its constituent words. The second component

models the distributional hypotheses [160] of a context. The distributional hypothe-

sis conveys that the sentences occurring in similar contexts should have similar rep-

resentations. Our computation model captures this preference by using a context

prediction component. Finally, the third component models the proximity hypothe-

ses of a context, which also suggests that sentences that are proximal should have

similar representations. Our method achieves this preference by using a Laplacian

regularizer. To this end, we consider the sentence representation learning problem as

an optimization problem whose objective function is built with expressions from the

above three components and we solve this optimization problem by using an efficient

online algorithm.

We evaluate our sentence representation for learning models on multiple infor-

mation retrieval tasks: topic classification and clustering, and single-document sum-

marization. Our evaluation on these tasks across multiple datasets shows impressive

results for our model, which outperforms the best existing models by up to 7.7 F1-score

in classification, 15.1 V -score in clustering, 3.2 ROUGE-1 score in summarization. We

found that the discourse context performs better on topic classification and clustering

109

tasks, while similarity context performs better on summarization. We make our code1

and pre-processed dataset2 publicly available.

6.2 Related Work

Extensive research has been conducted on learning distributed representation of

linguistic units both in supervised (task-specific) and in unsupervised (task-agnostic)

settings. In this paper, we focus on learning sentence representations from unlabeled

data.

Two log-linear models are proposed in [53] for learning representations of words:

continuous bag-of-words (CBOW) and continuous skip-gram. CBOW learns word

representations by predicting a word given its (intra-sentential) context. The skip-

gram model on the other hand learns representation of a word by predicting the words

in a context. [156] proposed C-PHRASE, an extension of CBOW, where the context

is extracted from a syntactic parse of the sentence. Simple averaging or addition

of word vectors to construct sentence vectors often works well [161], and serves as

baselines in our experiments.

CBOW and skip-gram models are extended in [44] to sentences and documents

by proposing distributed memory (DM) and distributed bag-of-words (DBOW) mod-

els. In these models, similar to words, a sentence is mapped to an unique id and

its representation is learned using contexts of words in the sentence. DM predicts

a word given a context and the sentence id, where DBOW predicts all words in a

context independently given the sentence id. Since these models are agnostic to sen-

tence structure, they are quite fast to train. However, they disregard extra-sentential

context of a sentence.

Sequential denoising autoencoder (SDAE) and FastSent are proposed in [48] for

modeling sentences. SDAE employs an encoder-decoder framework, similar to neu-

ral machine translation (NMT) [51], to denoise an original sentence (target) from its

1https://github.com/tksaha/con-s2v/tree/jointlearning
2https://www.dropbox.com/sh/ruhsi3c0unn0nko/AAAgVnZpojvXx9loQ21WP_MYa?dl=0

110

corrupted version (source). FastSent is an additive model to learn sentence repre-

sentation from word vectors. Given a sentence as BOW, it predicts the words of its

adjacent sentences. The auto-encode version of FastSent also predicts the words of

the current sentence. SDAE composes sentence vectors sequentially, but it disregards

context of the sentence. FastSent, on the other hand, is a BOW model that considers

neighboring sentences.

Another context-sensitive model is Skip-Thought [54], which uses the NMT frame-

work to predict adjacent sentences (target) given a sentence (source). Since the en-

coder and the decoder use recurrent layers to compose vectors sequentially, SDAE and

Skip-Thought are very slow to train. Furthermore, by learning representations to pre-

dict content of neighboring sentences, these methods (FastSent and Skip-Thought)

may learn linguistic properties that are more specific to the neighbors rather than

the sentence under consideration.

By contrast, we encode a sentence by treating it as an atomic unit like word,

and similar to DBOW, we predict the words to model its content. Similarly, context

is considered in our model by treating neighboring sentences as atomic units. This

abstraction makes our model quite fast to train.

6.3 The Model

We hypothesize that the representation of a sentence depends not only on its

content words, but also on other sentences in its context. It will be convenient to

present our learning model using graph.

Let G = (V,E) be a graph, where V = {v1,v2, · · · ,v|V |} represents the set

of sentences in our corpus, and edge (vi,vj) ∈ E reflects some relation between

sentences vi and vj. A sentence vi ∈ V is a sequence of words (v1
i , v

2
i , · · · , vMi), each

coming from a dictionary D. We define N (vi) as the set of neighboring sentences of

vi, which constitutes extra-sentential context for sentence vi. We formalize relation

between sentences and context later in Section 6.3.3.

111

Let φ : V → Rd be the mapping function from sentences to their distributed

representations, i.e., real-valued vectors of d dimensions. Equivalently, φ can be

thought of as a look-up matrix of size |V | × d, where |V | is the total number of

sentences. Our aim is to learn φ(vi) by incorporating information from two different

sources: (i) the content of the sentence, vi = (v1
i , v

2
i , · · · , vMi); and (ii) the context

of the sentence in the graph, i.e., N (vi). Let 〈vi〉lt = (vt−li , . . . , vti , . . . , v
t+l
i) denote a

window of 2l+1 words around the word vti in sentence vi, and Ci = |N (vi)| denote the

context size for sentence vi. We define our model as a combination of three different

loss functions:

J(φ) =
∑

vi∈V

∑

v∈〈vi〉lt
j∼U(1,Ci)

[
Lc(vi, v) + Lg(vi,vj) +

Lr(vi,N (vi))
]

(6.1)

where loss Lc(vi, v) is used to model the content of a sentence vi, and other two

loss functions are for modeling the context of the sentence. We define Lc(vi, v) as

the cost for predicting the content word v using the sentence vector φ(vi) as input

features. Similarly, Lg(vi,vj) is defined as the cost for predicting a neighboring

node vj ∈ N (vi), again using the sentence vector φ(vi) as input. The third loss

Lr(vi,N (vi)) is a graph smoothing regularizer defined over the context of vi, which

encourages two proximal sentences to have similar representations.

To learn the representation of a sentence vi using Eq. 6.1, for each content word v

in a window 〈vi〉lt, we sample a neighboring node vj from N (vi), uniformly at random,

with replacement. We use the sentence vector φ(vi) (under estimation) to predict v

and vj, respectively. A regularization is performed to smooth the estimated vector

with respect to the neighboring vectors. Fig. 6.1 shows instances of our model for

learning the representation of sentence v2 within a context of two other sentences: v1

and v3.

112

v3 : Looks New

v2 : Great Condition

v1 : I have an NEC multi-
sync 3D monitor for sale

(a)

v2

φ

great v1

v1 v3

(b)

Lc Lg

Lr Lr

condition v3

v1 v3

v2

φ

(c)

Lc Lg

Lr Lr

Fig. 6.1.: Two instances (see (b) and (c)) of our model for learning representation of
sentence v2 within a context of two other sentences: v1 and v3 (see (a)). Directed
and undirected edges indicate prediction loss and regularization loss, respectively, and
dashed edges indicate that the node being predicted is randomly sampled. (Collected
from: 20news-bydate-train/misc.forsale/74732. The central topic is “forsale”.).

113

We can use the standard softmax function for the prediction tasks. Formally, the

negative log probability of an item o (can be a content word or a neighboring node)

given the sentence vector φ(vi) is

− log p(o|vi) = −wT
o φ(vi) + log

∑

o′∈O
exp

(
wT
o′φ(vi)

)
(6.2)

where O is the set of all possible items (i.e., vocabulary of words or set of all

nodes), and w’s are the weight parameters. Optimization is typically performed us-

ing gradient-based online methods, such as stochastic gradient descend (SGD), where

gradients are obtained via backpropagation.

Unfortunately, training could be impractically slow on large corpora due to sum-

mation over all items in O (Eq. 6.2), which needs to be performed for every training

instance (vi, o). Several methods have been proposed to address this issue includ-

ing hierarchical softmax [162], noise contrastive estimation [163], and negative sam-

pling [47]. We use negative sampling, which samples negative examples to approx-

imate the summation term. Specifically, for each training instance (vi, o), we add

S negative examples {(vi, os)}Ss=1 by sampling os from a known noise distribution ψ

(e.g., unigram, uniform). The negative log probability in Eq. 6.2 is then formulated

as such to discriminate a positive instance o from a negative one os:

− log σ
(
wT
o φ(vi)

)
− log

S∑

s=1

Eos∼ψ σ
(
−wT

osφ(vi)
)

(6.3)

where σ is the sigmoid function defined as σ(x) = 1/(1 + e−x), and w’s and φ(vi) are

similarly defined as before. Negative sampling thus reduces the number of computa-

tions needed from |O| to S + 1, where S is a small number (5 – 10) compared to the

vocabulary size |O| (26K – 139K).

In the following, we elaborate on our methods for modeling content and context

of a sentence.

114

6.3.1 Modeling Content

Our approach for modeling content of a sentence is similar to the distributed bag-

of-words (DBOW) model of [44]. Given an input sentence vi, we first map it to a

unique vector φ(vi) by looking up the corresponding vector in the sentence embedding

matrix φ. We then use φ(vi) to predict each word v sampled from a window of words

in vi. Formally, the loss for modeling content using negative sampling is

Lc(vi, v) = − logσ
(
wT
v φ(vi)

)

− log
S∑

s=1

Evs∼ψc σ
(
−wT

vsφ(vi)
)

(6.4)

where σ is the sigmoid function as defined before, wv and wvs are the weight vectors

associated with words v and vs, respectively, and ψc is the noise distribution from

which vs is sampled. In our experiments, we use unigram distribution of words raised

to the 3/4 power as our noise distribution, in accordance to [47].

By asking the same sentence vector (under estimation) to predict its words, the

content model captures the overall semantics of the sentence. The model has O(d×
(|V |+ |D|)) parameters.

6.3.2 Modeling Context

Our content model above attempts to capture the overall meaning of a sentence

by looking at its words. However, sentences in a text are not independent, rather the

meaning of a sentence depends on its neighboring sentences. For instance, consider

the second and the third sentences in Fig. 6.1(a). When the sentences are considered

in isolation, one cannot understand what they are talking about (i.e., monitor for

sale). This suggests, since meaning of a sentence can be best interpreted within its

context, the representation of the sentence should also be inferred from its context.

We distinguish between two types of contextual relations between sentences: (i) dis-

115

tributional similarity, and (ii) proximity. Each of these corresponds to a loss in our

model (Eq. 6.1), as we describe them below.

Modeling Distributional Similarity: Our sentence-level distributional hypothe-

sis [160] is that if two sentences share many neighbors in the graph, their representa-

tions should be similar. We formulate this in our model by asking the sentence vector

to predict its neighboring nodes. More formally, the loss for predicting a neighboring

node vj ∈ N (vi) using the sentence vector φ(vi) is

Lg(vi,vj) = − log σ
(
wT
j φ(vi)

)

− log
S∑

s=1

Ejs∼ψg σ
(
−wT

jsφ(vi)
)

(6.5)

where wj and ws
j are the weight vectors associated with nodes vj and vsj , respectively,

and ψg is the noise distribution over nodes from which vsj is sampled. Similar to our

content model, ψg is defined as unigram distribution of nodes raised to the 3/4 power.

The unigram distribution is computed based on the occurrences of the nodes in the

neighborhood sets, {N (vi)}|V |i=1. This model has O(d× (|V |+ |V |)) parameters.

Modeling Proximity: According to our proximity hypothesis, sentences that are

proximal in their contexts, should have similar representations. We use a Laplacian

regularizer to model this. Formally, the regularization loss for modeling proximity for

a sentence vi in its context N (vi) is

Lr(vi,N (vi)) =
λ

Ci

∑

vk∈N (vi)

||φ(vi)− φ(vk)||2 (6.6)

where Ci = |N (vi)| as defined before, and λ is a hyper-parameter to control regular-

ization strength.

116

Rather than including the Laplacian as a regularizer in the objective function,

another option is to first learn sentence embeddings using other components of the

model (e.g., first two loss functions in Equation 6.1), and then retrofit them using the

Laplacian as a post-processing step. [6] adopted this approach to incorporate lexical

semantics (e.g., synonymy, hypernymy) into word representations. We compare our

approach with retrofitting in Section 6.5.

6.3.3 Context Types

In this section we characterize context of a sentence. We distinguish between two

types of context: discourse context and similarity context.

Discourse Context: The discourse context of a sentence is formed by the previous

and the following sentences in the text. As explained before, the order of the sentences

carries important information. For example, adjacent sentences in a text are logically

connected by certain coherence relations (e.g., elaboration, contrast) to express the

meaning [10]. On a coarser level, sentences in a text segment (e.g., paragraph) address

a common (sub)topic [11]. The discourse context thus captures both coherence and

topic structures of a text.

Similarity Context: While the discourse context covers important discourse phe-

nomena like coherence and cohesion [164], some applications might require a context

type that is based on more direct measures of similarity, and considers relations

between all possible sentences in a document and possibly across multiple docu-

ments. For example, graph-based methods for topic segmentation [145] and sum-

marization [142] rely on complete graphs of sentences, where edge weights represent

cosine similarity between sentences. In an empirical evaluation of data structures

for representing discourse coherence, [146] advocate for a graph representation of

discourse allowing non-adjacent connections.

117

Our similarity context allows any other sentence in the corpus to be in the con-

text of a sentence depending on how similar they are. To measure the similarity, we

first represent the sentences with vectors learned by Sen2Vec [44], then we measure

the cosine between the vectors. We restrict the context size of a sentence for com-

putational efficiency, while still ensuring that it is informative enough. We achieve

this by imposing two kinds of constraints. First, we set thresholds for intra- and

across-document connections: sentences in a document are connected only if their

similarity value is above 0.5, and sentences across documents are connected only if

their similarity is above 0.8. Second, we allow up to 20 most similar neighbors.

Algorithm 5: Training Con-S2V with SGD.

Input : set of sentences V , graph G = (V,E)
Output: learned sentence vectors φ
1. Initialize model parameters: φ and w’s;
2. Compute noise distributions: ψc and ψg
3. repeat

for each sentence vi ∈ V do
for each content word v ∈ vi do

(a) Generate a positive pair (vi, v) and S negative pairs {(vi, vs)}Ss=1

using ψc;
(b) Take a gradient step for Lc(vi, v);
(c) Sample a neighboring node vj from N (vi);
(d) Generate a positive pair (vi,vj) and S negative pairs {(vi,vsj)}Ss=1

using ψg;
(e) Take a gradient step for Lg(vi,vj);
(f) Take a gradient step for Lr(vi,N (vi));

end

end

until convergence;

6.3.4 Training

Algorithm 5 illustrates the SGD-based algorithm to train our model. We first

initialize the model parameters; the sentence vectors φ are initialized with small

random numbers sampled from uniform distribution U (−0.5/d, 0.5/d), and the weight

118

parameters w’s are initialized with zero. We then compute the noise distributions ψc

and ψg for Lc(vi, v) and Lg(vi,vj) losses, respectively.

We iterate over the sentences in our corpus in each epoch of SGD, as we learn their

representations. Specifically, to estimate the representation of a sentence, for each

word token in the sentence, we take three gradient steps to account for the three loss

functions in Eq. 6.1. By making the same number of gradient updates, the algorithm

weights equally the contributions of content and context.

6.4 Evaluation Tasks

Different methods have been proposed to evaluate sentence representation models

[48]. However, unlike most existing methods, our model learns representation of a

sentence by exploiting contextual information in addition to the content.3 To be able

to evaluate our models, we thus require corpora of annotated sentences with ordering

and document boundaries preserved, i.e., documents with sentence-level annotations.

To the best of our knowledge, no previous work has used or released such corpora for

learning sentence representation. In this work, we automatically create large corpora

of documents with sentence-level topic annotations, which are then used to evaluate

our models on topic classification and clustering tasks. Additionally, we evaluate

our models on a ranking task of generating extractive single-document summaries.

In the interest of coherence, we present the summarization task, followed by topic

classification and clustering.

6.4.1 Extractive Summarization

Extractive summarization is often considered as a ranking problem, where the

goal is to select the most important sentences to form an abridged version of the

source document(s) [148]. Unsupervised methods are the predominant paradigm

3For this reason, we did not evaluate our models on tasks previously used to evaluate sentence
representation models.

119

Table 6.1.: Basic statistics about the DUC datasets.

Dataset #Doc. #Avg. Sen. #Avg. Sum.

DUC 2001 486 40 2.17
DUC 2002 471 28 2.04

for determining sentence importance. We use the popular graph-based algorithm

LexRank [142]. The input to LexRank is a graph, where nodes represent sentences

and edges represent cosine similarity between vector representations (learned by mod-

els) of the two corresponding sentences. We run the PageRank [149] on the graph to

compute importance of each sentence in the graph.4 The top-ranked sentences are

extracted as the summary sentences.

Data: We use the benchmark datasets from DUC-2001 and DUC-2002, and evalu-

ate our representation models on the official task of generating a 100-words summary

for each document in the datasets.5 The sentence representations are learned indepen-

dently a priori from the same source documents. Table 6.1 shows some basic statistics

about the datasets. For each document, 2-3 short (≈ 100 words) human authored

reference summaries are available, which we use as gold summaries for automatic

evaluation.

Metric: We use the widely used automatic evaluation metric ROUGE [150] to eval-

uate the system-generated summaries. ROUGE computes n-gram recall between

a system-generated summary and a set of human-authored reference summaries.

Among the variants, ROUGE-1 (i.e., n = 1) has been shown to correlate well with

human judgments for short summaries [150]. Therefore, we only report ROUGE-1 in

this paper.

4The dumping factor in the PageRank was set to 0.85.
5http://www-nlpir.nist.gov/projects/duc/guidelines

120

Table 6.2.: Statistics about Reuters and Newsgroups.

Dataset #Doc. Total Annot. Train Test #Class
#sen. #sen #sen. #sen.

Reuters 9,001 42,192 13,305 7,738 3,618 8
Newsgroups 7,781 95,809 22,374 10,594 9,075 8

121

6.4.2 Topic Classification and Clustering

We evaluate our models by measuring how effective the learned vectors are when

they are used as features for classifying or clustering the sentences into topics. Text

categorization has now become a standard in evaluating cross-lingual word embed-

dings [147]. We use a MaxEnt classifier and a K-means++ [151] clustering algorithm

for classification and clustering tasks, respectively.

Data: We use the standard text categorization corpora: Reuters-21578 and 20-

Newsgroups. Reuters-21578 (henceforth Reuters) is a collection of 21, 578 news docu-

ments covering 672 topics.6 20-Newsgroups (henceforth Newsgroups) is a collection of

about 20, 000 news articles organized into 20 different topics.7 We used the standard

train-test splits (ModApte split for Reuters) split, and selected documents only from

the 8 most frequent topics in both datasets. The selected topics for Reuters dataset

are: acq, crude, earn, grain, interest, money-fx, ship, and trade. The topics selected

for Newsgroups dataset are: sci.space, sci.med, talk.politics.guns, talk.politics.mideast,

rec.autos, rec.sport.baseball, comp.graphics, and soc.religion.christian.

Generating Sentence-level Topic Annotations: As mentioned above, both

Newsgroups and Reuters datasets come with document-level topic annotations. How-

ever, we need sentence-level annotations for our evaluation. One option is to assume

that all the sentences of a document share the same topic label as the document.

However, this naive assumption induces a lot of noise. Although sentences in a doc-

ument collectively address a common topic, not all sentences are directly linked to

that topic, rather they play supporting roles. To minimize this noise, we employ our

extractive summarizer introduced in Section 6.4.1 to select the top 20% sentences of

each document as representatives of the document, and assign them the same topic

label as the topic of the document. We used Sen2Vec [44] representation to compute

6http://kdd.ics.uci.edu/databases/reuters21578/
7http://qwone.com/ jason/20Newsgroups/

122

cosine similarity between two sentences in LexRank. Table 6.2 shows statistics of the

resulting datasets. Note that the sentence vectors are learned independently from an

entire dataset (#Total Sen. column in Table 6.2).

Metrics: We report raw accuracy, macro-averaged F1-score, and Cohen’s κκκ for

comparing classification performance. For clustering, we report V-measure [154] and

adjusted mutual information or AMI [165]. We use all the annotated sentences

(train+test in Table 6.2) for comparing clustering performance.

6.5 Experiments

In this section, we present our experiments — the models we compare, their

settings, and the results.

6.5.1 Models Compared

We compare our representation learning model against several baselines and ex-

isting models. We also experiment with a number of variations of our proposed model

considering which components of the model are active, types of context, and how we

incorporate the context. For clarity, in our tables we show results divided into five

evaluation groups:

(I) Existing Distributed Models: This group includes Sen2Vec [44], W2V-avg,

C-PHRASE [156], FastSent [48], and Skip-Thought [54].

We used Mikolov’s implementation8 of Sen2Vec, which gave better results than

gensim’s version when validated on the sentiment treebank [166]. Following the rec-

ommendation by [44], we concatenate the vectors learned by DM and DBOW models.

The concatenated vectors also performed better on our tasks.

8https://code.google.com/archive/p/word2vec/

123

For W2V-avg, we obtain a sentence vector by averaging the word vectors learned

by training a skip-gram Word2vec [47] on our training set. Since code for C-PHRASE

is not publicly available, we use pre-trained word vectors (of 300 dimensions) available

from author’s webpage.9 We first add the word vectors to obtain a sentence vector,

then we normalize the vector with l2 normalization. Normalized vectors performed

better on our tasks than the ones obtained by simple addition.

We use the auto-encode version of FastSent (FastSent+AE) since it considers

both content and context of a sentence. For Skip-Thought, we use the pre-trained

combine-skip model that concatenates the vectors encoded by uni- and bi-skip mod-

els.10 The resultant vectors are of 4800 dimensions. The model was originally trained

on the BookCorpus11 with a vocabulary size of 20K words, however, it uses publicly

available CBOW Word2vec vectors to expand the vocabulary size to 930, 911 words.

(II) Non-distributed Model: We use TF-IDF as our non-distributed baseline,

where a sentence is represented by tf*idf weighting of its words.

(III) Retrofitted Models: We compare our approach of modeling context with

the retrofitting method of [6]. We first learn sentence vectors using the content model

only (i.e., by turning off contextual components in Eq. 6.1). Then we retrofit these

vectors with the graph Laplacian Lr(vi,N (vi)) to encourage the revised vectors to

be similar to the vectors of neighboring sentences and also similar to their prior

representations. We consider two types of graph contexts: discourse (Ret-dis) and

similarity (Ret-sim).

(IV) Regularized Models: We compare with a variant of our model, where the

loss to capture distributional similarity Lg(vi,vj) is turned off. This model considers

the same information as the retrofitting model (i.e., content and proximity), but trains

the vectors in a single step. Its comparison with our complete model will tell us how

9http://clic.cimec.unitn.it/composes/cphrase-vectors.html
10https://github.com/ryankiros/skip-thoughts
11http://yknzhu.wixsite.com/mbweb

124

Table 6.3.: Optimal values of the hyper-parameters for different models on different
tasks.

Dataset Task Sen2Vec FastSent W2V-avg Reg-sim Reg-dis Con-S2V-sim Con-S2V-dis
(win. size) (win. size, reg. str.) (win. size, reg. str.)

Reuters
clas. 8 10 10 (8, 1.0) (8, 1.0) (8, 0.8) (8, 1.0)
clus. 12 8 12 (12, 0.3) (12, 1.0) (12,0.8) (12, 0.8)

Newsgroups
clas. 10 8 10 (10, 1.0) (10, 1.0) (10, 1.0) (10, 1.0)
clus. 12 12 12 (12, 1.0) (12, 1.0) (12, 0.8) (10, 1.0)

DUC 2001 sum. 10 12 12 (10, 0.8) (10, 0.5) (10, 0.3) (10, 0.3)
DUC 2002 sum. 8 8 10 (8, 0.8) (8, 0.3) (8, 0.3) (8, 0.3)

much distributional similarity contributes to the overall performance. We define

regularizers on two types of contexts: discourse (Reg-dis) and similarity (Reg-sim).

(V) Our Models: We experiment with two variants of our combined model, Con-

S2V: one with discourse context (Con-S2V-dis), and the other with similarity con-

text (Con-S2V-sim).

6.5.2 Model Settings

The representation dimensions were set to 300 in DM and DBOW models. The

concatenation of the two vectors yields 600 dimensions for Sen2Vec. For a fair compar-

ison, the dimensions in all other models that we train (except pre-trained C-PHRASE

and Skip-Thought) were fixed to 600. All the prediction-based models were trained

with SGD. Retrofitting was done using iterative method [6] with 20 iterations. The

number of noise samples (S) in negative sampling was set to 5. We also used subsam-

pling of frequent words [47], which together with negative sampling give significant

speed-ups in training.

For each dataset described in Section 6.4, we randomly selected 20% documents

from the training set to form a held-out validation set on which we tune the hyper-

parameters. Window size (k) is a hyper-parameter that is common to all models.

The regularized models have an additional hyper-parameter, regularization strength

125

Table 6.4.: Performance of our models on topic classification task in comparison to
Sen2Vec.

Topic Classification Results

Reuters Newsgroups
F1 Acc κ F1 Acc κ

Sen2Vec 83.25 83.91 79.37 79.38 79.47 76.16

TF-IDF (−) 3.51 (−) 2.68 (−) 3.85 (−) 9.95 (−) 9.72 (−) 11.55
W2V-avg (+) 2.06 (+) 1.91 (+) 2.51 (−) 0.42 (−) 0.44 (−) 0.50
C-PHRASE (−) 2.33 (−) 2.01 (−) 2.78 (−) 2.49 (−) 2.38 (−) 2.86
FastSent (−) 0.37 (−) 0.29 (−) 0.41 (−) 12.23 (−) 12.17 (−) 14.21
Skip-Thought (−) 19.13 (−) 15.61 (−) 21.8 (−) 13.79 (−) 13.47 (−) 15.76

Ret-sim (+) 0.92 (+) 1.28 (+) 1.65 (+) 2.00 (+) 1.97 (+) 2.27
Ret-dis (+) 1.66 (+) 1.79 (+) 2.30 (+) 5.00 (+) 4.91 (+) 5.71

Reg-sim (+) 2.53 (+) 2.53 (+) 3.28 (+) 3.31 (+) 3.29 (+) 3.81
Reg-dis (+) 2.52 (+) 2.43 (+) 3.17 (+) 5.41 (+) 5.34 (+) 6.20

Con-S2V-sim (+) 3.83 (+) 3.55 (+) 4.62 (+) 4.52 (+) 4.50 (+) 5.21
Con-S2V-dis (+) 4.29 (+) 4.04 (+) 5.22 (+) 7.68 (+) 7.56 (+) 8.80

(λ). We tuned with k ∈{8, 10, 12} and λ ∈{0.3, 0.6, 0.8, 1}, and we optimized F1

for classification, AMI for clustering, and ROUGE-1 for summarization. Table 6.3

shows the hyper-parameters and their optimal values for each task. We evaluated our

models on the test sets with these optimal values. We ran each experiment five times

and take the average of the evaluation measures to avoid any randomness in results.

6.5.3 Classification and Clustering Results

Table 6.4 and 6.5 shows the results of the models on topic classification and

clustering tasks, respectively. The scores are shown in comparison to Sen2Vec.

Unsurprisingly, Sen2Vec outperforms TF-IDF representation (row 6) by a good

margin on both tasks. It gets improvements of up to 11.6 points on classification,

and up to 30.6 points on clustering. This is inline with the finding of [44], and

126

Table 6.5.: Performance of our models on topic clustering tasks in comparison to
Sen2Vec.

Topic Clustering Results

Reuters Newsgroups
V AMI V AMI

Sen2Vec 42.74 40.00 35.30 34.74

TF-IDF (−) 21.34 (−) 20.14 (−) 29.20 (−) 30.60
W2V-avg (−) 11.96 (−) 10.18 (−) 17.90 (−) 18.50
C-PHRASE (−) 11.94 (−) 10.80 (−) 1.70 (−) 1.44
FastSent (−) 15.54 (−) 13.06 (−) 34.40 (−) 34.16
Skip-Thought (−) 29.94 (−) 28.00 (−) 27.50 (−) 27.04

Ret-sim (+) 3.72 (+) 3.34 (+) 5.22 (+) 5.70
Ret-dis (+) 4.56 (+) 4.12 (+) 6.28 (+) 6.76

Reg-sim (+) 4.76 (+) 4.40 (+) 12.78 (+) 12.18
Reg-dis (+) 7.40 (+) 6.82 (+) 12.54 (+) 12.44

Con-S2V-sim (+) 14.98 (+) 14.38 (+) 13.68 (+) 13.56
Con-S2V-dis (+) 9.30 (+) 8.36 (+) 15.10 (+) 15.20

127

demonstrates the benefits of using distributed representation over sparse BOW rep-

resentations.

Simple averaging of Word2vec vectors performs quite well for classification, espe-

cially, on Reuters, where it outperforms Sen2Vec by 1.9 to 2.5 points. [48] also reported

similar findings on five out of six datasets. However, averaging does not perform well

on clustering, where the scores are 10.2 to 18.5 points below than Sen2Vec.

Simple addition-based composition of C-PHRASE word vectors performs poorly

on both tasks – lower than Sen2Vec by 2 to 3 points on classification and by 1.4 to

11.9 points on clustering.

Unexpectedly, FastSent and Skip-Thought perform quite poorly on both tasks.

Skip-Thought, in particular, has the worst performance on both tasks. These results

contradict the claim made by [54] that skip-thought vectors are generic. To investigate

if the poor results are due to shift of domains (book vs. news), we also trained Skip-

Thought on our training corpora with vector size 600 and vocabulary size 30K. The

performance was even worse. We hypothesize, this is due to our training set size,

which may not be enough for the heavy model. Also, Skip-Thought does not perform

any inference to extract the vector using a context – although the model was trained

to generate neighboring sentences, context was ignored when the encoder was used

to extract the sentence vector.

Regarding FastSent, although its classification performance on Reuters is compa-

rable to Sen2Vec, it performs poorly on Newsgroups, where the measures are 12.2

to 14.3 points lower than Sen2Vec. The differences get bigger in clustering. The

reason could be that FastSent does not learn sentence representations directly, rather

it simply adds the word vectors. Note that FastSent was outperformed by TF-IDF

in all classification tasks in [48]. Since both Skip-Thought and FastSent learn rep-

resentations by predicting contents of adjacent sentences, the learned vectors might

capture linguistic properties that are more specific to the neighbors.

We also experimented with SAE and SDAE auto-encoders proposed in [48]. How-

ever, they performed poorly on our tasks (thus not shown in the table). For example,

128

SAE gave accuracies of around 40% on reuters and 18% on newsgroups. This is similar

to what [48] observed. They propose to use pretrained word embeddings to improve

the results. We did not achieve significant gains by using pretrained embeddings on

our tasks.

Interestingly, the retrofitting and regularized models improve over Sen2Vec on

both tasks, showing gains of up to 6.2 points on classification and up to 12.8 points

on clustering. The improvements in most cases are significant. This demonstrates

that proximity hypothesis is beneficial for these tasks.

When we compare regularized models with retrofitted ones, we observe that reg-

ularized models consistently outperform the retrofitted counterparts on both tasks

with improvements of up to 1.6 points on classification and up to 7.6 points on clus-

tering. This demonstrates that incorporating contextual information by means of

regularization is more effective than retrofitting. This could be due to the fact that

regularization approach induces contextual information while learning the vectors

from scratch as opposed to revising them in a post-processing step.

Finally, we observe further improvements for our complete models (Con-S2V vari-

ants) on both tasks. Compared to the best regularized models, our models deliver

improvements of up to 2.6 points on classification and up to 7.6 points on clustering.

This demonstrates that by including the neighbor prediction component to model

distributional similarity, our model captures complementary contextual information

to what is captured by the regularized models. A comparison between the context

types reveals that discourse context is more beneficial than similarity context in most

cases, especially for classification. For clustering, similarity context gives better re-

sults in a few cases (e.g., on Reuters). Overall, our best model outperforms the best

existing model by up to 8.8 and 15.20 points on classification and clustering tasks,

respectively.

129

Table 6.6.: ROUGE-1 scores of the models on DUC datasets in comparison with
Sen2Vec.

DUC’01 DUC’02

Sen2Vec 43.88 54.01
W2V-avg (−) 0.62 (+) 1.44
C-PHRASE (+) 2.52 (+) 1.68
FastSent (−) 4.15 (−) 7.53
Skip-Thought (+) 0.88 (−) 2.65

TF-IDF (+) 4.83 (+) 1.51

Ret-sim (−) 0.62 (+) 0.42
Ret-dis (+) 0.45 (−) 0.37

Reg-sim (+) 2.90 (+) 2.02
Reg-dis (−) 1.92 (−) 8.77

Con-S2V-sim (+) 3.16 (+) 2.71
Con-S2V-dis (+) 1.15 (−) 4.46

6.5.4 Summarization Results

Table 6.6 shows ROUGE-1 scores of our models on DUC datasets for the sum-

mary length of 100 words. W2V-avg performs well achieving comparable score to

Sen2Vec on DUC’01 and 1.4 points improvement on DUC’02. C-PHRASE outper-

forms Sen2Vec by 2.5 and 1.7 points on DUC’01 and DUC’02, respectively. FastSent

and Skip-Thought again perform disappointingly. Sen2Vec outperforms FastSent by

4.15 and 7.53 points on DUC’01 and DUC’02, respectively. Skip-Thought performs

comparably to Sen2Vec on DUC’01, but gets worse on DUC’02.

Interestingly, TF-IDF performs quite well on this task. It gives the top score on

DUC’01 (i.e., 48.7 ROUGE-1), and an improvement of 1.5 points over Sen2Vec on

DUC’02. These results suggest that existing distributed representation methods are

inferior to traditional methods in modeling aspects that are necessary for measuring

sentence importance.

130

Retrofitted models give mixed results and fail to get significant improvement over

Sen2Vec. On the other hand, with similarity context, regularized model improves over

Sen2Vec by 2 to 3 points. This again suggests that regularization is a better method

to incorporate context proximity. By including the neighbor prediction component to

incorporate distributional similarity, our combined model improves the scores further;

it achieves the second best result on DUC’01, and becomes top-performer on DUC’02.

It is not surprising that similarity context is more suitable than discourse context for

this task. From a context of topically similar sentences, our model learns representa-

tions that capture linguistic aspects related to information centrality. Given that the

existing models fail to beat the TF-IDF baseline on this task, our results are rather

encouraging.

6.6 Chapter Summary

We have presented a novel model to learn distributed representation of sentences

by considering content as well as context of a sentence. Our results on tasks involving

classifying, clustering and ranking sentences confirm that extra-sentential contextual

information is crucial for modeling sentences, and this information is best captured by

our model that comprises a neighbor-based prediction component and a regularization

component to capture distributional similarity and contextual proximity, respectively.

One important property of our model is that it encodes a sentence directly, and it

considers neighboring sentences as atomic units. Apart from the improvements that

we achieve in various tasks, this property makes our model quite efficient to train

compared to compositional methods like encoder-decoder models (e.g., SDAE, Skip-

Thought) that compose a sentence vector from the word vectors. Encoder-decoder

approaches attempt to capture the structure of a sentence, which could be beneficial

to model long distance relations between words (e.g., negation in sentiment classifi-

cation). It would be interesting to see how our model compares with compositional

models on sentiment classification task. However, this would require creating a new

131

dataset of comments with sentence-level sentiment annotations. We intend to create

such datasets and evaluate the models in the future.

132

7. FS3: A SAMPLING BASED METHOD FOR TOP-K

FREQUENT SUBGRAPH

7.1 Introduction

Frequent subgraph mining (FSM) is an important research task. It has application

in various disciplines, including cheminformatics [167] for solving QSAR (Quantita-

tive Structure Activity Relationship) task, and in bioinformatics [168] for finding

structural motifs. The main objective of FSM is finding subgraph patterns that are

frequent across a collection of graphs. This task is additionally useful in applica-

tions related to graph classification [169], and graph indexing [170]. Over the years,

a good number of algorithms for FSM task have been proposed, examples include

Subdue [55], AGM [56], FSG [57], gSpan [58], DMTL [59], and Gaston [60]. These

algorithms are proven to be effective for finding frequent subgraphs from input graphs

which are small and sparse. However, for general graphs, FSM task is not scalable due

to the inherent complexity of this task. In fact, Horváth et al. have shown that FSM

cannot be solved in output polynomial time [171]. Lack of scalability of FSM task

has also been shown empirically. For instance, Chaoji et al. have applied FSM on a

small dataset (only 3 graphs) of protein-protein interaction (PPI) graphs, each graph

having 2154 nodes on average; but the most efficient of the existing FSM algorithms

cannot mine all the frequent subgraphs from this dataset in a days of running even

with 100% support value [64]. In this era of big data, we are collecting graphs of even

larger size, so an efficient algorithm for FSM is of huge demand.

We provide some quantitative evidences so that a reader can comprehend the

intractability of the FSM task. For this we mine subgraphs from a protein structure

(PS) dataset (see Section 7.6 for details) that contains only 90 graphs, each having 67

133

Table 7.1.: Highlights of the lack of scalability of existing frequent subgraph mining
methods while mining the PS dataset. Time indicates the running time of the fastest
version of Gaston [60].

Dataset Statistics: # graphs: 90, avg. # vertices: 67, avg. # edges: 268
node labels: 20, # edge labels: 3

Time vs Max. subgraph size Time vs different minsup Search Space vs subgraph size
(min-sup is fixed at 40%) (Max-size is fixed at 8)

Max-size Time Support Time Size Induced Subgraph
(%) Count

8 6 minutes 28 1.1 hours 6 26 millions
9 2.8 hours 22 3.5 hours 7 157 millions
10 > 1.5 days 17 9 hours 8 947 millions

11 >16 hours 9 5000 billions

134

vertices and 268 edges, on average. First we use a 64-bit binary of gSpan software 1.

Using a large 40% support the mining task could last only for few minutes, after that

the OS aborted the gSpan process because by that time it had consumed more than

80% of 128 GB memory of a server machine. We then attempted the identical mining

task using Gaston software [60] 2, which kept running for more than 2 days. Then

we ran the same software with a restriction on the maximum size of the subgraphs

to be mined (only Gaston allows such an option), yet the mining task seems to be

insurmountable.

Table 7.1 shows more detailed postmortem of Gaston’s lack of scalability for the

subgraph mining task on the PS dataset. When the maximum subgraph size is 8,

with 40% support the mining task finishes in 6 minutes. But, for size 9, it takes

2.8 hours, and for size 10, it does not terminate in 1.5 days. Note that, in real-life

application 40% is considered too large for a support threshold, so we also show some

results for smaller support value while restricting the maximum size of subgraph to

8. Even for a restriction of max-size 8, for 11% support the process takes more than

16 hours. In the same table, we also show the size of the subgraph space 3 rounded

to nearest millions. As we can see, the subgraph space grows exponentially, and for

size 9 the number of subgraphs exceeds 5 billions. Graphs with 67 vertices and 268

edges are actually considered small in many domains, still we can’t mine such graphs

completely using existing subgraph mining methods.

Lack of scalability of the existing subgraph mining methods for relatively larger

input graphs is simply due to the inherent intractability of the FSM task as it is

defined. Note that, following the existing definition of FSM, these algorithms ensure

completeness, i.e., they enumerate all the subgraphs that are frequent under a user-

defined minimum support value. So, they must traverse the entire subgraph space,

1gSpan is the most polular among the existing graph mining methods. We use the Linux
binary available from the inventors: http://www.cs.ucsb.edu/~xyan/software/gSpan.

htm
2Gaston is the fastest graph mining algorithm at present as verified by independent com-
parison, see [172]
3It consists of graphs that are induced subgraph of at least one of the database graphs.

135

which grows exponentially with the size of the input graph. Although existing meth-

ods prune part of the search space by using the support values of the known frequent

subgraphs and applying anti-monotone properties of the support, this effort cannot

cope up with the exponential expansion of the search space as the input graphs be-

come larger and denser. Besides, any exact method for frequent subgraph mining

needs to solve numerous subgraph isomorphism (SI)—a known NP -complete prob-

lem, which denies the FSM problem the status of output polynomial class [171]. One

may sacrifice the completeness and obtain a subset of frequent patterns as a partial

output by using one of the existing algorithms; however, because of artificial order

of enumeration imposed by the above mining algorithms, the patterns in the partial

output are not representative of the entire set of frequent patterns. Even distributed

methods of FSM [173, 174] fail to reverse the scalability downfall, as the gain of dis-

tributed methods is polynomial, whereas the search space expansion with respect to

the size of the input graphs is exponential.

To cope with the scalability problem, in recent years researchers have proposed

alternative paradigms of frequent subgraph mining, which are neither complete, nor

enumerative. Some of these works find frequent patterns considering their subsequent

application in knowledge discovery tasks. For example, there are methods [175, 176]

that directly mine frequent subgraphs for using them as features for graph classifica-

tion. Another family of works [65,66] perform MCMC random walk over the space of

frequent patterns and sample only a subset of all the frequent subgraphs. However,

the above sampling based methods also solve numerous SI task for ensuring that the

random walk traverses only over the frequent patterns, so they are also not scalable

when the input graphs are large.

There also exist some methods that find a subset of frequent subgraphs, such as,

frequent induced subgraphs (AcGM [177]), maximal frequent subgraphs (SPIN [61],

MARGIN [62]), or close frequent subgraphs (CloseGraph [63]). In each of these

cases, since the objective is to mine a specific subset of frequent subgraphs, effective

pruning strategies can be exploited, which, sometimes, offer noticeable speed-up over

136

traditional frequent subgraph mining. Nevertheless pruning typically offers a constant

factor speed-up, which is not much beneficial while mining large input graphs. Also,

like traditional subgraph mining all these methods perform numerous SI task for

ensuring the minimum support threshold, so they also are not scalable. We ran both

AcGM, and SPIN on the PS dataset; for a 10% support both the methods run for a

while, but the mining task was aborted by the OS after the software consumed more

than 100 GB of memory.

Scalable subgraph mining is achievable if the database contains graphs from a

restricted class for which the SI task is tractable (polynomial). Some recent works on

subgraph mining actually explored this option, examples include mining outerplaner

graphs [178], or mining graphs with bounded treewidth [179], or graphs where each

of the vertices have a distinct label [180]. However, except chemical graphs, for which

the treewidth value is around 3, general graphs from other domains rarely adhere

to such restrictions. The good mining performance on treelike graph is probably

the reason that the existing methods only use chemical graphs for presenting their

experiment results 4. For general graphs the only viable option is to discard the SI

test altogether. A recent work, called GAIA [169] uses this idea; however, the scope

of GAIA is limited for mining only discriminatory subgraphs that are good for graph

classification, so it is not applicable for mining frequent subgraphs.

For frequent subgraph mining task, discarding SI test is possible, only if we re-

lax the minimum support constraint such that the returned subgraphs are likely to

be frequent, but they do not necessarily satisfy a user-defined minimum support re-

quirement. This seems to be an over-simplification which evades the main purpose

of frequent pattern mining—after all, in pattern mining, the minimum support con-

straint is the threshold that decides which of the candidate patterns are frequent and

which are not. However, in practice, the minimum support constraint has small sig-

nificance, because a user seldom knows what is the right value of minimum support

4DTP dataset (available from http://dtp.nci.nih.gov/branches/dscb/repo_open.

html) is the most popular graph mining dataset, which is mostly tree with an average
vertex and edge size of 31 and 34 respectively.

137

parameter to find the best patterns for her anticipated use [181]. Further, it is a

hard-constraint which can discard a supposedly good pattern that narrowly misses

the support threshold. An alternative to minimum support constraint can be a size

constraint, in which a user provides a size for the pattern that she is looking for; in

the context of subgraph mining, the size can be the number of vertices (or edges) that

a pattern should have. The argument in favor of this choice is that it is easier for an

analyst to define a size constraint than defining a minimum support constraint using

his domain knowledge—a size constraint can be equal to the size of a meaningful

sub-unit in the input graph. For instance, if the input graph is a social network, a

size constraint can be equal to the size of a typical community in that network.

In this work, we propose a method for frequent subgraph mining, called FS3, that

is based on sampling of subgraphs of a fixed size 5. Given a graph database G, and a

size value `, FS3 samples subgraphs of size-` from the database graphs using a 2-stage

sampling. In the first stage of a sampling iteration, FS3 chooses one of the database

graphs (say, Gi) uniformly, and in the second stage it chooses a size-` subgraph of g

using a Markov Chain Monte Carlo (MCMC) sampling. The sampling distribution of

the second stage is biased such that it over-samples the graphs that are likely to be

frequent over the entire database G. FS3 runs the above sampling process for many

times, and uses an innovative priority queue to hold a small set of most frequent

subgraphs. The unique feature of FS3 is that unlike earlier works which are based

on sampling [65], FS3 does not perform any subgraph isomorphism (SI) test, so it is

scalable to large graphs. By choosing different values of `, user can find a succinct

set of frequent subgraphs of different sizes. Also, as the number of samples increases,

FS3’s output progressively converges to the top-k most frequent subgraphs of size `.

So user can run the sampler as long as he wants to obtain more precise results.

We claim the following contributions in this work:

5The name FS3 should be read as F-S-Cube, which is a compressed representation of the
4-gram composed of the bold letters in Fixed Size Subgraph Sampler.

138

• We propose FS3, a sampling based method for mining top-k frequent subgraphs

of a given size, `. FS3 is scalable to large graphs, because it does not perform

the costly subgraph isomorphism test.

• We design several innovative queue mechanisms to hold the top-k frequent sub-

graphs as the sampling proceeds.

• We perform an extensive set of experiments and analyze the effect of every

control parameter that we have used to validate the effectiveness and efficiency

of FS3.

7.2 Background

7.2.1 Graph, Induced Subgraph, Frequent Subgraph Mining

Let G(V,E) is a graph, where V is the set of vertices and E is the set of edges. Each

edge e ∈ E is denoted by a pair of vertices (vi, vj) where, vi, vj ∈ V . A graph without

self-loop or multi edge is a simple graph. In this work, we consider simple, connected,

and undirected graphs. A labeled graph G(V,E, L,Ψ) is a graph for which the vertices

and the edges have labels that are assigned by a labeling function, Ψ : V ∪ E → L

where L is a set of labels.

A graph G′ = (V ′, E ′) is a subgraph of G (denoted as G′ ⊆ G) if V ′ ⊆ V and

E ′ ⊆ E. A graph G′ = (V ′, E ′) is a vertex-induced subgraph of G if G′ is a subgraph

of G, and for any pair of vertices va, vb ∈ V ′, (va, vb) ∈ E ′ if and only if (va, vb) ∈ E.

In other words, a vertex-induced subgraph of G is a graph G′ consisting of a subset

of G’s vertices together with all the edges of G whose both endpoints are in this

subset. In this paper, we have used the phrase induced subgraph for abbreviating the

phrase vertex-induced subgraph. If G′ is a (induced or non-induced) subgraph of G

and |V ′| = `, we call G′ a `-subgraph of G.

Let, G = {G1, G2, . . . , Gn} be a graph database, where each Gi ∈ G,∀i = {1 . . . n}
represents a labeled, undirected and connected graph. t(g) = {Gi : g ⊆ Gi ∈ G},∀i =

139

A

B F

C D D

(
G1)

A

D B

E C

(G2)

B

E

D

(G3)

(a) Graph Database

A

B
g1

B

C
g2

B

D
g3

D

E
g4

B

E
g5

D

B

E
g6

A

B

C
g7

A

B

D
g8

B

D

E
g9

B

E

D
g10

C

B

D
g11

A

B

CD
g12

B

ED
g13

(b) Frequent Subgraphs

Fig. 7.1.: (a) Graph database with 3 graphs (b) Frequent subgraph of (a) with
minsup = 2.

140

{1 . . . n}, is the support-set of the graph g. This set contains all the graphs in G that

have a subgraph isomorphic to g. The cardinality of the support-set is called the

support of g. g is called frequent if support ≥ πmin, where πmin is predefined/user-

specified minimum support (minsup) threshold. Given the graph database G, and

minimum support πmin, the task of a frequent subgraph mining algorithm is to ob-

tain the set of frequent subgraphs (represented by F). While computing support,

if an FSM algorithm enforces induced subgraph isomorphism, it obtains the set of

frequent induced subgraphs (represented by FI). It is easy to see that F ⊆ FI .

Example: In Figure 7.1, G3 is a subgraph of G2; g12 is a subgraph of G1, and G2,

but it is an induced subgraph of G1 only. Let’s consider the graphs in Figure 7.1(a) as

a database of 3 graphs, G = {G1, G2, G3}; with πmin = 2, there are thirteen frequent

subgraphs, which are shown in Figure 7.1(b). If we want to obtain only the induced

frequent subgraphs, g6, g8, g9, g10, g11, and g12 are not frequent for a minimum support

of 2, however the remaining patterns are frequent.

7.3 Related Works

Frequent subgraph discovery is a well-studied problem with many existing meth-

ods, including Subdue [55], AGM [56], FSG [57], gSpan [58], DMTL [59], and Gas-

ton [60]. All of these methods follow the definition of FSM provided in Section 7.2.

They work well for problem instances where the graphs in the graph database are

small and sparse, but they do not scale well with the size and the density of the input

graphs. Note that, the lack of scalability issue of the existing methods for the large

input graph is not a limitation of the existing methods, rather it is due to the strict

definition of the FSM task itself.

To alleviate the scalability concern, researchers have proposed some alternative

solutions, which do not discover all the frequent subgraphs. The first such attempt

is to discover only a subset of frequent subgraphs, which are maximal [61, 62], or

141

closed [63]. However for large input graphs, algorithms for finding maximal or closed

frequent subgraphs are not scalable, as they prune only a small part of the search

space. Later, Chaoji et al. [64] have proposed ORIGAMI, a graph mining method

that returns a set of random maximal frequent subgraphs. Starting from a null

graph, ORIGAMI extends the graph by adding edges randomly as long as the graph

remains frequent. Repeating this process returns a random subset of maximal fre-

quent subgraphs. The major advantage of ORIGAMI over the existing methods is

that the former generates patterns in a random order, so an incomplete pattern-set

from ORIGAMI is more representative than an equal-sized pattern-set obtained from

a partial run of other existing graph mining methods. Later, Hasan and Zaki proposed

MCMC sampling based methods for uniformly sampling of a set of frequent [65] and

maximal frequent [66] subgraphs. Due to the uniformity guaranty, such methods pro-

vide a small set of frequent subgraphs which are ideal as a representative pattern set.

However, all the above methods still solve subgraph isomorphism test for ensuring

the minimum support threshold, which makes them inefficient when the input graphs

become large. Our work complement existing works as we are interested to obtain

a solution for mining frequent subgraphs from large input graph, for which existing

methods does not scale.

There also exist works [67–71, 182] that mine frequent subgraphs from a single

input graph. Our work is related to these works as our propose method samples

subgraphs from a single graph which is chosen uniformly from the graph database.

However the objective of our work is different from these works, as they aim to

discover network motifs in a single network, but we are interested to find subgraphs

that are frequent over a collection of graphs.

7.4 Problem Formulation and Solution Approach

Our objective is to obtain a small collection of frequent subgraph patterns from a

database of large input graphs. For this, we like to design a subgraph mining method

142

that does not perform the costly subgraph isomorphism (SI) test. Without SI test,

the exact support values of a (sub)graph in the database graphs are impossible to

obtain. So, we deviate from the traditional definition of frequent that is used in

the FSM literature, rather we call a graph frequent if its expected-support (defined

in the next paragraph) is comparably higher than that of other same-sized graphs.

When a graph grows larger, its support-set naturally shrinks, so keeping the size as

an invariant makes sense, otherwise the output set of our method will be filled with

small patterns (one-edge or two-edge) that have the highest support among all the

frequent patterns. However, note that the size is only a parameter, not a constraint;

i.e., a user can always run different mining sessions with different size values as she

desires. A formal description of our research task is as below: given a graph database

G = {Gi : 1 ≤ i ≤ n}, a user-defined size value ` and an integer k, return a list

of top-k frequent `-subgraphs , where the frequency of a subgraph is determined

probabilistically.

Our solution to this task is a sampling-based method, call FS3—a sampling iter-

ation of FS3 samples a random size-` subgraph (induced or non-induced depending

on the user requirement) g from one of the database graphs (say Gi), the later chosen

uniformly. We call g frequent, if an identical copy of it is sampled from many of the

input graphs in different sampling iterations of FS3. In a sampling session, the num-

ber of distinct input graphs from which g is sampled is called its expected-support and

is denoted as supporta(g). Clearly actual support of g (support(g)) is an upper bound

of the expected support of g (supporta(g)); generally speaking, these two variables are

positively correlated, so we use expected-support as a proxy of real support, and thus

FS3 returns those `-subgraphs that are among the top-k in terms of expected-support.

There are several challenges in the above solution approach. First, when the

input graphs in G are large, for a typical `-value, the number of possible `-subgraphs

of Gi is in the order of millions (or even billions, see Table 7.1), so if we sample a

`-subgraph from Gi uniformly out of all `-subgraphs of Gi, the chance that we will

sample a frequent `-subgraph is infinitesimally small. More challenging is the fact

143

that we do not know how many `-subgraphs exist for each of the input graphs in G,

so a direct sampling method is impossible to obtain. To cope with these challenges,

FS3 invents a novel Markov Chain Monte Carlo sampling which performs a random

walk over the space of `-subgraphs of the graph Gi; in this sampling, the desired

distribution is non-uniform, which biases the walk to choose `-subgraphs that are

potentially frequent. Besides the above, another challenge of our solution approach is

that we do not have unlimited memory, so during the sampling process, we can store

only a limited number of sampled subgraphs in a priority queue; when the queue gets

full, we have to identify which of the sampled subgraphs we will continue to maintain

in the queue. FS3 solves this with a novel queue management mechanism.

7.5 Method

FS3 has two main components. A `-subgraph sampler, and a queue manager. The

first component samples a `-subgraph using MCMC sampling from a database graph,

Gi, later chosen uniformly. The second component maintains a priority queue of top-

k frequent subgraphs of the input database G. We discuss each of the components in

the following subsections.

7.5.1 MCMC Sampling of a `-subgraph from a Graph Database

The sample space of MCMC walk of FS3 is the set of `-subgraphs of a database

graph Gi. At any given time, the random walk of FS3 visits one of the `-subgraphs

of Gi. It then populates all of its neighboring `-subgraphs and (probabilistically)

chooses one from them as its next state using MH algorithm. Below, We discuss the

setup of MCMC sampling, including target distribution, and state transition.

Target Distribution: The target distribution of the MCMC walk of FS3 is biased so

that the `-subgraphs that are likely to be frequent are sampled more often. Formally,

this distribution is a scoring function f : Ω → R+; f maps each graph in Ω (set

144

of all `-subgraphs) to a positive real number such that the higher the support of

a graph, the higher its score. For efficiency sake, we want the scoring function f

to be locally computable, and computationally light. It is not easy to find such a

distribution up-front, because the support information of a `-subgraph is not available

until we discover that graph; even if we have discovered the graph, and its partial

support is available to us, we cannot use that partial support information in the

target distribution, because if we do so it will bias the walk towards some patterns

that are already been discovered, but they may not be amongst the most frequent

ones. Also remember, FS3 excludes the option of finding actual support of an `-

subgraph, because its goal is to avoid subgraph isomorphism test altogether.

In FS3, we have used two kinds of scoring functions: s1 and s2. For a subgraph

g, s1(g) is the average of the (actual) support of the constituting edges of g. Mathe-

matically, s1(g) = 1
|E(g)|

∑
e∈E(g) support(e). Here, E(g) denotes the set of edges of g.

s2(g) is the cardinality of the intersection set generated by intersecting the support-

set of each of the constituting edges of g, i.e., s2(g) =
∣∣∣
⋂
e∈E(g) support-set(e)

∣∣∣. The

intuition behind these choices is that if g is frequent, all its edges are frequent, so its

score s1(g) is high, same is true for s2(g). The reverse is not necessarily true, i.e.,

there can be a graph, for which the average support or the set intersection count of

its edge-set is high, but the graph is infrequent, so the above scoring functions may

sample a few false positive (however, no false negative) patterns. Nevertheless, in

real-life graphs the actual support of a subgraph is significantly correlated with its

s1 and s2 score, which we will show in the experiment section. Besides, when the

sampling process discovers an `-subgraph, its scores can be computed instantly from

the support-set of its edges—the latter can be obtained cheaply during the initial read

of the database graphs.

Example: Let us consider the graphs in Figure 7.1(a) as a database of 3 graphs,

G = {G1, G2, G3}, and g13 in Figure 7.1(b) as a sampled graph, G from the graph

database, G. Now, from Figure 7.1, we find the support-set of edges BD, BE and

145

DE of g13 which are {G1, G2, G3}, {G2, G3}, and {G2, G3} respectively. So, for g13,

s1(g13) = 3+2+3
3

= 2.67, and s2(g13) = 2.

Proposition 1 s1(g) ≥ support(g) and s2(g) ≥ support(g)

Proof Consider an edge e ∈ E(g). Since e ∈ E(g), support-set(e) ⊇ support-set(g),

hence support(e) ≥ support(g). Since this hold for all the edges, average-support of

the edges is an upper bound of the support of g; hence, s1(g) ≥ support(g).

To compute s2(g) we intersect the support-set(e) of all edges e ∈ g. Thus, s2(g)

considers the support of the edge-set of g, without considering the graphical constraint

imposed by g, so s2(g) ≥ support(g).

7.5.2 Markov Chains, and Metropolis-Hastings (MH) Method

The main goal of the Metropolis-Hastings algorithm is to draw samples from some

distribution s(x), called the target distribution. Here it is s1 or s2 as discussed in the

previous paragraph. It can be used together with a random walk to perform Markov

Chain Monte Carlo (MCMC) sampling. For this, the MH algorithm draws a sequence

of samples from the target distribution as follows: (1) It picks an initial state (say,

x) (2) From current state x, it samples a neighboring point y using a distribution

q(x, y), referred as proposal distribution discussed in the next paragraph; (3) Then, it

calculates the acceptance probability given in Equation 7.1, and accepts the proposal

move to y with probability α(x, y). The process continues until the Markov chain

reaches to a stationary distribution. In this work we used MH algorithm for sampling

a size-` subgraph from the database graphs.

α(x, y) = min

(
s(y)q(y, x)

s(x)q(x, y)
, 1

)
(7.1)

State Transition: FS3’s MCMC walk changes state by walking from one `-subgraph

(say g) to a neighboring `-subgraph. In our neighborhood definition, for a `-subgraph

146

1 2

3 4

5 7

6

9

8 10

11

12

(i)

1: 〈1, 2, 3, 5〉, 〈1, 2, 4, 5〉, 〈1, 3, 4, 5〉, 〈1, 2, 3, 6〉, 〈1, 2, 4, 6〉, 〈1, 3, 4, 6〉

2: 〈1, 2, 3, 6〉, 〈1, 2, 4, 6〉, 〈2, 3, 4, 6〉, 〈1, 2, 3, 9〉, 〈1, 2, 4, 9〉, 〈2, 3, 4, 9〉

3: 〈1, 2, 3, 5〉, 〈1, 3, 4, 5〉, 〈2, 3, 4, 5〉, 〈1, 2, 3, 8〉, 〈1, 3, 4, 8〉, 〈2, 3, 4, 8〉

4: 〈1, 2, 4, 7〉, 〈1, 3, 4, 7〉, 〈2, 3, 4, 7〉, 〈1, 2, 4, 8〉, 〈1, 3, 4, 8〉, 〈2, 3, 4, 8〉
〈1, 2, 4, 10〉, 〈1, 3, 4, 10〉, 〈2, 3, 4, 10〉

(ii)

(a) (i) A database graph Gi with the current state of FS3’s random walk (ii)
Neighborhood information of the current state 〈1, 2, 3, 4〉.

1 2

3 4

5 7

6

9

8 10

11

12

(i)

1: 〈1, 2, 5, 6〉, 〈1, 2, 3, 6〉

2: 〈1, 2, 3, 4〉, 〈1, 2, 4, 5〉, 〈2, 3, 4, 5〉, 〈1, 2, 3, 6〉, 〈1, 2, 4, 6〉, 〈2, 3, 4, 6〉
〈1, 2, 3, 9〉, 〈1, 2, 4, 9〉, 〈2, 3, 4, 9〉

3: 〈1, 2, 3, 4〉, 〈1, 3, 4, 5〉, 〈2, 3, 4, 5〉〈1, 2, 3, 8〉, 〈1, 3, 4, 8〉, 〈2, 3, 4, 8〉

5: 〈〉

(ii)

(b) (i) The state of random walk on Gi (Figure 7.2a) after one transition (ii)
Updated Neighborhood information.

Fig. 7.2.: State transition.

147

all other `-subgraphs that have ` − 1 vertices in common are its neighbor sub-

graph/state. To obtain a neighbor subgraph of g, FS3 simply replaces one of the

existing vertices of g with another vertex which is not part of g but is adjacent to one

of g’s vertices. Also, note that in g, if FS3 includes all the edges of Gi that are induced

by the set of the selected vertices, the sampled subgraph of FS3 is always a connected

induced subgraph of the database graphs. On the other hand, if it does not enforce

this restriction, the sampled subgraph is a non-induced subgraph. Another important

fact is that the neighborhood relation that is defined above is symmetric, which is

important in MCMC walk for maintaining the detailed balance equation [183].

Example: Suppose FS3 is sampling 4-subgraphs from the graph Gi shown in Fig-

ure 7.2a(i) using MCMC sampling. Let, at any given time the 4-subgraph, 〈1, 2, 3, 4〉
(shown in bold lines) is the current state of this random walk. In Figure 7.2a(ii), we

list its neighbor states as four comma-separated lists, one in each row. The neighbor-

list in the top row is labeled by ‘1’, which indicates that these neighbors can be

obtained from the current 4-subgraph 〈1, 2, 3, 4〉 by retaining the vertex 1 and re-

placing exactly one of the remaining vertices ({2, 3, 4}) with a new vertex which is

adjacent to vertex 1, ensuring connectedness. Similarly, the neighbors in the second

list are obtained by retaining the vertex 2 and replacing one of the remaining vertices

with a vertex from 2’s adjacency list. The information in the third and fourth lists

are populated in a similar manner. As shown in the top-list, 〈1, 2, 3, 5〉 is a neighbor

of 〈1, 2, 3, 4〉; if the random walk transitions to this state, the current state becomes

〈1, 2, 3, 5〉, which is shown in Figure 7.2b(i). In Figure 7.2b(ii), we show the up-

dated neighbor lists considering the new state. Note that, here also we have 4 set of

neighbors corresponding to 4 vertices of 〈1, 2, 3, 5〉. The neighbor-list corresponding

to vertex 5 is empty, as besides 1 and 3 (which are part of current state), 5 has no

other adjacent vertices that can be used as a replacement vertex to build a new state.

148

Algorithm 6: SampleIndSubGraph Pseudocode.

Input :
- Graph Gi

- Size of subgraph, `
[1]x← State saved at Gi ;
[2]dx ← Neighbor-count of x ;
[3]a supx ← score of graph x ;
[4]while a neighbor state y is not found do
[5] y ← a random neighbor of x;
[6] dy ← Possible neighbor of y ;
[7] a supy ← score of graph y ;
[8] accp val← (dx ∗ a supy)/(dy ∗ a supx) ;
[9] accp probablility ← min(1, accp val) ;

[10] if uniform(0, 1) ≤ accp probability then
[11] return y ;

149

Proposal Distribution: As discussed in Section 7.5.2, for applying MH algorithm,

we also need to decide on a proposal distribution, q. For FS3’s random walk the

proposal distribution is uniform, i.e., in the proposal step FS3 chooses one of g’s

neighbors uniformly. If a p-subgraph g has dg neighbors, and h is one of them, using

proposal distribution, the probability of choosing h from g is q(g, h) = 1/dg.

In Figure 6 we show the MH subroutine that samples a `-subgraph from a database

graph Gi. In Line 1, it obtains the `-subgraph, x (a state of the Markov chain) that

was saved during the last sampling from Gi in one of the previous iterations. If the

saved state is empty (happens only if it is the first graph sampled from Gi), it simply

obtains one of the `-subgraphs by growing from a random edge of Gi and returns it.

In Line 2, it populates the neighbors of x and returns the neighbor-count. In Line 3,

it computes the score of the graph x based on the chosen scoring function (s1 or s2).

It then chooses y uniformly from all the neighbors of x, populates the neighbors of

y and computes y’s score (Line 5-7). Considering the chosen scoring function as the

desired target distribution, it computes the acceptance probability of the transition

from x to y using Equation 7.1. The while loop (Line 4-11) continues until a valid

next state (a neighboring `-subgraph) is found. It then returns the newly sampled

subgraph y.

Example: Let’s name the graphs (bold lines) in Figure 7.2a and 7.2b as g1 and g2

respectively. Neighbor count of g1 is 27 and g2 is 17 (total number of states in an-

gular bracket). Say, average-edge-support of g1 and g2 in some given graph database

are 4 and 10 (taken arbitrarily) respectively. Then the acceptance probability of a

transition from g1 to g2 is: min{1, 27∗10
17∗4 } = 1.

Proposition 2 FS3’s random walk is ergodic.

Proof A Markov chain is ergodic if it converges to a stationary distribution. To

obtain a stationary distribution the random walk needs to be finite, irreducible and

150

aperiodic. The state space consisting of all `-subgraphs is finite for a given `. We also

assume that the input graph G is connected, so in this random walk any state y is

reachable from any state x with a positive probability and vice versa, so the random

walk is irreducible. Finally, the walk can be made aperiodic by allocating a self-loop

probability at every node. Thus the proposition is proved.

Proposition 3 The random walk of FS3 achieves the target probability distribution,

which is proportional to the chosen scoring function (si)

Proof An ergodic random walk achieves the target probability distribution if it sat-

isfies the reversibility condition i.e., for two neighboring states x and y, π(x)T (x, y) =

π(y)T (y, x), where π is the target distribution and T (x, y) is the transition proba-

bility from x to y. For FS3 the target distribution for a graph x, π(x) = si(x)
K

,

where K is a normalizing constant. Now, from Figure 6, it is easy to see that

π(x)T (x, y) = si(x)
K·dx min

{
1, dx∗si(y)

dy∗si(x)

}
= 1

K
min

{
si(x)
dx
, si(y)

dy

}
. Since the neighborhood

relation is symmetric, there can be a transition from the state y to x and us-

ing that we have π(y)T (y, x) = si(y)
K·dy min

{
1, dy∗si(x)

dx∗si(y)

}
= 1

K
min

{
si(y)
dy
, si(x)

dx

}
. So,

π(x)T (x, y) = π(y)T (y, x), which proves the proposition.

7.5.3 Queue Manager

FS3 runs the `-subgraph sampler for a large number of iterations so that in these

iterations, the most frequent patterns have a chance to be sampled a number of times

that is proportional to its support. Since, the number of possible `-subgraphs in a

database of large graphs can be very large, it may not be feasible to store all of them

in the main memory. So FS3 stores only a finite number of best graphs in a priority

queue. The queue manager component of FS3 implements the policy of this priority

queue (PQ).

151

For a graph g stored in the PQ, the queue manager stores four pieces of infor-

mation regarding this graph: (1) the canonical label 6 of g; (2) the expected-support

value (supporta(g)) at that instance along with the support-list; (3) the score of g,

i.e. s1(g) or s2(g) depending on which of the target distribution is used; and (4) the

time (iteration counter is used as time variable) when the supporta(g) was last incre-

mented. The canonical label is used to uniquely identify a graph in PQ to overcome

the fact that different sampling iterations may return different isomorphic forms of

the same graph. The other pieces of information are used to implement the policy of

the PQ.

Queue Eviction Strategy If the new sample is an existing graph in PQ, no eviction

is necessary. We simply insert the id of the corresponding database graph (from

where the sample was obtained) into the support-list of the graph and update the

time variable. In case the id already presents in the support-list, nothing happens.

On the other hand, if the new sample is a graph that does not present in PQ and PQ

is full, we may choose to accommodate the new graph by evicting one of the graphs

in the PQ, if certain conditions are satisfied.

To expedite the eviction decision, we maintain a total order in the PQ using a

composite order criteria and the last graph in that total order is possibly evicted. The

order uses three variables in lexicographical order: (1) expected-support (high to low);

(2) score value, s1 or s2, depending on which one is used as the target distribution of

the MCMC sampling (high to low); and (3) time (recent to old). Thus, the graph with

the least expected support occupies the last position in PQ. However, if more than

one graphs have the same value for the least expected-support, the tie situation is

resolved by placing the graph with the smallest score value in the last position. Note

that for FS3’s sampling, tie on expected-count is common as the search space is very

large. If there is a tie for the score value also, it is resolved by considering the graph

6canonical label is a string represent of a graph which is unique over all isomorphisms of
that graph; for our work we use min-dfs canonical code which is discussed in [58]

152

with the oldest update time. The intuition behind the above eviction mechanism

is easy to understand; The pattern in the last position has small expected-support

(first criterion), or small score, s1 or s2 (second criterion), or it is not being sampled

from different graphs for a long time (third criterion), which makes it less likely to

be frequent.

However, FS3’s queue manager does not simply evict the last element in PQ to

insert the newly sampled graph (say, g), rather it first confirms whether g is a better

replacement for the graph that would be evicted from the PQ. The decision is made

by using the following heuristic. If the average of the scores (s1 or s2) of the graphs

that are at the tail (lower half) of the PQ is smaller than s1(g) (or s2(g)), then

g is considered as a better replacement, and the last graph in the sorted order is

evicted. If the above condition does not satisfy, graph g is simply ignored, and the

sampling continues. The biggest advantage of this conditional eviction is that FS3

does not generate the canonical code of g, if g is an unpromising pattern. Since,

canonical code generation is much costlier than sampling, the time saved by avoiding

the code generation can be spent for performing many other sampling iterations. For

implementing the data structure of queue manager with the queue eviction policies,

FS3 uses multi-index map data structure 7, which sorts the graphs uniquely on the

canonical label and non-uniquely on the various criteria that we describe above.

7.5.4 FS3 Pseudocode

The entire pseudo-code of FS3 is shown in Figure 7. In each iteration, it samples

a `-subgraph, h from a randomly selected database graph G by calling SampleInd-

SubGraph routine shown in Figure 6. In Line 6-7, it tests whether the score of h

is better than the average score of the graphs in the bottom-half part of PQ. If this

test fails it ignores h and proceeds with the next sampling iteration; otherwise, it

generates the canonical code of h in Line 8 and use it as a key to search h is in the

7We used boost multi-index container (http://www.boost.org/doc/libs/1_53_0/libs/
multi_index/doc/index.html) as our data structure

153

Algorithm 7: FS3 Pseudocode.

Input :
- Graph Database, G
- Size of subgraph, `
- Number of samples, mIter

[1]iter ← 0, Q← ∅;
[2]while iter ≤ mIter do
[3] iter = iter + 1 ;
[4] Select a graph G ∈ G uniformly ;
[5] h← SampleIndSubgraph(G, p) ;
[6] if Q.full = true and h.score() < Q.lowerHalfAvgScore() then
[7] continue ;

[8] h.code← GenCanCode(h) ;
[9] if h ∈ Q then

[10] prevSupport = h.idset.size() ;
[11] h.idset = h.idset ∪G.id ;
[12] if h.idset.size() > prevSupport then
[13] h.insertT ime = iter ;

[14] else
[15] if Q.full = true then
[16] Q.evictLast() ;

[17] h.idset = {G.id} ;
[18] h.insertT ime = iter ;
[19] Q = Q ∪ {h} ;

[20] return Q ;

154

PQ. If h is not in PQ FS3 saves the graph h in the priority queue along with its

support-list which contains only G.id. On the other hand, if h exists in the queue,

FS3 updates its support list, and also updates its insert-time variable. For each graph

G ∈ G, the sampling process saves the latest visiting graph (state), so that any later

sampling from this graph starts from the saved state. In this way, FS3 runs |G| copy

of MCMC samplers, one for one of the input graphs in G.

7.5.5 Computation Complexity and the Choice of Parameters

FS3 has three parameters: (1) iteration count, (2) subgraph size and (3) queue

size, which decides the runtime and memory complexity of the algorithm. In each

iteration, there are three major steps: sampling, canonical code generation, and queue

operation. Sampling populates the neighbor-lists, and its cost is linear with the size of

neighbor-list of the current state, which is approximately equal to the subgraph size

(`) times the average degree of the graphs in the database. Canonical code generation

is the most costly operation as this cost is the same as the cost of graph isomorphism.

For general graph, this cost grows exponentially with the size of `. However, for

labeled graph this cost is polynomial with respect to `, if the multiplicity of the labels

in a graph is bounded by a much smaller constant than `. We use min-dfs canonical

code, which can be computed very efficiently [58]. The cost of queue operation grows

logarithmically with the size of the queue.

Typically, the user chooses ` parameter by using her domain knowledge. Also, for

applications where frequent subgraphs of different sizes are required, multiple runs

FS3 with different size value can be used. Iteration count should be chosen based on

the size of the search space; the larger the search space, the higher number of iterations

should be used so that the expected support values of sampled subgraphs are close

approximation of their actual support values. However, in real-life guessing the size

of the search space can be difficult, so we propose different methods for automatically

finding a suitable iteration count; more details of this is provided in Section 7.7.2.

155

Finally, the queue size should also be chosen based on the size of the search space;

for larger search space large queues are better. Since the queue management is very

efficient, user can simply select a large queue considering available memory.

7.5.6 Theoretical Analysis of FS3

FS3 ranks the subgraph patterns based on the expected support (supporta). In

this section, we analyze the expected value of supporta for an `-subgraph pattern

g. To simplify the analysis, we will assume that in each sampling iteration (in Line

5 of Figure 7), FS3 returns one of the `-subgraphs of the chosen database graph

uniformly. This assumption actually perform a worst-case analysis, because in general

FS3 performs a biased sampling in which the presumable frequent `-subgraphs are

sampled with higher probability.

Let, G = {G1, G2, . . . , Gn} be a graph database with n graphs. Let’s use xj to

denote the number of distinct `-subgraphs in the graphGj. Assume that the (induced)

support of a subgraph pattern g in the database G is s, and the id of the graphs in

which g occurs are z1, z2, · · · , zs.
If FS3 makes t sampling iterations, on average t/n samples are obtained from

the graph Gzi:1≤i≤s. Under the uniform sampling assumption, the probability of

sampling g from Gzi in at least one of t/n iterations is equal to 1 − (1− 1/xzi)
t/n.

Since the number of sampling iterations is typically very large, the above term is

equal to 1 − (1 − t
n·xzi

) = t
n·xzi

. So, the expected support of g, E
[
supporta(g)

]
=

t
n
× (1/xz1 + 1/xz2 + · · ·+ 1/xzs). If the number of samples are in the same order as

the number of `-subgraphs in the database graphs, the expected support converges

to the actual support and the estimation is unbiased. Note that, even if the value of

xzi are large (in the order of millions), FS3 can sample millions of iterations in a few

minutes, thus it can bring the supporta value close to the actual support effectively.

On the other hand, existing methods are not scalable as performing millions of SI

test will take months, if not years.

156

However, FS3 performs much better than a uniform sampler, as it actually per-

forms a support-biased sampling i.e. sampling is biased to sample more subgraphs

which have greater s1 or s2 value. In real-life dataset, the support of `-subgraphs

follows a heavy-tail distribution, in which a small number of truly frequent patterns

have high support, but the majority of the `-subgraphs have small support. Thus, the

acceptance probability of sampling a frequent pattern g from the graph Gzi is much

higher than t
n·xzi

. In Section 7.6.6, we will compare between FS3 and a modified

version of FS3 that uses the uniform sampling to show that FS3’s performance is

substantially better.

7.6 Experiments

We implement FS3 as a C++ program, and perform a set of experiments for

evaluating its performance for mining frequent subgraphs of a given size. We run

all the experiments in a computer with 2.60GHz processor and 4GB RAM running

Linux operating system.

7.6.1 Datasets

We use three datasets for our experiments. The first is a protein structure dataset

that we call PS. In this dataset, each graph represents the structure of a protein in

the TIM (Triose Phosphate Isomerage) family. To construct a graph from a protein

structure, we treat each amino acid residue as a vertex (labeled by letter code of the

amino acids), and connect two vertices with an edge if the Euclidean distance between

the Cα atom of the corresponding residues is at most 8Å. An edge also has a label of 1

or 2 based on whether the distance is below or above 4Å. Frequent subgraphs in such

a dataset are common structure of the homologous proteins. The statistics of this

dataset is available in Table 7.1; the same table also shows that existing graph mining

methods are not able to mine subgraphs from this dataset. Our second dataset is a

synthetic dataset (we call it Syn) that we build using the generator used in [184] with

157

parameter (ngraphs, size, nnodel, nedgel) =(0.1, 250, 20, 5). The subgraph space

of this dataset is even larger than the PS dataset, and hence, it is more difficult to

mine. Our last dataset is called Mutagenicity II (we will call it Mutagen dataset for

abbreviation); it has been used in earlier works on graph mining [185]. Note that,

it contains mostly chemical graph (avg. vertex count=14, avg. edge count=14), and

existing graph mining methods can mine this dataset easily. We use this dataset only

for comparing precision because ground truth of frequent subgraphs for this graph is

easy to obtain.

7.6.2 Experiment Setup

FS3 finds top-k frequent subgraphs with high probability. So, we measure the

performance of FS3 both from the execution time, and the quality of results for

k=500 (unless specified otherwise). To obtain the quality, we use two metrics, that

are pr@500 (precision at 500), and rank correlation metric, Tau-b. If Ha is the

set of 500 most frequent subgraphs of a given size obtained by FS3 and H is the

corresponding true set of the same size based on actual support, the metric pr@500

is |H∩Ha|×100
500

; i.e, it finds the percentage of graphs in H that also present in Ha. The

higher the value of pr@500, the better the performance of FS3. Note that, for a graph

dataset that has one billion of subgraphs of a given size, sampling frequent graphs

that belong to set H is not easy. A dumb sampler has a pr@500 value equal to 500

divided by one billion.

The metric, pr@500 only considers the presence or absence of a true positive

(actually frequent) graph in Ha, but it does not consider the order of graphs in

Ha and the order of graphs in H; in other words, it does not check whether actual

support and expected support (as obtained by FS3) have positive correlation or not.

So, we also use Tau-b metric, which is the rank correlation between actual support

and expected support of the objects in H ∩ Ha. Tau-b varies between -1 and 1. A

value of 0 means no correlation, and the higher the value above 0, the better the

158

correlation. A strong correlation provides the evidence that FS3 can indeed rank the

patterns in the order of their actual support.

For computing pr@500 and Tau-b, we need to know the true set of top 500 frequent

patterns of a given size. This is difficult to obtain for PS and Syn dataset, which

we can not mine with the existing methods. To solve this problem, we have used

GTrieScanner [69]; for an input graph GTrieScanner dumps all of its `-subgraphs; by

running this program for all the input graphs in a graph database, and grouping those

by the canonical-code of those `-subgraphs, we compute the actual support value of

all the `-subgraphs. Such exhaustive enumeration of actual support was only possible

for the Mutagen dataset for all sizes, and for the PS and Syn dataset for size up to 8.

For the later two datasets, for size larger than 8, the size of the dump of GTrieScanner

exceeds more than 1 TB of physical space of a hard-disk, which is impossible for us

to post-process. Also note that, GTrieScanner generates only the induced subgraphs,

so for this comparison we run FS3 for its induced subgraph sampling setup.

Performance of FS3 depends on the number of iterations, scoring function used,

size of the sampled patterns, and of-course the dataset. Also, choices of these values

affect the running time of an iteration. So, when comparing among different sam-

pling scenarios of FS3 we plot the performance metric along the y-axis and the time

along the x axis, and use a smooth curve to show the trend. Since, our method is

randomized, all performance metric values are average of 10 distinct runs. We keep

the priority queue size at 100K for all our experiments, (memory footprint around

200 MB) unless specified otherwise. Majority of our results are obtained by running

experiments on the PS dataset.

7.6.3 Correlation between Actual Support and Scores

In this experiment, we use PS and Mutagen dataset and mine a collection of fre-

quent patterns for a suitable size value using GTrieScanner. For each of the frequent

patterns, we also compute their score value, s1 and s2, which we have used for con-

159

 36

 46

 56

 66

 76

 36 46 56 66 76

s
1

Actual Support

Avg. Support Vs Actual Support

Pearsonr =0.53
pvalue=1.196 X 10

-305

(a) Correlation with s1 (PS)

 36

 46

 56

 66

 76

 36 46 56 66 76

s
2

Actual Support

Set Intersection Support Vs Actual Support

Pearsonr =0.75
pvalue=0.0

(b) Correlation with s2 (PS)

 10

 160

 310

 460

 10 110 210 310 410

s
1

Actual Support

Avg Support vs Actual Support

Pearsonr =0.27
pvalue=1.18 X 10

-37

(c) Correlation with s1 (Mutagen)

 10

 160

 310

 460

 10 110 210 310 410

s
2

Actual Support

Set intersection Support vs Actual Support

Pearsonr =0.39
pvalue=2.75 X 10

-43

(d) Correlation with s2 (Mutagen)

Fig. 7.3.: Correlation between support and score of a pattern.

160

structing the target distribution of MCMC sampling. Our objective is to analyze how

good our scoring functions are as a proxy of actual support of a graph.

Figure 7.3a and 7.3b show our finding for the set of frequent size-6 patterns in the

PS dataset, and Figure 7.3c and Figure 7.3d show the same for the size-8 patterns

in the Mutagen dataset. In these figures we show the scatter plot between actual

support vs s1 value (left plot) and s2 value (right plot) of these patterns. As we

can see the actual support is significantly (p-value is 0) correlated with both of the

scoring functions, for both the datasets. For PS dataset, Pearson correlation value

between actual support and s1 and between actual support and s2 are 0.53, and

0.75, respectively. For the patterns in Mutagen dataset, the values are 0.27 and 0.39,

respectively. The correlation values are smaller for Mutagen dataset—significant (p-

value is 0) nevertheless. These results are representative for frequent patterns of all

different sizes for both the datasets. Such strong correlations enable the FS3’s MCMC

walk to sample top-k frequent patterns effectively.

Another observation from this experiment is that correlation value is higher for

the set-intersection support (the s2 score), which makes s2 a better choice over s1.

Also, both the score values are always an upper bound of the actual support value

(no point below the diagonal line) as we have claimed in Lemma 1.

7.6.4 Performance of FS3 for Different Sampling Setups

In this experiment, we compare the performance of FS3 using the scoring function

s1 and s2 on PS dataset for size 7 and 8 (the true set (H) is known for these sizes).

Figure 7.4 shows the results; in the left, we show the results (pr@500, and Tau-b vs

time) for size 7, and in the right for the size 8. From the figure, we see that for

both the scores, with increasing number of samples both pr@500, and Tau-b metrics

increase almost linearly. Another observation from this figure is that the choice of

score (s1 or s2) has small effect on the performance metric, specifically for pr@500.

161

 0.1

 0.3

 0.5

 0.7

 0.9

 600 1000 1400 1800

K
e
n

d
a
ll
 T

a
u
 w

it
h
in

 f
ir
s
t

5
0
0

Time (s)

KendallTau within first 500 versus Time

s1 s2

(a) ` = 7

 10

 30

 50

 70

 90

 500 900 1300 1700

P
re

c
is

io
n

 w
it
h
in

 f
ir
s
t
5

0
0

Time (s)

Precision within first 500 versus Time

s1 s2

(b) ` = 7

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 1500 2200 2900 3600

K
e

n
d

a
ll
 T

a
u

 w
it
h
in

 f
ir
s
t

5
0
0

Time (s)

KendallTau within first 500 versus Time

s1 s2

(c) ` = 8

 10

 30

 50

 70

 1200 1900 2600 3300

P
re

c
is

io
n

 w
it
h
in

 f
ir
s
t

5
0
0

Time (s)

Precision within first 500 versus Time

s1 s2

(d) ` = 8

Fig. 7.4.: Kendall Tau, precision within first 500 for PS Dataset.

 60

 70

 80

 90

 100

 300 600 900 1200 1500 1800

P
re

c
is

io
n
 w

it
h
in

 f
ir
s
t

5
0
0

Time (s)

Precision within first 500 versus Time

s1
s2

(a) ` = 6

 30

 50

 70

 90

 1500 2500 3500 4500 5500

P
re

c
is

io
n
 w

it
h
in

 f
ir
s
t

5
0
0

Time (s)

Precision within first 500 versus Time

ℓ=7

ℓ=8

s1
s2

(b) ` = 7, 8

Fig. 7.5.: Effect of increasing running time for FS3 versus precision for PS dataset.

162

 10

 30

 50

 1200 1400 1600 1800 2000 2200

P
re

c
is

io
n
 w

it
h

in
 f

ir
s
t
5
0

0

Time(s)

Precision within first 500 versus Time

s1
s2

(a) Syn, ` = 6

 80

 90

 100

 200 300 400 500 600 700

P
re

c
is

io
n
 w

it
h

in
 f

ir
s
t
5
0

0

Time(s)

Precision within first 500 versus Time

ℓ=
ℓ=

ℓ= 8

9

10

(b) Mutagen, ` = 8, 9, 10

Fig. 7.6.: Precision for Synthetic and Mutagen dataset.

163

For Tau-b, score s2 performs slightly better than the score s1. This trend holds for

other two datasets also.

Now, we comment on the values of pr@500 and Tau-b on these figures. From

Figure 7.4(d), we see that for size 8, 1500 seconds of running of FS3 yields pr@500

value of 28%, which increases to 50% for 3700 seconds, i.e., within an hour of sampling

time, FS3 finds 50% of the most frequent graphs from a sampling space of 0.95 billions

graphs (See Table 7.1). Also note that the fastest graph mining algorithm, Gaston,

could not mine this dataset in 16 hours of time, for 11% support and the max-size

of 8. Also, within an hour or running, FS3’s Tau-b value reaches up to 0.42, which is

a significant correlation. Now, for size 7, the performance is understandably better

than the size 8 (see figure 7.4(a) and (b)), because its search space contains smaller

number of subgraphs—157 millions as reported in Table 7.1.

What happens if we run FS3 for even more iterations? The performance keeps

improving as we see in Figure 7.5. By running the sampler for 20 minutes for size 6,

1.4 hour for size 7, and 1.8 hour for size 8, we obtain 99%, 95% and 65% value for

the pr@500. The linear trend of the curve for size 8 shows that by running for more

time, the pr@500 can be improved even further.

We also run the above set of experiments for the other two datasets. In Figure 7.6a,

we show the results for Syn dataset for size 6, for which we obtain pr@500 value of

42% in around 35 minutes. The performance on this dataset is poorer than the PS

dataset, because search space in this dataset is much larger than the PS dataset.

We cannot show results for higher size for this dataset as we could not generate the

ground truth. In Figure 7.6b, we show the results for the Mutagen dataset, which

has the smallest subgraph space, so for sizes 8, 9, and 10 this dataset achieves more

than 90% pr@500 within 10 minutes.

164

 0

 100

 200

 300

 400

 500

 600

 700

5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

s
)

Subgraph Size

RunTime versus Subgraph size (PS Dataset)

TSamp TCanc TInsert

(a) PS

 0

 200

 400

 600

 800

 1000

 1200

5 6 7 8 9 10 11 12 13 14 15

T
im

e
 (

s
)

Subgraph Size

RunTime versus Subgraph size (Synthetic Dataset)

TSamp TCanc TInsert

(b) Syn

Fig. 7.7.: Runtime performance of FS3 for sampling subgraphs of different size.

165

 10

 30

 50

 70

 90

 200 400 600 800 1000 1200

P
re

c
is

io
n
 w

it
h
in

 f
ir
s
t
5
0
0

 (
s
iz

e
 6

)

Time (s)

Precision within first 500 vs. Time

uniform
s2
s1

(a) Effect of Target Distribution

Queue Precision Kendall Time

Size Tau (s)

0.5 52.3 35.4 3997

1.0 54.2 42.4 4211

2.0 53.9 55.4 4645

(b) Effect of Queue Size

Fig. 7.8.: Effect of queue Size and target distribution.

7.6.5 FS3’s Scalability with the Size, `

The execution time of FS3 has three components: sampling time, canonical code

generation time, and queue insertion time. In this experiment, we check how these

times vary as we vary the desired size of the subgraphs to be sampled (` value). For

this, we use PS and Syn dataset, and use s2 scoring function. Figure 7.7 shows the

results. As we see in the plots, the execution time increases almost linearly with the

value of ` for both the datasets. Also, FS3 spends the majority of its execution time

for sampling as it does not generate canonical code in many of its iterations. Queue

insertion time is negligible compared to sampling and canonical code generation time.

7.6.6 Impact of Target Distribution and Queue Size

FS3’s MCMC sampling uses s1 or s2 score to construct its target distribution.

In this experiment, we validate the impact of these choices by comparing their per-

formance with a case, where the target distribution is uniform, i.e., each of the `-

subgraphs of a database graph Gi has equal likelihood to be visited, that is the score

of any `-subgraph is 1, a constant (let’s call it uniform-FS3). For comparison, we

use the pr@500 metric. Figure 7.8a shows the result for PS dataset for size 6. It is

clear from this figure that by adopting s1(g) or s2(g) as the target distribution, we

achieve higher pr@500 at a faster rate. For example, within 7 minutes of sampling,

166

 20

 40

 60

 80

 100

 100 200 300 400 500

P
re

c
is

io
n

 f
o
r

d
if
fe

re
n
t

k

k

Precision Vs top-k

s1
s2

(a) Precision

 0.2

 0.4

 0.6

 0.8

 100 200 300 400 500

K
e
n
d

a
ll

T
a
u
 f

o
r

d
if
fe

re
n
t
k

k

KendallTau Vs top-k

s1
s2

(b) Kendall Tau

Fig. 7.9.: Performance of FS3 for different k.

the pr@500 score of uniform-FS3 is around 55%; on the other hand, for the same

time, the pr@500 score is around 85% for both s1(G) and s2(G).

For all our experiments we kept the priority queue size fixed to 100K. If we increase

the queue size, the memory footprint of the algorithm will increase, but the method

will be more accurate, as it will be able to store a large number of potential frequent

graphs that may turn out to be frequent at a later time. The improvement is more

prominent for the Tau-b metric than the pr@500 metric as shown in Figure 7.8b for

PS dataset and subgraph size 8.

7.6.7 Impact of k on FS3

We also study the performance of FS3 for different choices of k value, for mining

Top-k frequent patterns. For this experiment, we use PS dataset, `=7. Figure 7.9

shows the corresponding result. In Figure 7.9a, we plot the Pr@k values and in

Figure 7.9b, we plot the Kendall Tau values for different k’s between 100 and 500.

We calculate both the statistics by taking the average of 10 independent runs. As we

can see, for the entire range of k values, the performance remains almost constant.

167

7.7 Mixing Rate of Random Walk

One important aspect of any MCMC algorithm (including MH, which is essen-

tially a special kind of MCMC algorithm) is the rate at which the initial distribution

converges to the desired distribution. The mixing rate of a random walk has been

studied extensively in spectral graph theory [186], since it plays an important role in

obtaining efficient MCMC algorithms. A Markov chain is called rapidly mixing if it

is close to stationary after only a polynomial number of simulation steps, i. e., after

poly(lgm), where m is the number of states in the Markov chain. Note that, m can

be exponentially large with respect to the input size of the algorithm. An algorithm

that is rapidly mixing is considered efficient.

A method to measure the mixing rate is to find the spectral gap of the transition

probability matrix T . T has m real eigenvalues 1 = λ0 > λ1 ≥ λ2 ≥ ... ≥ λm−1 ≥ −1.

Then, the spectral gap is defined as λ = 1−max{λ1, |λm−1|}. Since the absolute values

of all the eigenvalues are less than one with the largest eigenvalue λ0 be exactly one,

the spectral gap is always between 0 and 1. The higher the spectral gap, the faster

the convergence [187]. In [188] it has been shown that the inverse of spectral gap of

a reversible Markov chain captures the mixing time of that walk. We compute the

spectral gap of the random walk for the case of size-6 subgraphs in the graphs in

the Mutagen Dataset; average spectral gap for random walk over different database

graphs is 0.08 for the score s1 and 0.065 for the score s2, which means that the mixing

time is approximately 12 unit and 15 unit, respectively. This mixing time is very good

given the size of the search space. We do not provide such research for PS dataset as

the state space for those graphs is in the order of several millions, and finding spectral

gap of such a large transition matrix is almost impossible unless special hardware is

used.

168

Table 7.2.: Probability of acceptance of FS3 for Mutagen and PS Dataset.

Mutagen PS

`= 8 `=9 `=10 `=6 `=7 `=8

Acceptance (%),
Strategy =s1

82.70
±
0.04

83.89
±
0.03

81.66
±
0.03

91.08
±
0.01

92.23
±
0.02

93.08
±
0.01

Acceptance (%),
Strategy =s2

75.27
±
0.05

76.74
±
0.03

75.20
±
0.03

85.08
±
0.05

87.46
±
0.06

89.41
±
0.07

169

7.7.1 Percentage of Acceptance

It is well-known that a large number of rejected moves in a Metropolis-Hastings

algorithm’s execution slows down the mixing of Markov chain; it also indicates a

poorly designed proposal distribution [189]. A good proposal distribution should have

a high likelihood of acceptance. As we noted in Section 7.5.2, the proposal distribution

of FS3’ is uniform. In this experiment we will empirically validate whether this is a

good choice by observing the acceptance rate of the MCMC random walk over a large

number of state transitions. For this, we run FS3’ for 1M (one million) iterations and

record the percentage of accepted transitions and average that over 10 independent

runs. We show the result in Table 7.2. As we can see, for Mutagen dataset and for

average-support target distribution (s1), the percentage of acceptance are 82.70, 83.89

and 81.66 for subgraph size-value 8, 9 and 10, respectively; for the intersection set

based target distribution (s2), the values are 75.27, 76.74, and 75.20, respectively. We

also show the standard deviation of the acceptance percentage over 10 different runs

for each cases, which is very small (less than .05). It indicates that the acceptance

probability is consistently high. For the PS dataset, the acceptance probability values

are even better—more than 0.90 for strategy s1 and more than 0.85 for strategy s2

over different subgraph sizes. The results show that the choice of uniform proposal

distribution is a good choice as a proposal distribution. Besides, it is a good-fit for

both the target distribution, s1 and s2. However, it is a slightly better fit for the

distribution s1 than the distribution s2.

7.7.2 Choosing Iteration Counts

We have shown in Section 7.6.4 that the performance of FS3 improves with the

number of sampling iterations (see Figure 7.4). But, how do we know how many

iterations would yield a representative set of frequent patterns? A simple heuristics

approach for selecting an iteration count is to stop sampling after the PQ becomes

stable. For this, we track the number of disruptions in the top-k over a given number

170

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 30 50 70 90 110 130

J
a
c
c
a
rd

 d
is

ta
n
c
e

Iteration (m)

Jaccard distance between two different chain

ℓ=6

ℓ=7

ℓ=8

Randomly Chosen Two Chain
On Average

Fig. 7.10.: Jaccard distance vs iteration count.

171

of sampling iterations; if that value falls below a threshold, we assume that the queue

is stable, and return the top-k patterns as the frequent patterns. This approach works

for all practical purposes; however, for FS3, we design a more sophisticated stopping

criteria using Gelman-Rubin Diagnostics [190]. We discuss that in the following

paragraph.

Instead of running single chain, Gelman and Rubin proposed to run more than one

chains simultaneously. If the empirical distribution of the sampling sequence of each

of these chains are similar to the empirical distribution of the sequence composed

of all the chains, they declare convergence. For FS3, the main focus is the frequent

patterns in the top-k positions of the queue. So we claim convergence, if the top-k

patterns from multiple chains are similar to each other. To achieve this, we run j (j

can be as small as 2) independent copy of FS3 (each with its own sampler and priority

queue) in a multi-threaded implementation, and calculate the average of the
(
j
2

)
pair-

wise Jaccard distances calculated from the j copies of the top-k patterns obtained

from these chains. If the Jaccard distance value converges, we stop sampling and

return the best k frequent patterns from the j queues. Given that most of today’s

processors have many cores, the practical overhead of such as implementation is only

the additional memory for the j copies of the PQ.

Figure 7.10 shows the relation between Jaccard distance and iteration count for

j = 10. In this figure, we show two graphs, one for the average Jaccard distance over

all the chains, and the other is the Jaccard distance for a pair of randomly chosen

chains. As we can see, for increasingly larger iteration count, the Jaccard distance

among the top-k patterns from different chains diminishes and for sufficiently large

value, it converges to a small value. For ` = 6 the value reaches almost zero, whereas

for p = 7 it stabilized around 0.1 and for ` = 8, the value is 0.25 within the iteration

count shown in the x-axis. This above result is a testimony of FS3’s effectiveness.

Two independent randomized processes obtain an almost identical set of frequent

patterns—which is a proof that the frequent patterns that are returned by different

runs of FS3 are truly frequent. Further, even though FS3 is a randomized method,

172

the result is reproducible as different runs of the method will return almost identical

set of top-k patterns.

7.8 Chapter Summary

In this paper, we present FS3, a sampling based method for finding frequent

induced subgraph of a given size. For large input graphs, existing algorithms for

frequent subgraph mining are completely infeasible; whereas FS3 can return a small

set of probabilistically frequent patterns of desired size in a short amount of time.

Our experiments on two real life and one synthetic dataset show that the expected

support of the graphs that FS3 samples has excellent rank correlation with their

actual support.

173

8. DISCOVERY OF FUNCTIONAL MOTIFS FROM THE

INTERFACE REGION OF OLIGOMERIC PROTEINS

USING FREQUENT SUBGRAPH MINING

8.1 Introduction

Structural dynamics and functions of many proteins are primarily controlled by

the interaction of residues at the interface region. Because of this, studying and an-

alyzing the interface region of a protein is crucial for understanding the underlying

protein machinery [82]. In existing literatures, many research works have provided a

detailed analysis of the interface region of various proteins. However, in the majority

of these works protein interface region is represented through different spatial fea-

tures; examples include interface area, interface polar residue abundance, hydrogen

bonds, solvation free energy gain from interface formation, and binding energy [191].

Such a feature-based representation—although useful for ranking of predicted docked

conformation of protein-protein complexes or for building scoring function for dock-

ing [192–194]—is not much useful for understanding protein machinery. This is due

to the fact that a feature-based representation of interface region works like a black-

box without providing much information regarding the functionalities of the protein.

So, alternative representations of interface regions are needed for providing a better

understanding of functional motifs, which are responsible for carrying out protein’s

intended functionalities.

Sequence motifs often correspond to the functional regions of a protein, such as,

catalytic sites, binding sites, structural motifs, etc. and they are considered to be

the building blocks of protein sequences [195–197]. These motifs are conserved across

different proteins and possess highly discriminative features for predicting the func-

tions of a protein [198]. However, sequence motifs are limited in their representation

174

A

B F

C D D

(
G1)

A

D B

E C

(G2)

B

E

D

(G3)

(a) Graph Database

A

B
g1

B

C
g2

B

D
g3

D

E
g4

B

E
g5

D

B

E
g6

A

B

C
g7

A

B

D
g8

B

D

E
g9

B

E

D
g10

C

B

D
g11

A

B

CD
g12

B

ED
g13

(b) Frequent Subgraphs

Fig. 8.1.: (a) A graph database with 3 graphs (b) All the frequent subgraphs of the
graph database in (a) using a minimum support value of 2. If we want to obtain
only the induced frequent subgraphs, g1-g5, g7, and g13 are frequent for a minimum
support of 2.

ability, so in recent years, networks are being used for representing biological data.

Besides, network theories are also being used to gain insights into complex biologi-

cal problems [85, 95, 98, 199]. The concept of network motif has also emerged, which

has been hypothesized to play an important role in carrying out the key functional-

ities that are performed by the entities in a biological network [21, 72, 200, 201]. A

very recent study [202] showed that the distribution of network motifs influences the

organization of metabolic networks. However, the methodologies for network motif

discovery [21,72] yield sub-networks that are frequent in a given network, and hence

they are not useful for finding conserved sub-networks at the interface of a set of

proteins.

Mining frequent sub-networks (FSM) is an important and well studied task in

data mining field; it is defined as finding all subgraphs that appear frequently in a

graph dataset given a minimum frequency threshold. There are two variants of this

problem—in the first variant [55–60,62], the dataset has a collection of many graphs,

and in the second variant [203–205], the dataset contains a single large graph. For the

175

latter variant, the frequency of a subgraph is counted as its multiplicity in the large

graph. On the other hand, the earlier variant of graph mining counts the frequency

of a subgraph over the collection of graphs in the dataset. Thus, for this variant of

graph mining, the overall frequency of a subgraph pattern is the number of distinct

graphs in which the pattern appears. In this work, we represent the interface region

of oligomeric proteins as a set of networks and then use a novel frequent sub-network

mining algorithm for finding functional motifs in the interface region. As we discover

patterns that span over a set of networks, the algorithms belonging to the first variant

are relevant for our task and forthcoming references of frequent graph mining in this

paper pertain to the first variant of FSM.

Mining sub-networks from a set of networks is defined as follows: Given a graph

dataset G, and a minimum support πmin, obtain the set of subgraphs whose fre-

quency is higher than πmin. The set of frequent subgraphs are generally represented

by F . In Figure 8.1a, we show a graph dataset with 3 graphs and in Figure 8.1b we

show the frequent subgraphs of this dataset considering πmin = 2. Over the years, a

good number of algorithms for frequent sub-network mining (FSM) have been pro-

posed, examples include Subdue [55], AGM [56], FSG [57], gSpan [58], FFSM [206],

DMTL [59], and Gaston [60]. Distributed solutions of FSM [205, 207] which runs on

map-reduce platform have also been proposed.

Existing FSM algorithms are proven to be effective for finding frequent subgraphs

from input graphs which are small and sparse. However, for general graphs, FSM

task is not scalable due to the inherent complexity of this task. In fact, Horváth et

al. have shown that FSM cannot be solved in output polynomial time [171]. The

lack of scalability of FSM task has also been shown empirically. For instance, FSM

has been applied on a small dataset (only 3 graphs) of protein-protein interaction

(PPI) graphs, each graph having 2154 nodes on average; but the most efficient of the

existing FSM algorithms cannot mine all the frequent subgraphs from this dataset in

days of running even with 100% support value [64]. Distributed solution, such as [207]

can successfully overcomes the lack of scalability issues arising from the large number

176

of graphs in the dataset, but they still remains not scalable when the graphs in the

dataset are dense and large. Our investigation finds that any reasonable construction

of interface networks on real-life protein data yields large and dense graphs for which

existing methods simply fail to find interface patterns in an effective manner.

Existing FSM methods suffer from some other serious limitations when they are

used for mining interface patterns. First, existing subgraph mining methods require

that the user selects a minimum support threshold value [58–60]. However, when the

main objective of subgraph mining is to discover functional motifs from a number

of protein conformations, this support value is generally unknown. This is due to

the fact that the spatial orientation of the residues in a functional motif across the

conformations fluctuates owing to the dynamics of the motif, and a part of the motif

may be occluded in some subgraphs, making the motif infrequent. So, choosing a large

support threshold may miss a significant part of a functional motifs; on the other hand,

choosing a small support threshold may return too many random subgraphs that are

frequent simply by chance. The second limitation is that existing algorithms [58–60]

enumerate all the frequent subgraphs starting from size-1 and thus they return a

large number of unnecessary patterns. But, for functional motifs, the subgraph size

of interest is known in many cases; if not known, a reasonable initial guess of the motif

size can be made from the knowledge of protein’s family and functionalities. So, a

novel frequent subgraph mining method is needed which is scalable, not dependent

on the minimum support threshold, and able to return frequent subgraphs of a user-

specified size.

In this work, we propose a graph mining framework which is particularly suited

for the discovery of functional motifs from the interface graphs of a large collection

of protein structures. Our proposed approach uses spatial proximity for creating the

interfacial network dataset, so, the proteins in a dataset need to have high structural

similarity (low structural diversity). For instance, these structures could either be

structural conformations of the same protein (see Sections 8.5.1 and 8.5.2) or they

could represent multiple proteins from the same functional group (see Sections 8.5.3).

177

(a) HIV (b) TIM

Fig. 8.2.: (a) Retrieved frequent patterns representing the dimerization lock at the
base of HIV- 1 protease structure and (b) along the dimeric interface of triosephos-
phate isomerase.

The proposed method first creates a dataset of interface graphs, each representing a

structure from the database. It then uses a novel sampling based method for mining

subgraphs of a given size which are frequent over the graph database with a high

probability. In the proposed method, subgraph size is user-defined, which can be

chosen from user’s domain knowledge of the protein under investigation.

To validate the effectiveness of our method we perform three independent exper-

iments. In the first two experiments, we use two different datasets of protein confor-

mations: (1) HIV-1 protease (329 conformations) and (2) Triosephosphate isomerase

(TIM) (86 conformations) and find frequent subgraphs of appropriate size from the

given conformations of these proteins. The subgraphs that we mine from the interface

networks enable us to discover the functional motifs in the above pair of proteins. The

first protein, HIV-1 protease is essential for the life cycle of human immunodeficiency

virus (HIV) which causes acquired immunodeficiency syndrome (AIDS) in humans.

The second protein, TIM is the fifth enzyme in the glycolysis pathway that produces

energy in all living organisms. For both proteins, the large number of structures

represent a sample of different conformational states of the proteins that are solved

178

experimentally and they can explain the functional dynamics and functional motifs

of the protein [208]. The 10 most frequent subgraphs mined from the HIV-1 protease

using our proposed method collectively capture a 16-residue functional motif, named

dimerization lock (shown in Figure: 8.2a) that exists in the interface of the protein.

Among these frequent subgraphs, our method retrieves 15 out of 16 residues in 6

subgraphs, 14 residues in 2 subgraphs and 13 residues in the remaining 2 subgraphs.

Similarly, frequent subgraphs from TIM retrieve dimerization lock that exists in TIM

conformations (shown in Figure: 8.2b).

In the third experiment, we use the Dobson and Doig (D&D) benchmark dataset

for enzymes (691 enzymes out of 1178 protein structures) [209]. As enzymes are

known to be macromolecular catalysts, discovering functional motifs at the interface

region of these proteins is paramount to understanding how they bind and interact

with other macromolecules to perform their functions. The subset of enzymes in D&D

is composed of groups of proteins from the six top-level classes of enzymes namely:

Oxydoreductase, Transferase, Hydrolase, Lyase, Isomerase and Ligase. We use our

approach for mining function specific motifs for each of these classes of enzymes.

Specifically, for each class, We mine up to 200 most frequent patterns within a size

range of 5, 6, 7 and 8 nodes per pattern. By checking the overlap between the set

of patterns mined from each class, we show that our approach discovers function

specific patterns from each functional class of enzymes. We also show that these

patterns include catalytic sites of enzymes that have been identified in the literature.

We claim the following contribution in this paper:

• We propose a method to map the interfacial region of a protein as a network for

the discovery of functional motifs by using a sampling based frequent subgraph

(FSM) mining method.

• We validate the utility of the proposed FSM method by capturing the locking

mechanism at the dimeric interface from different conformations of HIV and

TIM protein structures.

179

• We also observe that our sampling based FSM method enables us to capture

function specific patterns at the interface region of 3D structures of proteins

belonging to the same functional group.

8.2 Background

LetG(V,E) be an interfacial network, where V is the set of vertices and E is the set

of edges. For our problem, the vertices are set of residues and the edges are connection

among the residues based on their pair-wise physical proximity. Specifically, if the

inter- and intra-chain distance between a pair of residue is smaller than a user defined

distance threshold, an edge is added between the corresponding pair of vertices.

By construction, the interfacial networks are simple graph which do not have self-

loops or multi-edges. Besides, these graphs are undirected, because the Euclidean

distance is a symmetric metric. Finally, for all reasonable choices of inter and intra

chain distance threshold, these graphs are connected.

A labeled graph G(V,E, L,Ψ) is a graph1 for which the vertices and the edges

have labels that are assigned by a labeling function, Ψ : V ∪ E → L where L is a

set of labels. In our case, only vertices have labels, which is a value between 1 to 20,

corresponding to the 20 amino acid residues of proteins.

A graph G′ = (V ′, E ′) is a subgraph of G (denoted as G′ ⊆ G) if V ′ ⊆ V and

E ′ ⊆ E. A graph G′ = (V ′, E ′) is a vertex-induced subgraph of G if G′ is a subgraph

of G, and for any pair of vertices va, vb ∈ V ′, (va, vb) ∈ E ′ if and only if (va, vb) ∈ E.

In other words, a vertex-induced subgraph of G is a graph G′ consisting of a subset

of G’s vertices together with all the edges of G whose both endpoints are in this

subset. In this paper, we have used the word subgraph for abbreviating vertex-

induced subgraph. If G′ is a (induced or non-induced) subgraph of G and |V ′| = `,

we call G′ a `-subgraph of G.

1We have used the terms graph and network interchangeably.

180

Let G = {G1, G2, . . . , Gn} be an interfacial network database, where each Gi ∈
G, ∀i = {1 . . . n} represents a labeled, undirected and connected graph. The support-

set of the graph g is t(g), and t(g) = {Gi : g ⊆ Gi ∈ G},∀i = {1 . . . n}.
This set contains all the graphs in G that have a subgraph isomorphic to g.

The cardinality of the support-set is called the support of g. g is called frequent if

support ≥ πmin, where πmin is predefined/user-specified minimum support (minsup)

threshold. Given the graph database G, and minimum support πmin, the task of a

frequent subgraph mining (FSM) algorithm is to obtain the set of frequent subgraphs

(represented by F). While computing support, if an FSM algorithm enforces induced

subgraph isomorphism, it obtains the set of frequent induced subgraphs (represented

by FI). It is easy to argue that FI ⊆ F .

8.3 Related Work

There are several works that represent a protein structure as a network consisting

of a set of nodes and the relationship between the nodes. However, the way differ-

ent works model the network differs. Across these works, the nodes can represent

amino acid residues [80–85], functional atoms from the side chains [86,87], secondary

structure elements [88–90], proteins [91, 92], protein complexes [93], and interaction

pseudoatoms [94]. Edges also has different connotations in different works. For in-

stances, edges connect nodes if they interact with each other [80, 81], or if they are

nearer to each other spatially [82, 87], or if they are within the interacting distance

of each other [86]. Some works create edges between two nodes if the nodes are part

of a functional unit in a pathway or in a biological process [91, 92], or if side-chains

interact with each other [95]. Our work differs in the method of construction and

analysis of these networks from previous studies. In our work, we use Cα carbon

(backbone carbon) of a particular residue as a node. So, the Cα carbons from all the

residues of a particular protein represent the set of nodes and we connect two nodes

if their Cα carbons are spatially nearer to each other. Existing works use a graph

181

to capture the entire protein structure, but in this work we capture dense interfacial

region between different subunits of the same structure.

In existing works, network representation of proteins has been used for various

purposes; for example, to study the evolution of protein-protein interactions [82],

to summarize how central network elements are enriched in active centers and lig-

and binding sites directing the dynamics of entire protein [87], to classify protein

3D-structures [84, 85], to characterize the topological role of residues [83], to offer

a comprehensible view of critical residues and to facilitate the inspection of their

organization [96], to detect cancer-associated functional residues [91], to uncover

distinct cancer-specific functional modules [92], to document functional components

and sub-components of proteins [97], and to compare two networks (Oligomeric vs

Monomeric) [81] for getting insight into the protein association. Greene et al. [98]

authored a good review article which surveys several key advances in the expanding

area of protein structure and folding research using network approaches. To the best

of our knowledge we are the first to develop graph mining methodologies for mining

interfacial networks to discover important functional units (such as, lock structure in

HIV 8.2a and hugging point 8.2b in TIM structure), or to find family specific active

sites from enzymes.

8.4 Methods

In Figure 8.3, we provide a pictorial depiction of the proposed method. Given a set

of structures of a protein, we first convert each structure into an interfacial network,

which is our collection of graphs in the graph dataset. Then we use our designed

frequent pattern mining method for mining a set of fixed-size (user defined) subgraphs,

which are the most frequent (probabilistically) over the graphs in the graph database.

For each of the mined frequent subgraphs, we find their structural embedding in the

host graphs, and identify those patterns for which the nodes in a pattern consistently

182

Fig. 8.3.: A pictorial depiction of the proposed method. Given a set of structures
of a protein, we first convert each structure into an interfacial network. Then we
use a frequent pattern mining method for mining a set of fixed-size (user defined)
subgraphs. Finally, for each of the mined frequent subgraphs, we find their structural
embedding in the host graphs.

map to a fixed set of residues in all the conformations. We consider these structural

patterns as possible candidates of being a functional motif, and study whether these

residues correspond to any known oligomerization mechanism. In this work, we use

these set of steps to study the dimerization interfaces of HIV-1 and TIM proteins,

and also to discover family-specific active sites of various enzyme families. Below, we

discuss each of the steps of our method in details.

8.4.1 Modeling Protein as Interfacial Network

For each structure, we first retrieve the Cα carbons along with their 3D co-

ordinates from the residues of a pair of chains Ui and Uj. We then construct an

interfacial network of the structure by connecting the subset of Cα residues that are

in the interface region of either of the chains. We consider a residue (say, va) in a

chain (Ui) to be at the interface region if it is within a maximum spatial distance (γ)

of any Cα residue (say, vb) in the other chain (Uj), with respect to a distance measure

183

(∆) that is the Euclidean distance in our case. The interface Cα carbons are the set

of nodes in our interface network. Within each chain, we connect pairs of residues if

they are within a spatial proximity of at most δ. We label the nodes from 1 to 20

based on the amino acid types of the corresponding residues. Then, we form edges

between nodes (residues) of different chains if they are spatially close to each other.

After this step, we obtain an undirected vertex-labeled graphs— corresponding to in-

terfacial network of the input protein structure. Equation (8.1) formally describes the

graph modeling process. Note that for interfacial networks, the intra-chain distance

threshold (δ) should be made low while the inter-chain distance threshold (γ) should

be kept high. This will make the graph model emphasize the interfacial region at the

surface between the different chains of the structure (at the 3D level) while making

the intra-chain network very sparse to approximately contain at most the connections

between amino acids at the primary structure level.

e(va, vb) =





1, if ∆(va, vb) ≤ δ | va ∈ Ui, vb ∈ Uj, i = j

1, if ∆(va, vb) ≤ γ | va ∈ Ui, vb ∈ Uj, i 6= j

0, otherwise

(8.1)

It is important to note that having a larger distance threshold (values of δ, and

γ) makes the interfacial networks denser and thus makes it more likely to find fre-

quent subgraph patterns across different structures. However, the patterns that are

discovered using a large threshold are less precise because the edges of these patterns

cover a larger range of distances between a pair of residues. On the other hand, if

we consider smaller distance threshold we get more precise patterns, but the mining

process is less likely to find a frequent pattern. This is similar to precision-recall

trade-off in information retrieval. For larger values of δ and γ, the recall increases

but precision deteriorates, and for smaller values, the precision improves with a loss

of recall.

184

8.4.2 Frequent Subgraph Mining with FS3

For mining a fixed size frequent subgraph we use a sampling based graph mining

algorithm, called FS3, which we have proposed in one of our recent works [182]. FS3

is based on sampling of subgraphs of a fixed size 2. Given a graph dataset G, and a

size value `, FS3 samples subgraphs of size-` from G. The distribution from which

the size-` subgraphs is sampled is biased such that the sampling process over-samples

the graphs that are likely to be frequent over the graphs in G. FS3 runs the above

sampling process for many times, and uses an innovative priority queue to hold a

small set of most frequent subgraphs, which it returns at the end of the sampling

process. The unique feature of FS3 is that unlike earlier works which are based on

sampling [65], FS3 does not perform any subgraph isomorphism (SI) test, so it is

scalable to large graphs. By choosing different values of `, user can find a succinct

set of frequent subgraphs of different sizes. Also, as the number of samples increases,

FS3’s output progressively converges to the top-k most frequent subgraphs of size `.

So user can run the sampler as long as he wants to obtain more precise results.

A detail discussion of FS3 algorithm is out of scope for this paper. However, to

make this paper self-sufficient, We describe below some key concepts of FS3 algo-

rithm. Interested readers are encouraged to read the original FS3 paper [182] for

more details.

Subgraph sampling by FS3 Algorithm: At each sampling iteration, FS3 per-

forms a 2-stage sampling process. In the first stage, FS3 chooses one of the graphs

in G (say, Gi) uniformly, and in the second stage it samples a size-` subgraph of

Gi and returns. For the second stage, FS3 performs a Markov chain Monte Carlo

(MCMC) sampling over the `-subgraphs of Gi. The main idea of MCMC sampling

is to perform a random walk over the sampling space and subsequently return the

sample the walk visits. The transitional probability of the random walk is chosen

2The name FS3 should be read as F-S-Cube, which is a compressed representation of the 4-gram
composed of the bold letters in Fixed Size Subgraph Sampler.

185

1 2

3 4

5 7

6

9

8 10

11

12

(i)

1: 〈1, 2, 3, 5〉, 〈1, 2, 4, 5〉, 〈1, 3, 4, 5〉, 〈1, 2, 3, 6〉, 〈1, 2, 4, 6〉, 〈1, 3, 4, 6〉

2: 〈1, 2, 3, 6〉, 〈1, 2, 4, 6〉, 〈2, 3, 4, 6〉, 〈1, 2, 3, 9〉, 〈1, 2, 4, 9〉, 〈2, 3, 4, 9〉

3: 〈1, 2, 3, 5〉, 〈1, 3, 4, 5〉, 〈2, 3, 4, 5〉, 〈1, 2, 3, 8〉, 〈1, 3, 4, 8〉, 〈2, 3, 4, 8〉

4: 〈1, 2, 4, 7〉, 〈1, 3, 4, 7〉, 〈2, 3, 4, 7〉, 〈1, 2, 4, 8〉, 〈1, 3, 4, 8〉, 〈2, 3, 4, 8〉
〈1, 2, 4, 10〉, 〈1, 3, 4, 10〉, 〈2, 3, 4, 10〉

(ii)

(a)

1 2

3 4

5 7

6

9

8 10

11

12

(i)

1: 〈1, 2, 3, 6〉, 〈1, 2, 5, 6〉, 〈1, 3, 5, 6〉

2: 〈1, 2, 3, 4〉, 〈1, 2, 3, 6〉, 〈1, 2, 3, 9〉, 〈1, 2, 4, 5〉, 〈1, 2, 5, 6〉, 〈1, 2, 5, 9〉
〈2, 3, 4, 5〉, 〈2, 3, 5, 6〉, 〈2, 3, 5, 9〉

3: 〈1, 2, 3, 4〉, 〈1, 2, 3, 8〉, 〈1, 3, 4, 5〉, 〈1, 3, 5, 8〉, 〈2, 3, 4, 5〉, 〈2, 3, 5, 8〉

5: 〈〉

(ii)

(b)

Fig. 8.4.: State transition of the random walk for substructure sampling. (a)(i) A
database graph Gi with the current state of FS3’s random walk (a) (ii) Neighborhood
information of the current state 〈1, 2, 3, 4〉. (b)(i) The state of random walk on Gi

(Figure 8.4a) after one transition (b) (ii) Updated Neighborhood information.

186

so that the stationary distribution of the random walk matches with a user-chosen

target distribution. FS3’s target distribution favors `-subgraph so that the sampling

process can predominantly sample frequent subgraphs. FS3’s MCMC walk changes

state by walking from one `-subgraph (say g) to a neighboring `-subgraph. In our

neighborhood definition, for a `-subgraph all other `-subgraphs that have ` − 1 ver-

tices in common are its neighbor subgraph/state. To obtain a neighbor subgraph of

g, FS3 simply replaces one of the existing vertices of g with another vertex which is

not part of g but is adjacent to one of g’s vertices. Also, note that in g, FS3 includes

all the edges of Gi that are induced by the set of the selected vertices, so the sampled

subgraph of FS3 is always a connected induced subgraph of the graph Gi. For a given

graph Gi in G, the currently sampled `-subgraph is saved so that the random walk

over Gi can be resumed in a later iteration if the graph Gi is again selected in the first

stage of the sampling iteration. Below, we show an example of state transition of FS3.

Example: Suppose FS3 is sampling 4-subgraphs from the graph Gi shown in Fig-

ure 8.4a(i) using MCMC sampling. Let, at any given time the 4-subgraph, 〈1, 2, 3, 4〉
(shown in bold lines) is the current state of this random walk. In Figure 8.4a(ii), we

list its neighbor states as four comma-separated lists, one in each row. The neighbor-

list in the top row is labeled by ‘1’, which indicates that these neighbors can be

obtained from the current 4-subgraph 〈1, 2, 3, 4〉 by retaining the vertex 1 and re-

placing exactly one of the remaining vertices ({2, 3, 4}) with a new vertex which is

adjacent to vertex 1, ensuring connectedness. Similarly, the neighbors in the second

list are obtained by retaining the vertex 2 and replacing one of the remaining vertices

with a vertex from 2’s adjacency list. The information in the third and fourth lists

are populated in a similar manner. As shown in the top-list, 〈1, 2, 3, 5〉 is a neighbor

of 〈1, 2, 3, 4〉; if the random walk transitions to this state, the current state becomes

〈1, 2, 3, 5〉, which is shown in Figure 8.4b(i). In Figure 8.4b(ii), we show the updated

neighbor lists considering the new state. Note that, here also we have 4 set of neigh-

bors corresponding to 4 vertices of 〈1, 2, 3, 5〉. The neighbor-list corresponding to

187

1 2

3 4

5 6

9

9

8 10

11

12

(a) An interface graph

1 2

3 4

2

9

3 4
(b) Subnetwork patches

Fig. 8.5.: Subnetwork patches embedded in an interface graph.

vertex 5 is empty, as besides 1 and 3 (which are part of current state), 5 has no other

adjacent vertices that can be used as a replacement vertex to build a new state.

8.4.3 Finding Sub-Network Embedding in the Interface Graph

Note that FS3 samples `-node induced subgraphs from the database graphs us-

ing a sampling-based method. It makes FS3 scalable over large networks, but to

achieve scalability it also loses completeness, i.e., for a given frequent subgraph, its

support-list i.e. relative support-list may miss some of the graphs in G in which the

pattern occurs. Therefore, at the end of the sampling process, for each of the top-k

frequent subgraph patterns, we use a subgraph isomorphism algorithm for finding the

embedding of the pattern in all the graphs in the database. This step completes the

relative support-list of a frequent subgraph pattern and we get the actual support-list.

Besides, it provides a mapping between the pattern nodes and a subset of interface

graph nodes such that the mapping respects the vertex label. Thus, the embedding

process enables us to inspect the subgraph pattern within the native context of residue

contact graph.

Additionally, we observe that, in some cases most of the top-frequent subgraphs

are almost identical except one or two nodes. After embedding, they map to a patch of

188

2 1 5

(a)

3 4 2 5 1

(b)

3 4 2 3 5

(c)

1 4

Fig. 8.6.: Random graph generation from a particular graph. Figure (a) is the input
graph, Figures (b) and (c) are random graphs using switching algorithm described in
Section 8.4.4. Interchanges are shown in blue and green color.

the functional motif, such that super-imposition of the embedded patches of multiple

top-frequent patterns cover the entire motif. For visualizing this step, we present

Figure 8.5. In Figure 8.5a, we show an example interface graph. The node labels in

the figure represent residue ids. In Figure 8.5b, we list two top-frequent patterns. Bold

blue and dashed red lines in Figure 8.5a show that super-imposing the embedding of

the top two patterns retrieves the entire motif consisting of residues 1, 2, 3, 4 and 9

(shown in color).

For HIV-1 protease, we consider only 10 of the most frequent subgraphs, and the

embedding of these subgraphs discovers the entire 16-residue dimeric lock motif in 323

out of 329 patterns. Similar treatment for the TIM protein using 20 most frequent

subgraphs finds the dimeric lock in 50 out of 86 structures.

8.4.4 Statistical Significance Test of Discovered Patterns

Statistical significance test of a frequent subgraph g determines the probability

(p-value) of observing g as a frequent pattern at equal or a higher support value in

a database of random graphs, where the random graphs are constructed from a null

model. The subgraph pattern g is statistically significant when it is highly unlikely for

g to be frequent under the null model. In existing works [72], statistical significance

test has been used to calculate the p-value of network motifs, which are mined from a

single large graph. In these works, a set of random graphs are generated from the input

graph under a specified random graph model and the subgraphs which appear in the

input graph at a much higher frequency than in the random graphs are considered as

significant. But, this method does not apply for our task, because in our task the we

have a database of input graphs instead of a single graph. So, we generalize the above

189

method as below. First, we generate a set 3 of clone graph databases each containing

the same number of random graphs as our input graph database. The random graphs

in the clone databases are generated using a null model, details of which is discussed

in the next paragraph. Then, we run our algorithm on the input graph database

and on each of the clone graph databases to discover the top-k patterns and their

frequencies in these datasets. Finally, we compute the z-score of a mined subgraph

pattern. If the support of a subgraph pattern g in an input graph database is sreal(g)

and the average support and standard deviation in an ensemble of random graph

database are savg(g) and sdev(g), then z-score of g is calculated as shown below:

z-score(g) =
sreal(g)− savg(g)

sdev(g)
(8.2)

Then we obtain the p-value of g by considering that the support of a top-k pattern

under the null hypothesis is distributed as a normal distribution. A small p-value con-

firms that the null hypothesis is discarded and the subgraph pattern g is statistically

significant.

Random Graph Generation for Null Model As we have discussed earlier, for

significant test we build a set of clone graph databases, each containing the same

number of random graphs as the input graph database. Under the null model, the

random graphs in the clone databases have the same degree distribution and vertex

label distribution. The null hypothesis is that a frequent subgraph g is also frequent

in the clone databases.

Generating a random graph (i.e. generating random 0-1 matrices) by keeping the

degree distribution the same is a well studied problem. We use switching method

proposed by [210]. In this method, for a given adjacency matrix of a particular

graph, all the adjacency matrices which can be obtained by switching alternating 1’s

and 0’s along the alternative rectangles or the alternating hexagons are considered

to be the neighbor states. A Markov chain can be formed from this state transition

and [210] has shown that if we take a particular state after p or less transitions we

3size of this set can be anything between 10 and 100, the higher the size the better is the estimates.

190

sample a random graph uniformly at random where p represents the minimum of the

total number of zero’s and one’s in the random network. This algorithm samples cor-

rectly in the limit of long run and in practice is found to give good results compared

to other methods [211]. In Figure 8.6, we show an example. Figure 8.6 (a) represents

the input network (a line graph) whereas Figure 8.6(b) and Figure 8.6 (c) show two

random graphs generated using the switching technique. From the figures, we can see

that randomization has rewired the nodes by preserving the degree of all the nodes

in the input graph. We do not alter the vertex labels, so the vertex label distribution

is identical to the original graph.

For both the TIM and HIV-1 protease structures (discussed in Section 8.5.1 and

8.5.2, respectively), we generate 20 (chosen arbitrarily) clone databases containing

random graphs, i.e., for each graph in the host database, we generate 20 random

copies of that graph using the method described in the above paragraph. Then we

apply FS3 on both the host (input) database and each of the random graph databases

separately with the same configuration (size-`) used for the input database. Our

experiments show that all our frequent patterns (size 16 for HIV-1, and size 20 for

TIM) are highly significant as their frequency in the database of random graphs is

zero, but the average support of HIV-1 frequent patterns is 320 (for a database size

329) and the average support of TIM frequent patterns is 50 (for a database size 86).

This yields a p-value less than 0.00001 using Laplace correction for the denominator,

thus making all the discovered frequent patterns in both datasets highly significant.

Interestingly, no frequent patterns exist in the clone databases of random graphs; in

fact, the highest support of any subgraph in each of these clone databases is exactly

one, that is each subgraph appears in only one random graph.

191

Fig. 8.7.: HIV-1 protease (HIV-1 PR) functional components, interface formation,
and computationally retrieved residues from the interface residue network. Panel
A shows the macromolecular architecture of the protease (based on PDB: 1a30, a
closed conformation), Panel B show the lock formation at the base, Panel C shows
the residues in spheres at the dimeric base, and Panel D shows the computationally
retrieved residues from the interface networks. (A) Front view of HIV-1 PR dimeric
structure (modified from Fig. 2 of [208]). The functionally important components
are colored and labeled in subunit A. N-terminal (NT) and C-terminal (CT) strands
are colored blue: NT residues 1-4 and CT residues 96-99. NT and CT strands of
one subunit form a ridge where CT strand of the other subunit is locked, and vice
versa. Fulcrum (red, residues 9-21) - at one end of this component is the C-terminus
and on the other end there are the active site region. Flap domain (orange, residues
37-58) has three main regions. Cantilever (green, residues 59-75) is located at the
C-terminal end of the Flap domain. (B) Lock formation at the base of the structure
- NT and CT strands of chain A form a ridge where CT from B is inserted and vice
versa. (C) The residues on NT and CT of each chain forming the lock are identified
(PDB 1a30). (D) Blue ones are the correctly recognized interface residues by graph
mining. Three residues forming the lock shown in the panels B and C that the mining
algorithm failed to identify are colored red. Instead, the mining included the orange
residues in the pattern that are not part of the lock pair.

192

Fig. 8.8.: Type 1 interface of TIM dimeric structure. (A) Loop 3 from subunit A and
Loop 1 and Loop 4 from subunit B form a lock at the interface, and vice versa. (B)
Surface view of Lock 1. (C) Residues of the loops involved in Lock 1 are shown in
spheres. (D) Retrieved residues in Lock 1 are shown in bright color and others are
deemed.

193

8.5 Experimental Results

In this section, we present our experimental findings. Section 8.5.1 and 8.5.2 shows

that our graph-mining method retrieves the dimerization locks in each of the protein

structure with multiple conformations whereas in Section 8.5.3, we show that our

approach captures class specific active sites for the six top-level classes of enzymes each

composed of multiple protein structures with a single conformation. In Section 8.5.1

and 8.5.2, we report average pairwise RMSD (Root Mean Square Deviation) distance

among conformers4. For calculating RMSD distance, we use Kabsch algorithm [212]

and Quaternion algorithm [213]. Kabsch algorithm [212] is a simple procedure which

determines a best rotation of a given vector set into a second vector set by minimizing

the weighted sum of squared deviations. On the other hand, Quaternion algorithm

[213] solves for the orientation and the position of an object by minimizing a single

cost function associated with the sum of the orientation and position errors.

8.5.1 HIV-1 Protease Structures

HIV-1 PR dimerization occurs at the interface between two homologue structures-

each subunit having 99 residues. Each subunit structure can be divided into func-

tionally important components (Fig. 8.7A): 1) Terminal domains (blue, NT strand:

residues 1-4 and CT strand: residues 96-99) that form the base of the protease struc-

ture. 2) Flap domain (orange, residues 37-58) that opens and closes the structure

for substrate recruitment and product release. The coordination of motion between

3) Fulcrum (red, residues 9-21) and 4) Cantilever (green, residues 59-75) controls the

opening/closing motion of the Flap domain.

NT (residues 1-4) and CT (residues 96-99) strands from one subunit form a ridge

where the CT strand from the partner subunit gets inter-digitated, and vice versa

(Fig 8.7B). This interlocked configuration of the terminal strands forms a strongly-

4https://github.com/charnley/rmsd

194

bound dimeric base which facilitates the opening-closing motion of the flap tips of

the Flap domains.

We selected 329 HIV-1 structures from PDB [214] such that each structure has

no missing residues. Subsequently, we have created an interfacial network (con-

nected graph) for each structure considering the interfacial residues that are within 8

Angstrom (Å) distance from any residue from the partner subunit. We also connect

two residues within the same subunit if their distance is within 4 angstrom, i.e., we

set γ = 8Å and δ = 4Å. The average number of nodes and edges for these networks

are 64.00 and 242.00 respectively. Then, we mined these 329 connected graphs using

FS3, our graph mining method. If the proteins are structurally similar, the frequent

subgraphs are more likely to form; so one may opt for more precise results by setting

smaller values of δ and γ. For this purpose, structural similarity of a collection of

proteins should be obtained by optimally superimposing the proteins one on top of

another, and then computing The average RMSD distance. We perform the same by

using both the Kabsch and the Quaternion algorithm on our HIV-1 dataset. The me-

dian RMSD value was 0.7305 (minimum =0.0, maximum=2.74) when the statistics

was calculated over all the 329 conformers of HIV-1.

Figure 8.7C labels the 16 residues of four strands that form the dimeric lock at

the base - four residues in each strand. For a pattern of size 16, our method retrieves

13 of these base forming residues. Three residues (I3 on NT B, I3 and T4 on NT A)

shown in red were not included, rather K5 and T6 on the coil connecting NT B and

Fulcrum and T91 on the helical region at the N-terminal end of CT A got included.

8.5.2 TIM Structures

TIM is the fifth enzyme in the glycolysis pathway that produces energy in all

living organisms. The functional oligomeric state of TIM is a homo-dimeric struc-

ture in most mesophilic organisms. A TIM subunit has a central barrel formed by

195

eight strands (β1− β8) which is surrounded by eight helices (α1-α8). Eight back

loops (BL1-BL8) connect from helix to strand and eight front loops (FL1-FL8 or

simply Loop 1−Loop 8) connect from strand to helix. Details can be found in [215]

(Fig. 8.8A). Two monomeric subunits form the dimeric TIM structure through in-

teraction of a pair of symmetric locks at their interface. We construct interfacial

network for each of the 86 triosephosphate isomerase (TIM) PDB structures with γ

= 8Å and δ = 4Å. The average number of nodes and edges for these networks are

158.50 and 884.75 respectively. The average RMSD distance using both the Kabsch

and the Quaternion algorithm is: 5.76 (min=0.0, max=24.64) and it was calculated

over 25 TIM structures for which the number of Cα carbons were the same.

A dimer of two subunits is formed by two symmetric locks at the interface: Loop 1

and Loop 4 of one subunit form a ridge wherein Loop 3 of the partner subunit gets en-

gaged, and vice versa. Figure 8.8A shows such a pair of locks at the dimeric interface

of a TIM structure (PDB 1ypi). The space-filled view in Fig. 8.8B illustrates one of

these locks more clearly. Figure 8.8C illustrates the residues of the involved loops in

spheres (L1 of chain B: F11K12 L13N14G15 S16, L4 of chain B: G94 H95S96E97 R98R99

S100Y101 F102H103 E104D105, L3 of chain A: Q64N65 A66Y67L68 K69A70S71 G72A73F

74T75G76 E77N78S79).

Our graph-mining method retrieves the key residues of the locking mechanism.

When the pattern-size is 12, the retrieved residues are: L1 (chain A): 10, 12; L4

(chain A): 95, 97, 98; L3 (chain B): 72-77; N-terminal base of L3 (chain A): 64. And,

when the pattern-size is 12 are: L1 (chain A): 10, 12; L3 (chain B): 72,..., 77; L4 (chain

A): 95, 97, 98; and N-terminal base of L3 (chain A): 63, 64, 65, 66. The residues

from the interlocking mechanism that are retrieved by our method are shown in bright

spheres (Fig. 8.8D). Interestingly, all the residues of Loop 3 (S71G72 A73F74T75 G76E77

- 7 residues [216]) are successfully retrieved. Moreover, the retrieved patterns reveal

that a few residues at the N-terminal region of Loop 3 from chain A (residues G64,

N65, and A66) engages in the lock formation.

196

8.5.3 Enzymes

Enzymes are known to be macromolecular catalysts that speed up biochemical

reactions by providing an alternative reaction pathway of lower activation energy.

In the absence of enzymatic catalysis, most biochemical reactions are so slow that

they would not occur under the mild conditions of temperature and pressure that are

compatible with life [217]. Enzymes accelerate the rates of such reactions by well over

a million-fold, so reactions that would take years in the absence of catalysis can occur

in fractions of seconds if catalyzed by the appropriate enzyme. Enzymes bind their

reactants or substrates at a small portion of their structure that is known as the active

site. Active sites are substructures on the surface of an enzyme, usually composed of

amino acids from different parts of the polypeptide chain that are brought together

in the tertiary structure of the folded protein [217]. Hence, mining functional motifs

(active sites) from the interface region of enzymes is important for understanding

the underlying mechanisms that allow them to interact with other molecules and

perform their vital functions that sustain life in the cells. The International Union

of Biochemistry and Molecular Biology5 has developed a classification system for

enzymes6 that, at its top-level, divides them into six groups namely:

• Oxydoreductase (EC1): catalyze oxidation/reduction reactions.

• Transferase (EC2): transfer of a chemical group from substrate to product.

• Hydrolase (EC3): cleavage of bonds by hydrolysis.

• Lyase (EC4): elimination of various bonds by means other than hydrolysis and

oxidation.

• Isomerase (EC5): catalyze isomerization changes within a single molecule.

• Ligase (EC6): join two molecules with covalent bonds.

5http://iubmb.org/
6http://www.enzyme-database.org/

197

Table 8.1.: Interfacial network statistics for our subset of enzymes from the Dobson
and Doig (D&D) protein structure dataset [209].

Class #structures #Subclasses #Sub-subclasses Avg. #Nodes Avg. #Edges

EC1 76 16 35 151 487
EC2 84 8 21 102 318
EC3 91 8 29 82 262
EC4 40 4 9 128 414
EC5 21 5 10 118 367
EC6 14 4 6 134 403

Unlike the previous two experiments where we mined patterns that are shared

across the different conformations of the same protein, in this experiment, we are

interested in mining functional motifs that are shared by multiple protein structures

within the same group of enzymes but not across the different classes. That is to

say, class specific active sites that allow each of the enzyme classes to exert a specific

function. Since enzymes need to bind to their substrates at their active sites to

perform their biological functions, mining class-wise frequent patterns at the interface

region of enzymes could help to unravel class specific active sites. We use enzymes

from the Dobson and Doig (D&D) protein structure dataset [209] which originally

consists of 1178 proteins divided into a group of 691 enzymes and a second group

of 487 non-enzymes. We consider only the subset of oligomeric protein structures

from the enzymes, i.e, structures with at least two sub-units. The remaining set

of enzymes is composed of 326 protein structures. Table 8.1 shows the number of

protein structures in each class, the number of EC subclasses and sub-subclasses in

each group, as well as, the average number of nodes and edges from the derived

graphs.

We have constructed an interfacial network for each PDB structure of the set,

based on Equation (8.1) with γ = 10Å and δ = 4Å. After this step, we obtained a

set of undirected, vertex-labeled graphs—each corresponding to one enzyme protein

structure. We used FS3 to discover function specific subgraph motifs across the six

198

(a) Front view of the L-3-hydroxyacyl-CoA dehydrogenase protein structure.

(b) Zoomed view of the active site of the structure: in red and blue are residues
from the catalytic and binding sites respectively

Fig. 8.9.: Retrieved frequent pattern representing active site at the L-3-hydroxyacyl-
CoA dehydrogenase protein structure. (a) A front view of the entire structure with
the active site and (b) a zoomed view of the active site with the catalytic site (in red)
and binding site (in blue).

199

Table 8.2.: The number of patterns overlaps within different groups for a specific size,
` and top-200 patterns.

Overlaps for a specific `

Classes ` = 5 ` = 6 ` = 7 ` = 8

EC1− EC2 14 8 7 0
EC1− EC3 0 0 0 0
EC1− EC4 20 2 0 0
EC1− EC5 10 0 0 0
EC1− EC6 5 4 1 0

EC2− EC3 17 2 2 0
EC2− EC4 14 0 0 0
EC2− EC5 11 3 0 0
EC2− EC6 8 0 0 0

EC3− EC4 12 0 0 0
EC3− EC5 0 0 0 0
EC3− EC6 3 0 0 0

EC4− EC5 6 0 0 0
EC4− EC6 8 0 0 0

EC5− EC6 3 0 0 0

200

different classes of enzymes. We mined 200 most frequent patterns for each of the

following sizes 7 5, 6, 7 and 8 from each of the six enzyme classes.

We first validate whether the discovered patterns are abundant across all six en-

zyme classes or they are frequent only within an enzyme class. Since the enzyme

classes are derived from their function, patterns that are frequent only within an

enzyme class are functional motif for that class of enzyme. For this validation, we

count the number of patterns that occurs over multiple classes of enzymes. For a

clean presentation, in Table 8.2 we only show the number of patterns which overlap

over a pair of enzyme classes. Along the rows we list
(

6
2

)
= 15 pairs of enzyme classes

and along the column we list the size of patterns. Each cell entry shows the number

of overlapping patterns across the corresponding pair of enzyme classes for the given

pattern size. For example, there are 14 patterns (out of 200 most frequent patterns)

of size-5 which overlaps across enzyme class 1 and enzyme class 2. We notice that

the overlap between the sets of patterns mined from each class is very small for the

sizes 5, 6 and 7, and that there is no overlap at all at the size 8. Thus the number

of overlaps decreases while increasing the size of patterns. This shows that our mod-

eling and mining method allows to unravel class specific patterns at the interfacial

region. Besides, the fact that each of the classes performs a particular function also

suggests that the discovered patterns are active sites and they are specific to functions

performed by the enzymes in that class.

In fact, the active site of an enzyme is composed of two components. The first

component is the catalytic site that is known to be small (2 − 4 amino acids [218,

219]), highly conserved, and allows the enzyme to perform its function. The second

component is the binding site which allows the recognition and precise positioning

of an enzyme’s substrate in proximity to the chemically active catalytic residues and

lower the energy of the transition state, which aids catalysis [218]. Figure 8.9 shows an

example of a protein structure namely the L-3-hydroxyacyl-CoA dehydrogenase (PDB

IDs: 1F14) from the EC1 class of our dataset and the mapping of a frequent pattern of

7Size of a subgraph pattern is the number of vertices in that pattern.

201

size 8 that we discovered using our subgraph mining method. The pattern contains a

catalytic site composed of the residues ”Glutamine”, ”Asparagine”, and ”Serine” that

have been identified at the same structure in the Catalytic Site Atlas8 [218, 220], a

database of both hand-curated and automatically annotated catalytic sites in enzyme

structures. Since the catalytic and binding sites co-occur together as part of the

same active site, we consider the five remaining residues (”Lysine”, ”Leucine”, and

3 ”Alanine”) from the pattern as of the binding site. Figure 8.9 shows the catalytic

and binding site in red and blue respectively.

8.6 Chapter Summary

In this work, we proposed a method for the discovery of functional motifs from the

interface region of dimeric protein structures. Our method uses a graph representa-

tion of the interface region of these structures, and mines a fixed-size highly frequent

subgraphs over those graphs. We then use a small collection of subgraphs to dis-

cover functional motifs at the interface region of the structures. In our experiments,

we showed that our method discovers the oligomeric lock motif in the majority of

the structures for both HIV-1 protease and TIM protein. We also showed that our

method discovers class specific active sites at the interfacial region of the six top-level

classes of enzymes.

There are significant scopes for extending this work. First, we plan to make our

FS3 software a stand-alone tool for the functional motif discovery at the interfacial

region of proteins. As we have observed highly frequent patterns of a given size

although captures the functional motifs, each such patterns sometimes misses a few

residues of a functional motifs. At this stage, we manually patch together a collection

of patterns to identify the entire functional motifs. One immediate future work is to

identify a cluster of similar patterns which overlap the core of a functional motif and

8http://www.ebi.ac.uk/thornton-srv/databases/CSA/

202

then automatically patch them together to discover the functional motifs. Also, we

are planning to extend the functionality of our FSM based functional motif discovery

tool. Currently, our FSM method counts the frequency of a pattern by its identical

occurrences over different graphs. As future work, we are planning to extend our

approach with a selection module that accounts for amino acids similarity as in [84,

221] for counting occurrences of a pattern.

203

9. FINDING NETWORK MOTIFS USING MCMC

SAMPLING

9.1 Introduction

Studying the local topology is an important step for modeling the interaction

among the entities in a network. In a seminal work around a decade ago, Shen-

orr et al. [72] hypothesized that network motifs play an important role in carrying

out the key functionalities that are performed by the entities in a biological network.

Since then, researchers have also discovered that network motifs are building block for

complex networks from many diverse disciplines including biochemistry, neurobiology,

ecology, engineering [73], proteomics [74], social sciences [75] and communication [76].

Finding network motifs is computationally demanding. To identify whether a

given subgraph topology is a motif, we need to count the topology’s frequency in

the input network as well as in many randomized networks. Counting a topology’s

frequency in a single network is a challenging task as it requires solving subgraph

isomorphism, a known NP-complete problem. As the size of the motif grows, the

number of candidate motifs increases exponentially, and the task becomes more chal-

lenging. To cope with the enormous computation cost of exhaustive counting of the

frequency of candidate motifs, researchers consider various sampling based methods

that obtain an approximation of relative frequency measure (which we call concentra-

tion) over all the candidates of a given size. Most notable among these methods are

MFinder [67], MODA [77], and RAND-ESU [68]. Besides these approximate meth-

ods, exact motif counting methods are also available, such as, GTrieScanner [69],

ESU [68], Grochow-Kellis algorithm [78], Kavosh [70], and NetMODE [79]; However,

their application is limited to small networks only. In this work, our focus is on

finding concentration of prospective motifs using a novel sampling based method.

204

The quality of a sampling based method depends on three critical performance

metrics: accuracy, convergence, and execution time. Existing sampling based meth-

ods are poor in one or more of the above performance metrics. For instance, MFinder

is costly and it scales poorly with the size of the desired motifs. Authors in [68] have

shown that the cost of subgraph sampling of MFinder increases exponentially with

the size (number of vertex) of the subgraph. It is also poor in terms of accuracy and

convergence. A similar method, RAND-ESU [68] is significantly faster than MFinder

and yet its scalability is also not that satisfactory. Besides, its sampling accuracy and

convergence behavior are also poor.

Another important fact about the existing sampling based methods is that they

require random access to any of the vertices or the edges in the networks. This

becomes a severe limitation for networks for which such unrestricted access is not

available. For an instance, consider the Web network or a hidden network, a user

may not have access to any arbitrary vertex/edge in the input network for security

reason; rather, the desired node can only be accessed from another node which is

one-hop away from it; such scenarios are common in real-life and are considered in

the task of snowball sampling [222]. None of the existing methods can be used for

finding motifs in a graph that only allows restricted access, such as crawling.

In this work, we propose two random walk based methods, namely MHRW

(Metropolis-Hastings random walk) and SRW-rw (Simple Random Walk with Re-

weighting) for approximating the concentration of arbitrary-sized pattern graphs in

a large network. The underlying mechanism of both the methods is a Monte Carlo

Markov Chain (MCMC) sampling over the candidate motif space, which is guaran-

teed to compute an unbiased estimate of concentration of all the candidate motifs of

a given size simultaneously. Since, our methods are based on random walk over the

edges of the input graph, they only require a restricted access over the network such

that at any given time of the walk the one-hop neighboring nodes of currently visit-

ing candidate are accessible. Besides, the methods are scalable and are significantly

faster than the existing methods. They also have better convergence property and

205

small memory footprint. While preparing for the final manuscript of this work, we

have found another work [71] which is similar to our work.

9.2 Background

9.2.1 Graph, Subgraph, Induced Subgraph

Let G(V,E) is a graph, where V is the set of vertex and E is the set of edges.

Each edge e ∈ E is denoted by a pair of vertices (vi, vj) where, vi, vj ∈ V . A graph

without a self-loop or multi edge is a simple graph. In this work, we consider simple,

connected, and undirected graphs.

A graph G′ = (V ′, E ′) is a subgraph of G (denoted as G′ ⊆ G) if V ′ ⊆ V and

E ′ ⊆ E. A graph G′ = (V ′, E ′) is a vertex-induced subgraph of G if G′ is a subgraph

of G, and for any pair of vertices va, vb ∈ V ′, (va, vb) ∈ E ′ if and only if (va, vb) ∈ E.

In other words, a vertex-induced subgraph of G is a graph G′ consisting of a subset of

G’s vertices together with all the edges of G whose both endpoints are in this subset.

In this paper, we have used the phrase induced subgraph for abbreviating the phrase

vertex-induced subgraph. If G′ is an induced subgraph of G and |V ′| = p, we call G′

a p-subgraph of G. An embedding of a graph G′ in another graph G is a subgraph S

of G such that S and G′ are isomorphic;

For a given vertex count, the number of distinct graph topologies is fixed. We use

the symbol Λp to denote the set of all such topologies. To denote one specific topology

in Λp we use the symbol ωp,q, where q is the order of that topology (considering an

arbitrary but fixed ordering) among all the size p topologies. The set of induced

embeddings of all graphs in Λp in graph G is the collection of p-subgraphs of G.

Figure 9.1 shows all the elements of the sets Λ3, Λ4 and Λ5. Using the order of the

topologies in this figure, ω3,1 is the 3-node line graph.

206

3-node subgraph patterns 4-node subgraph patterns

5-node subgraph patterns

Fig. 9.1.: All 3, 4 and 5 node topologies.

207

9.2.2 Subgraph Concentration

The frequency of a particular p-subgraph topology g in an input graph G is the

number of times it appears in G. We denote it by fG(g). The concentration of g in G

is CG(g), which is defined as the normalized frequency over the cumulative frequency

of all the subgraph topologies in the set Λp. Mathematically,

CG(g) =
fG(g)∑

h∈Λp

fG(h)
(9.1)

9.2.3 Motif

A Motif is a subgraph topology which occurs in an input network at a significantly

higher frequency than it occurs in a set of random networks with identical character-

istics. For this purpose, the random networks are generated from the input network

by imposing the constraint that the vertices of a random network has the identi-

cal degree distribution as that of the input network. There are several methods for

generating random networks with identical degree distribution, but the most popu-

lar is the switching algorithm [211], which we use in this work. The significance of

frequency deviation between the input network and the set of random networks is

typically measured using z-score and p-value. If fGr(g) is the mean frequency of g in

a set of randomized graphs Gr (constructed from G), and σGr(g) is the corresponding

standard deviation, then z-score of g for the input network G is defined as:

zG(g) =
fG(g)− fGr(g)

σGr(g)
(9.2)

If the z-score of g is greater than some pre-specified threshold then we call g a motif.

Since, setting this threshold requires domain expertise, all the existing motif finding

methods consider it as a run-time parameter; we also follow the same in our work. For

sampling based solution, we use concentration of subgraph instead of their frequency.

Hence, z-score is defined as below:

208

ẑG(g) =
ĈG(g)− ĈGr(g)

σ̂Gr(g)
(9.3)

In equation 9.3, we use ĈG, and σ̂G to denote that they are statistics obtain from

random sample of size-p embeddings.

9.2.4 Markov chains, and Metropolis-Hastings (MH) Method

A Markov chain is the sequence of Markov process over the state space S. The

state-transition event is guided by a matrix, T , called transition probability matrix.

The chain is said to reach a stationary distribution π, when the probability of being in

any particular state is independent of the initial condition, it is reversible if it satisfies

the reversibility condition π(i)T (i, j) = π(j)T (j, i),∀i, j ∈ S and it is ergodic if it

has a stationary distribution. The main goal of the MH is to draw samples from some

distribution π(x), called the target distribution, where, π(x) = f(x)/K; here K is a

normalizing constant which may not be known and difficult to compute. It can be

used together with a random walk to perform MCMC sampling. For this, the MH

algorithm calculates the acceptance probability using the following equation:

α(x, y) = min

(
π(y)q(y, x)

π(x)q(x, y)
, 1

)
(9.4)

9.3 Methods

Given a graphG (which we refer as input graph) and an integer p, a sampling based

method samples a small set of p-subgraphs of G. From this set, it approximates the

concentration of each topology in Λp as shown in section 9.2.3. To measure the exact

concentration, one must perform unbiased sampling, where each of the p-subgraphs

has an uniform probability to be sampled. This is not an easy task, as the sample

space is very large. Besides, a direct sampling method is not applicable because

for that we need to enumerate all the p-subgraphs (to obtain the size of the sample

209

1 2

3 4

5 7

6

9

8 10

11

12

(a)

1 5,6,7,8,9,10

2 5,6,7,8,10

3 5,6,7,8,9,10

4 5,6,8,9

(b)

(a) Left: A graph G with the current state of random walk; Right: Neighborhood
information of the current state (1,2,3,4)

1 2

3 4

5 7

6

9

8 10

11

12

(a)

1 4,9

2 4,5,6,9,12

3 4,9

8 4,5,6,9

(b)

(b) [Left: The state of random walk on G (Figure 9.2a) after one transition; Right:
Updated Neighborhood information

Fig. 9.2.: Neighbor generation mechanism.

space), which we want to avoid. So, an indirect sampling strategy must be followed.

Both MFinder [67] and RAND-ESU [68] adopt indirect sampling; however, they differ

in the sampling methodologies. MFinder’s sampling is biased which requires post-

adjustment of concentration for correcting the bias; on the other hand, RAND-ESU

guaranty a uniform sampling which requires no correction. For large p, both MFinder

and RAND-ESU are costly.

210

In this paper, we propose MHRW, and SRW-rw for sampling p-subgraphs of a

graph using Markov chain Monte Carlo (MCMC) sampling. As a Metropolis-Hasting

based method (discussed in sec: 9.2.4), they perform a random walk over the state

space so that the stationary distribution of the random walk converges to a desired

target distribution. For our task, the state space are the set of p-subgraphs. Since,

we want to approximate the concentration of each of the topologies in Λp, our target

distribution is uniform, i.e., we want to sample each of the p-subgraphs with an

identical probability. If P is the set of the p-subgraphs in the input graph G, and π

is the target distribution, we want π(g) = 1/|P |, ∀g ∈ P .

For the random walk of both MHRW and SRW-rw, a neighbor of a p-subgraphs

(say, g) is obtained by simply replacing one of its existing vertices of g with another

vertex which is not part of g and find the subgraph induced by the new vertex-set.

While replacement, the methods ensure that the new set of vertices induce a connected

p-subgraph. At every iteration, all possible neighbors are populated using the above

strategy. For a state, the number of neighboring states are called its degree.

Example: Suppose our sampling method (MHRW or SRW-rw) is sampling a 4-

subgraph from the graph G shown in Figure 9.2a(Left). Let, the 4-subgraph 〈1, 2, 3, 4〉
(shown in bold lines) is the existing state of this random walk. One of it’s neighbor

state is 〈1, 2, 3, 8〉, which can be obtained by replacing the vertex 4 by the vertex

8. In Figure 9.2a(Right) we show the information of all its neighbors. Box labeled

by x contains all the vertices that can be used as a replacement of vertex x to get a

neighbor. If the random walk transition chooses to go to the neighbor state 〈1, 2, 3, 8〉,
it can do so simply by adding the vertex 8 (a vertex in the box labeled by 4) and

deleting the vertex 4. The updated state of the random walk along with the updated

neighbor-list is shown in Figure 9.2b. The degree of a state is the number of neighbors,

which is simply the sum of the entries in each of the boxes; thus the degree of state

〈1, 2, 3, 4〉 is 21, and the degree of the state 〈1, 2, 3, 8〉 is 13.

To apply MH algorithm, we also need to decide on a proposal distribution, q. For

MHRW random walk, we choose the proposal distribution to be uniform, i.e., in the

211

Algorithm 8: MHRW Pseudocode.

Input :
- Graph G
- Size of subgraph, p
- Size of the sample set, N : |S |

[1]g ← Starting State ;
[2]M ← φ ;
[3]i← 0 ;
[4]dg ← Neighbor count of g ;
[5]while i < N do
[6] x← state, S sampled lastly from G ;
[7] h← Any neighbor of g chosen

uniformly at random from (1, |dg|) ;
[8] dh ← Neighbor count of h ;
[9] accp val← dg/dh ;

[10] accp probablility ← min(1, accp val) ;
[11] if uniform(0, 1) ≤ accp probability then
[12] g ← h ;
[13] dg ← dh ;
[14] i← i+ 1 ;
[15] Generate the Canonical code of g ;
[16] Insert the code into the set M

and update the count ;

[17]Normalize the frequency using equation 9.5, ∀i ωp,i ∈ M ;
[18]return M ;

212

proposal step MHRW chooses one of g’s neighbors uniformly. If h ∈ P and h is a

neighbor of g based on our neighborhood definition, using proposal distribution, the

probability of choosing h from g, q(g, h) = 1/dg, where dg is the degree of the state

g. Also note, if m ∈ P , but m is not a neighbor of g, q(g,m) = 0, i.e., transitions are

allowed among neighboring states only.

Using the proposal (q) and target (π) distributions, MHRW method is simply an

implementation of the algorithm that we discussed in Section 9.2.4. A pseudo-code

of MHRW is given in Figure 8. At the beginning of the sampling for each topology

in Λp, we assign a counter which is initialized to 0. As the sampling progress, for each

state we identify the specific topology that the state represents, and increment its

counter by 1. Thus, if S is the sample set, the concentration equation defined in 9.1

for g where g ∈ Λp becomes:

Ĉ(g) =
1

|S |
∑

x∈S
1(x==g) (9.5)

At any iteration from the current stage g, the method chooses one of its neighbors,

(say, h) using the proposal distribution (uniform), and either accept or reject the

proposed move using Equation 9.4 i.e. MHRW adjusts the transition probability

by accepting or rejecting the proposed transition so that the target distribution is

guaranteed to be uniform.

On the other hand, an iteration of SRW-rw (simple random walk with re-

weighting) simply chooses one of the neighbors uniformly and make this transition.

Thus the difference between MHRW and SRW-rw is that the latter chooses the

proposed transition with 100% probability. This does not guarantee uniform sam-

pling of the states (p-subgraphs); rather the states are sampled in proportional to

their degree values. In other words, the target distribution of simple random walk is

directly proportional to the degree value of the p-subgraphs. So, the concentration

of the topologies in Λp is also biased in proportional amount. To obtain an unbiased

estimate of concentration, the estimated concentration should be re-weighted, which

213

gives the name simple random walk with re-weighting or in short SRW-rw. After re-

weighting the concentration equation (Equation 9.1) of SRW-rw takes the following

form:

Ĉ(g) =
1

W

∑

x∈S
(1/dx)(x==g) (9.6)

where, W is the sum of the total weights, i.e., W =
∑

x∈S (1/dx). Such an idea of

re-weighting has been used in [223] for approximating degree distribution of a large

network by sampling.

Pseudo-code of SRW-rw is similar to the pseudo-code of Figure 8, the only dif-

ference is that, there is no acceptance rejection step and in Line 12, instead of incre-

menting the frequency count by 1, we increment the concentration by 1/dg. Finally,

we normalize in Line 13 using equation 9.6 instead of equation 9.5.

Claim: For a given p and an input graph G, both MHRW and SRW-rw returns an

unbiased estimate of the concentration of a topology in Λp.

Proof: Assume g ∈ Λp is an arbitrary topology and S is a set of induced sub-

graph sampled from G. The expectation of g’s concentration in G is E
[
Ĉ(g)

]
=

E
[

1
|S|
∑

x∈S 1(x∼=g)

]
= E [Pu(x ∼= g)]. Here, Pu(x ∼= g) is the probability that a graph

x in the sample set S is isomorphic to the topology g when it is sampled under

uniform distribution. But, this value is the exact concentration value of g. So,

E
[
Ĉ(g)

]
= E [Cg] = CG. So, MHRW returns an unbiased estimate of the concen-

tration of a topology in Λp.

By construction, the stationary distribution π for SRW-rw’s random walk is

proportional to the degree of a p-subgraph. Thus, for an arbitrary p-subgraph, w,

its stationary probability π(w) = dw/K where K is a normalizing constant. For a

topology g ∈ Λp, before re-weighting the expected value of its concentration is equal

to
∑

w∈P π(w) · 1(w∼=g) =
∑

w∈P
dw
K
· 1(w∼=g). However if each sample w of type g con-

tributes only 1/dw instead of 1 in the counter of g, the expected value of concentration

becomes
∑

w∈P
dw
K
· (1

dw
)(w∼=g) = 1

K

∑
w∈P 1(w∼=g) = 1

K
C(g), which is the unbiased con-

214

Table 9.1.: Dataset statistics.

Graph Vertex Edge Average
Degree

Yeast 2,224 6,609 5.94
Jazz 198 2,742 27.49

ca-GrQc 4,158 13,422 6.43
ca-HepTh 8,638 24,806 5.74

ca-AstroPh 17,903 196,972 22.0

centration scaled by a multiplicative constant. Since the concentration of all the

topologies in Λp sums to 1, the expected value of the concentration returned by equa-

tion 9.6 after normalization is an unbiased estimate of the true concentration.

9.3.1 Implementation Issues

Starting State. When we start the random walk on G, both MHRW, and SRW-

rw starts from an arbitrary p-subgraph. To find it, the methods randomly choose

an edge (of G) and initialize the vertex set with the vertices of this edge. Then they

populate other vertices adjacent to it and return an induced subgraph of the desired

size. As the input graph is connected, this process always returns a p-subgraph of G.

Canonical label of a graph We use min-dfs-code [58] for canonical labeling of the

graph to unify different isomorphic forms of the same graph.

9.4 Results and Discussion

We implement MHRW and SRW-rw in C++ language and perform a set of

experiments for evaluating their performance. We run all the experiments in a com-

puter with 2.60 GHz processor and 4 GB RAM running Linux operating system. For

experiments, we use graphs of different sizes from different domains. Table 9.1 lists

the graphs along with the vertex count, the edge count and the average degree. Since

the existing implementation of our methods only consider undirected graphs, all the

215

input graphs are made undirected if necessary. The graphs are available from the

following two web sites 1.

Experimental results in the earlier works show that RAND-ESU is the best among

these three methods. In [68], Wernicke have shown that RAND-ESU is significantly

faster than MFinder with a better accuracy. Another recent work [77] shows that

RAND-ESU is the fastest among a set of methods including MODA. In this paper, we

compare the performance of our methods with RAND-ESU to show that our methods

are better than RAND-ESU in different performance metrics. We also considered

MODA [77] for a comparison, but we found that its available implementation is

unstable; the same fact was also reported by the authors of [79]. Note that we do not

compare our methods with existing exact algorithm as they do not scale with the size

of motif and also with the size of the input graph. For comparison with RAND-ESU,

we use the implementation by authors that is available in the FANMOD library. Note

that, in this implementation, the algorithm supports subgraph size up to 8. Besides

a user need to set some probability values, which we set using the recommendation

in FANMOD’s documentation. In the result section, we will refer RAND-ESU as

FANMOD following the convention in the earlier works.

We use three performance metrics: runtime, error, and convergence to compare

our method with others. To compute the error value for a topology g, we first find

the exact concentration of g using an exact method, then we find the approximate

concentration using the sampling based method; the absolute difference between the

above two concentration normalized by the actual concentration is the error for the

topology g. However, since the sampling method is a randomized process, instead

of using the approximate concentration of a single run, we take the average of the

approximate concentration of 10 different runs. We represent the error as percentage

and use the symbol PE(g) (percentage error of g) for this metric.

1http://snap.stanford.edu/data/index.html and http://www-personal.umich.edu/~mejn/

netdata

216

0

20

40

60

P
E

(%
)

SRW-rw MHRW Fanmod

(a) p = 5(10000) (yeast)

0

5

10

15

20

25

30

35

40

45

50

P
E

(%
)

SRW-rw MHRW Fanmod

(b) p = 6(10000) (Yeast)

0

20

40

60

P
E

(%
)

SRW-rw MHRW Fanmod

(c) p = 5(10000) (Jazz)

0

10

20

30

P
E

(%
)

SRW-rw MHRW Fanmod

(d) p = 4(40000) (Ca-AstroPh)

0

10

20

30

P
E

(%
)

SRW-rw MHRW Fanmod

(e) p = 5(10000) (Ca-Hepth)

0

5

10

15

20

P
E

(%
)

SRW-rw MHRW Fanmod

(f) p = 5(10000) (Ca-GrQC)

Fig. 9.3.: Comparison of percentage error value for various methods. The dataset
name, motif size, and the number of samples (in parenthesis) are given in figure
sub-title.

217

9.4.1 Error Comparison

We compare the error percentage (PE) of various topologies using SRW-rw,

MHRW, and FANMOD algorithms on all the datasets for different size values (p).

Instead of showing the PE for all the topologies, we only show it for the topologies

that are likely to be motifs, i.e., for these topologies, the ẑG(g) value in Equation 9.3

is the highest among all the topologies. For this experiment, we fixed the number of

samples to 10000 for all of the experiments except for the experiment of Ca-AstroPh

dataset, where we use 40000 samples.

For all the datasets, we see that our methods are significantly better than the

FANMOD method based on the PE metric. Specifically, the performance gap be-

tween our method and FANMOD is very high for the Ca-AstroPh dataset, which is

the largest among all our datasets. The performance of SRW-rw and MHRW are

comparable. However, we observe that for topologies for which the concentration

is high, MHRW’s approximation is better than SRW-rw. On the other hand for

graphs for which the concentration is small (see the dense topologies in Figure 9.3b),

SRW-rw’s approximation is better than MHRW. There are a few occasions where

the PE of SRW-rw are as bad as FANMOD; nevertheless, the plots clearly demon-

strate the superiority of Markov Chain based techniques over FANMOD in terms of

percentage error.

9.4.2 Runtime Comparison

The runtime performance comparison of our methods with FANMOD is shown in

Table 9.2. Here, we have fixed the sample count to 10000 for all the methods. To

highlight the poor scalability of FANMOD with the size of the motif, we show some of

the numbers in bold font. If we carefully observe the table we can see that as the size

increases by unity the runtime of FANMOD increases more than 10 times. For the

Ca-AstroPh dataset which is the densest, for generating 10000 samples, FANMOD

takes 180s, on the other hand both of our methods take about 5 seconds only. For

218

Table 9.2.: Runtime comparison of our methods with FANMOD.

Dataset Motif MHRW SRW-rw FANMOD
Size (s) (s) (s)

Yeast
5 2.73 3.13 2.73
6 4.78 5.43 50

Jazz
5 5.08 5.71 3.45
6 9.68 10.92 52

Ca-GrQC

3 0.79 1.06 0.026
4 2.11 2.79 0.275
5 7.03 10.53 2.79
6 25.36 32.30 34

Ca-Hepth

3 0.60 0.75 0.43
4 1.43 1.72 0.413
5 3.03 3.30 5.37
6 4.98 5.13 70.41

Ca-Astroph
3 3.20 4.48 3.35
4 7.90 9.80 180.38

219

 0

 10

 20

 30

 40

 50

 60

 70

 10 16 22 28

R
u
n
T

im
e
 (

s
)

Iteration (10
3
)

MHRW SRW-rw FANMOD

(a) Sample size vs Runtime

10
0

10
1

10
2

10
3

10
4

10
5

 6 7 8 9 10

R
u
n
T

im
e
 (

s
)

fo
r

1
0
0
0
0
 i
te

ra
ti
o
n

Subgraph Size

MHRW SRW-rw FANMOD

(b) Subgraph Size vs Runtime

Fig. 9.4.: Runtime performance for different sample sizes and for different subgraph
sizes.

this metric also, the performance gap between our methods and FANMOD increases

as the dataset or the motif size increases.

We also show the runtime performance of the algorithms with the increasing num-

ber of samples in Figure 9.4a for yeast dataset and for subgraph size 5. The time

increases mostly linearly for all the datasets; however, both of our methods have much

smaller runtime than FANMOD. We also compare the runtime performance of the

algorithms for motif sizes from 6 to 10. The result is shown in Figure 9.4b (note that

y-axis is in logarithm scale). It is clear from the plot that our methods scale well with

the increasing subgraph size. But, for FANMOD the runtime grows exponentially

with the subgraph size; for example, to sample 10000 graphs from the yeast dataset,

for subgraph size 7 and 8, it takes 616 seconds and 3 hours respectively. On the other

hand, for size 8 our methods sample identical number of graphs in only 50 seconds.

Also note that, FANMOD runs only for subgraph size up to 8.

9.4.3 Convergence Comparison

In this experiment, we study the convergence using the negative log (KL) metric

by varying the number of samples. Figure 9.5a and 9.5b show that as we increase

the number of samples both the Markov chain based techniques approximate the

220

 0

 1.5

 3

 4.5

 4000 6000 8000

-l
o
g
(K

L
)

Iteration

MHRW SRW-rw FANMOD

(a) Iteration vs KL (Size 5) (ca-
Hepth)

 0

 1.5

 3

 4.5

 4000 6000 8000 10000

-l
o
g
(K

L
)

Iteration

MHRW SRW-rw FANMOD

(b) Iteration vs KL (Size 6) (ca-
Hepth)

Fig. 9.5.: Comparison of convergence trend of our methods with FANMOD using KL
Divergence.

concentration distribution more accurately (increasing value of − log(KL)), on the

other hand, for FANMOD the curve is almost flat, i.e. with an increasing number of

samples FANMOD does not converge to the true concentration.

9.5 Chapter Summary

In this paper, we propose two methods MHRW, and SRW-rw for approximating

the concentration of p-subgraphs in a host network for any given value of p. Our

experimental results demonstrates that both of our proposed methods are significantly

faster than the best of the existing methods. Moreover, our methods do not require

full access over the networks. This makes our method useful for very large network

(such as, Web) which can only be crawled.

221

10. ACTS: EXTRACTING ANDROID APP

TOPOLOGICAL SIGNATURE THROUGH GRAPHLET

SAMPLING

10.1 Introduction

Rising trends in mobile systems, e.g., the wearable devices, the medical devices

and the intelligent vehicle systems, are setup on Android platforms following the

big success of it on smartphone market. Since Android applications are specifically

designed to have as few implementation dependencies as possible, Android is believed

to be adaptive to the new market and dominate the mobile distributed environment

soon.

As the use of Android continues to grow, so does the threat of malware. Malicious

behaviors observed in such malware include the theft of private information stored

on the device, device fingerprinting, abusing premium service, and rooting the device

as a backdoor for further attacks [99]. Detecting such malware is a critical task for

the security research community.

It is observed that variants of malware form families through code sharing and

their common lineage [99]. Therefore, instead of identifying individual malware and

extracting a signature from it, we can identify the commonality within the same mal-

ware family and generate signatures that capture such commonality. Recently, var-

ious machine learning/data mining (i.e., pattern mining) techniques are applied to

detect Android malware [100–105] or closely related tasks such as identifying repack-

aged apps [106, 107]. Beyond the common pattern mining framework, these works

differ significantly in their selection and construction of features, their quantifica-

tion/metrication of such features, their choice of pattern mining algorithms, and, in

222

totality of these fine points of design, their applicability, robustness, and efficiency in

detecting malware.

A number of different app representations have been studied for malware de-

tection. For example, Yamaguchi et al. [101] propose a compact representation of

source code, the code property graph, that combines abstract syntax trees, control

flow graphs, and program dependence graphs. Other approaches do not require the

source, but instead focusing on features at different abstract levels: from the low-level

platform opcode level [104], through the intermediate function call [100] and Android

framework API [103] level, to the high semantic level that includes features such as

network addresses and Android specific artifacts such as permission and Intents [102].

Yet, other works formulate malware detection as different pattern mining tasks such

as frequent subgraph mining [105].

Due to the availability of off-the-shelf obfuscation solutions (such as the free Pro-

Guard [108] and the commercial DexGuard [109]) and the growing number of Android

apps, it is critical for any proposed malware detection algorithm to be robust and effi-

cient. Our first step towards robustness is to extract from the app under investigation

its function call graph (FCG) [100], in which each vertex represents a Java method

and each edge represents a method invocation. We concur with [100] that FCG is

at a proper abstraction level for detecting malware: In addition to the non-essential

transformations mentioned above, it is also immune to, for example, both lower-level

opcode/instruction obfuscation or higher-level content encryption.

Based on the extracted FCG, we propose an efficient and robust Android app

signature that faithfully captures the invocator-invocatee relationship between several

functions, i.e., the topology of local neighborhoods on the FCG. Instead of using

vertices and edges (or extension to 1-hop neighborhoods [100]) on the FCG “as is,” we

leverage recent advances in graph mining to efficiently sample graphlets [111,224] on

the FCG. Graphlets are small (e.g., less than 6), connected, vertex-induced embedded

subgraphs in an underlying graph, which is the FCG in our case. In the spectrum of

purely local (e.g., individual vertices/edges and simple metrics such as degrees) and

223

fully global (e.g., betweenness centrality [225]) scope of the FCG, our graphlet-based

signature takes a unique position: It faithfully captures local topological information

at a fine-grained granularity without exponentially inflating the state space.

Given these characteristics, we call our graphlet-based signature a topological sig-

nature and, accordingly, name our method ACTS (App topologiCal signature through

graphleT Sampling). In our experiments, ACTS achieves a cross-validated accuracy

as high as 87.9% . In comparison, the same method with a purely local feature (i.e.,

degree frequency distribution (DFD) [226]) has an average cross-validated accuracy

of 75%. Since ACTS only uses structural features, which are orthogonal to semantic

features such as bytecode-based vertex typing, it is expected that combining them

would give a greater improvement in malware detection accuracy than combining

non-orthogonal semantic features.

In summary, our contributions are:

• We propose a novel topological signature for Android apps that fully captures

the invocator-invocatee relationship in an app’s FCG, which is otherwise lost

in a global topological metric such as betweenness centrality [225], without

exponentially inflating the state space as in n-hop neighborhoods with n ≥ 3.

• By leveraging recent advances in graphlet sampling, we make the generation

of our proposed topological signature practically efficient without sacrificing its

robustness.

• With experiments on real malware/benign app samples, we demonstrate that

local topological information captured by our method alone can achieve a high

malware detection accuracy, which can be further improved by incorporating

(orthogonal) semantic features.

In the rest of the paper, after the preliminaries (Section 10.2), we present our

method (Section 10.3) and experiment results on real malware/benign app samples

(Section 10.4). We then reflect on our method (Section 10.5) and conclude with a

brief review of related works (Section 10.6).

224

ω3,1 ω3,2 ω3,3 ω3,4 ω3,5 ω3,6

ω3,7 ω3,8 ω3,9 ω3,10 ω3,11 ω3,12 ω3,13

Fig. 10.1.: The 13 unique 3-graphlet types ω3,i (i = 1, 2, . . . , 13).

10.2 Preliminaries

10.2.1 Function Call Graph

Function call graph (FCG) is a graph model for functions and their invocation

relationship, in which vertices represent functions and a directed edge from vertex v1

to v2 represents that v1 invokes v2. For an Android app, functions are Java methods,

and their invocation relationship can be statically extracted from Java bytecode by

searching for the invocation-related opcodes, i.e., invoke-*.

10.2.2 Graphlets

Pržulj et al. [110] first consider a complete set of local graph topologies with 3, 4,

and 5 vertices and name them graphlets1 in their work on characterizing biological

networks. Formally, given a graph G, graphlets of G are small, connected, non-

isomorphic, and vertex-induced subgraphs of G. Although earlier works [110,111,224]

on graphlets focus on undirected graphs, we consider directed graphlets to preserve

the inherent directionality of FCGs.

Figure 10.1 enumerates all the 13 unique types of (directed) graphlets ω3,i
2 (i =

1, 2, . . . , 13) with 3 vertices (the 3-graphlets): They are pair-wise non-isomorphic.

These graphlet types do not appear equally likely in an FCG. For instance, although

there are many cases in which a function invokes two others (ω3,5) or two different

1Graphlet is also used to refer wavelet decomposition of graphs [227], which is an unrelated concept
to what we use in this work.
2The unique types of n-graphlets are enumerated as ωn,1, ωn,2, . . . , ωn,N(n), with N(n) being the
number of unique types for n-graphlets.

225

functions invoke the same one (ω3,6), 3 mutually recursive functions (ω3,13) are rare.

Later, we will discuss how we use this observation to improve the performance of our

method (Section 10.3.3).

For vertices 4, 5, and 6, the number of graphlet types are 199, 9, 364, and

1, 530, 843, respectively [228]. We focus on graphlets with less than 6 vertices in

this work because larger graphlet types require extra computations but provide little

value in capturing the structure of FCG. Figure 10.2 illustrates our running example:

A 4-graphlet g (the grey vertices and their induced edges) embedded in a 6-vertex

graph G.

10.2.3 Graphlet Frequency Distribution (GFD)

Graphlet frequency distribution (GFD) of a graph G is the probability distribution

of the frequencies of the different graphlet types in G. For instance, since the number

of 3-graphlets in a (finite) FCG G is finite, we can, in principle, enumerate all embed-

ded graphlets in G and, for each such embedded graphlet g, identify g with one of the

13 graphlet types in Figure 10.1. At the end of the enumeration, suppose the count

(i.e., the frequency) of graphlet type ω3,i is f3,i (i ∈ {1, 2, . . . , 13}), the frequency dis-

tribution density d3,i at ω3,i is f3,i/
∑13

i=1 f3,i. We call the vector (d3,1, d3,2, . . . , d3,13)

the 3-graphlet frequency distribution (3-GFD) of G. We can compute n-GFD for any

n with the same procedure, and concatenate several n-GFDs with different n into a

single vector. We can call the concatenated vector a GFD of G if there is no confusion

on its constituents.

The above procedure only works in principle. In practice, the fast growing number

of apps, the size of real apps’ FCGs, and the combined computation complexity of

graphlet enumeration and identify graphlet types make the enumeration-and-count

procedure impractical to use. Nevertheless, GFD is a step forward towards our goal:

It is a metrication from the (combinatorial) graphlet space into the (metric) Euclidean

space, where we can apply pattern learning techniques to detect malware. In other

226

0 1

2

3

4 5

Fig. 10.2.: Our running example: A 4-graphlet g (the grey vertices and their induced
edges) embedded in a 6-vertex graph G.

words, GFD preserves the topological information of local neighborhoods in an FCG.

Later, after giving a high-level overview of our method (Section 10.3.1), we will focus

on how to estimate GFD efficiently (Section 10.3.2).

10.2.4 Metropolis-Hastings (M-H) Algorithm

Markov Chain Monte Carlo (MCMC) [229] is a class of algorithms for sampling

from a probability distribution. Given an intended sampling distribution p(x) over

a sample space X, the idea behind general MCMC methods (in which the M-H

algorithm is a specific method) is to construct a Markov chain overX whose stationary

distribution equals to p(x): After the Markov chain mixes (i.e., reaches its stationary

distribution and, hence, “forgets” where it begins), the subsequently visited states of

the chain can be used as samples from the intended distribution P (x).

Metropolis-Hastings (M-H) algorithm [230] is a specific MCMC method that we

use for estimating GFD (Section 10.3.2). In the M-H algorithm, the transition be-

tween two consecutive states x and x′ in the chain consists of two stages: proposals

and acceptance/rejection. Correspondingly, there is a proposal distribution q(x′|x)

(the probability of proposing x′ as the next state given the current state x) and an

acceptance distribution a(x′|x) = min(1, A(x′|x)) (the probability of accepting x′ as

the next state given the current state x), in which:

A(x′|x) =
p(x′)q(x|x′)
p(x)q(x′|x)

. (10.1)

227

Intuitively, for each iteration of the sampling process, we first randomly pick x′ with

a probability of q(x′|x), and then either accept x′ (by sampling x′) with a probability

of a(x′|x) or reject x′ (by sampling x again) with a probability of 1− a(x′|x).

10.3 Method

In this section, after a brief overview of our method (Section 10.3.1), we zoom in

on two technical points: Efficient GFD estimation (Section 10.3.2) and FCG-specific

GFD dimension reduction heuristics (10.3.3) that distinguish our method.

10.3.1 Overview

Given an Android app’s APK (Android PacKage) binary package, we:

• extract an FCG from the APK,

• estimate the GFD of the FCG (Section 10.3.2), and

• project the estimated GFD to a lower dimensional space to reduce the GFD’s

dimensions (Section 10.3.3).

The projected GFD, which is a vector, is a signature of the app. To stress that

this signature preserves detailed topological information on an app’s FCG, we call it

the topological signature (TS) of the app.

Given a pool of both malware and benign app samples, we train a classifier on

their TSs to detect malware: If the TS of an app is classified as a malware, the app

is flagged as malware.

10.3.2 Efficient GFD Estimation

Suppose we have a uniform sampler of the FCG, we can approximate the whole

FCG’s GFD with our samples’ GFD. The more samples we take, the closer the ap-

proximation is. Given the large sample space and the (relatively small) number of

228

bins (i.e., unique graphlet types) for n-graphlets with n < 6, we only need to sample

a tiny fraction of the sample space to get a close approximation.

This apparently solve the GFD estimation problem. However, the real problem is

that we need to uniformly sample graphlets from the FCG without enumerating the

sample space. Fortunately, two recent advances on graph mining, MHRW [21] and

GUISE [111], show that GFD can be estimated without enumerating all graphlets.

Inspired by these works, we use MCMC to sample the directed FCG.

Sample space and intended distribution

Since our goal is to uniformly sample from all the embedded graphlets in the FCG:

• The sample space X consists of all the embedded graphlets in the FCG.

• The intended distribution p(x) over X is the uniform distributions, i.e., p(x) =

p(x′) for any x, x′ ∈ X.

Suppose we have just sampled graphlet g in the sampling process, the M-H al-

gorithm (Section 10.2.4) says that, if we propose to sample graphlet g′ next with a

probability of q(g′|g), an acceptance probability of a(g′|g) = min(1, A(g′|g)) (in which

A(g′|g) is defined by Equation (10.1)) will eventually lead to a sampling process that

have the desired sampling distribution p(x).

FCG-induced Graphlet Graph and Graphlet Neighboring Relationship

To define the proposal distribution q(x′|x), we consider the FCG-induced graphlet

graph GG of the FCG G. The FCG-induced graphlet graph GG is an undirected graph

with vertices being all the embedded graphlets in the FCG, and edges defined by

the graphlet neighboring relationship between the vertices. The graphlet neighboring

relationship is a symmetric relationship between two graphlet embeddings g1 and g2

in the FCG: g1 and g2 are graphlet neighbors if and only if they differ by share all but

one vertex. In particular, self-neighboring is excluded by this definition because there

is no vertex difference, which is required by the definition. Since graphlets on G and

229

vertices on GG have a one-to-one map, we identify a graphlet g on G with the vertex

on GG that it maps to, and also denote that vertex with g if there is no confusion in

the context.

For example, in Figure 10.2, g’s neighbors on GG are3 all the 3-graphlets (e.g.,

{v2, v3, v4}, {v3, v4, v5}, etc.), 4-graphlets (e.g., {v1, v2, v3, v4}, {v0, v2, v4, v5}, etc.),

and 5-graphlets ({v1, v2, v3, v4, v5} and {v0, v2, v3, v4, v5}) that share all but one vertex

with it. Conversely, 1. {v1, v2, v3} is not a neighbor of g because it does not contain

both v4 and v5, which are in g; 2. {v0, v1, v2, v3} is not a neighbor of g because it

does not contain g’s vertices v4 and v5 (and g does not contain its vertices v0 and v1);

3. {v0, v1, . . . , v5} is not a neighbor of g because g does not contain its vertices v0 and

v1.

The significance of the graphlet neighboring relationship on GG is that it can be

efficiently generated by local information on the FCG G without enumerating the

whole G. Specifically, given an embedded graphlet g of G, the neighbors of g on GG
can be generated by removing, changing, or adding exactly one vertex in g. Hence,

we can efficiently compute the degree dg of g in GG by generating and counting g’s

neighbors.

Proposal and Acceptance Distributions

Let d(g) and N(g) be graphlet g’s degree and neighbors in GG, respectively. Sup-

pose the last graphlet we have sampled is g, our proposal strategy q(g′|g) is to uni-

formly sample one of its neighbors in GG, i.e.,

q(g′|g) =





1
dg

if g′ ∈ N(g),

0 otherwise.
(10.2)

Since dg can be efficiently computed without enumerating the graph (see above),

q(g′|g) can also be efficiently computed since it only requires computing dg.

3Given that graphlets are vertex-induced subgraphs, we use a vertex set to represent the (unique)
embedded graphlet having those vertices here.

230

By Equations (10.1) and (10.2), the resulting acceptance strategy a(g′|g) is:

a(g′|g) =





min(1, dg
dg′

) if g′ ∈ N(g),

0 otherwise.
(10.3)

By Equations (10.2) and (10.3), the probability s(g′|g) of sampling g′ next given

the current sample g is:

s(g′|g) =





min(1
dg
, 1
dg′

) g′ ∈ N(g),

1−∑h∈N(g) min(1
dg
, 1
dh

) g′ = g,

0 otherwise.

(10.4)

The intuition behind the sampling strategy in Equation (10.4) can be understood

in the following two cases.

Case 1. If g is a graphlet that has the highest degree among its neighbors in GG,

i.e., dg ≥ dg′ for any g′ ∈ N(g), then min(1/dg, 1/dg′) = 1/dg and, hence, by Equa-

tion (10.4), s(g|g) = 1 − dg(1
dg

) = 1 − 1 = 0, i.e., the next sample will not be g but

one of its neighbors.

Case 2. If g is a graphlet with a relatively low degree among its neighbors in GG,

s(g′|g) in Equation (10.4) will be greater than 0. The greater the degree differences

are, the greater s(g′|g) will be. In an extreme case in which g has a single neighbor

g′ with a degree of 100 (i.e., dg = 1 and dg′ = 100), s(g′|g) = 0.01 and s(g|g) = 0.99:

If the current sample is g, 99 out of 100 times, the next sample will still be g.

In other words, the sampling process (i.e., the consecutive states of the Markov

chain) is more eager to move away from the more popular graphlets (i.e., the ones

with higher degrees in GG) and to stay at the less popular ones: The former has

a better chance than the latter of being revisited later. This results in a fair (i.e.,

uniform) sampling of all the embedded graphlets in the FCG G.

231

Algorithm 9: Estimate-GFD.

Input :
- G: the FCG
- t: number of iterations

[1]g ← a random (initial) graphlet ;
[2]fc ← NEXT-SAMPLE (G, g, t) ;
[3]for c ∈ C do
[4] dc ← fc/

∑
c∈C fc ;

[5]return dc ;

Algorithm 10: NEXT-SAMPLE.

Input :
- G: the FCG
- g: current graphlet sample
- k: remaining iterations

[1]N(g)← g’s neighbors in GG ;
[2]choose a g′ ∈ N(g) with an equal probability of 1/dg ;
[3]a← a number uniformly sampled from [0, 1] ;
[4]if a ≤ min(1, dg/dg′) then
[5] g ← g′ ;
[6] c← C(g) ;
[7] fc ← fc + 1 ;
[8] if k > 0 then
[9] NEXT-SAMPLE (G, g, k − 1) ;

232

0.50 0.32 0.19 0.02 0.01

Fig. 10.3.: The 5 3-graphlet types that have a greater-than-2% frequency density in
the GFD of at least one app in our experiment, sorted by their average frequency
density across all malware/benign app samples in our experiment.

0.23 0.20 0.050.10 0.03

~0 ~0 ~0 ~0 ~0

~00.01 ~0~0~00.01 ~0

0.020.29 0.07

Fig. 10.4.: The 20 4-graphlet types that have a greater-than-2% frequency density
in the GFD of at least one app in our experiment, sorted by their average frequency
density across all malware/benign app samples in our experiment.

GFD estimation algorithm

Finally, we estimate the GFD for the FCG G from t samples by evaluating

Estimate-GFD(G, t) in Algorithm 9. In our experiment, we evaluate multiple t

and choose 100, 000 for having both low variance in the sampling result and accept-

able efficiency. Note that, given the average size of an FCG G (thousands of vertices)

and, hence, the sample space GG (for a 1, 000-vertex G, GG has a worst-case size

of O(1, 0003)), 100, 000 iterations are quite small. Indeed, for the largest app in

our dataset (the Facebook app, with 47, 539 vertices and 77, 900 edges), Estimate-

GFD(G, T) for T = 100, 000 only takes only about 34 seconds on our desktop work-

station with high convergence across multiple runs.

233

10.3.3 FCG-specific GFD Dimension Reduction Heuristics

The curse of dimensionality [231] plagues many machine learning tasks. Theoret-

ically, by confining the n-graphlets we sampled to n ∈ {3, 4, 5}, the GFD vectors we

obtain from Algorithm 9 are of 9, 576 (13 + 199 + 9, 364; Section 10.2.2) dimensions.

Reducing the dimensions of these vectors is desirable.

Fortunately, as briefly discussed in Section 10.2.2, not all graphlet types are equally

likely to appear in a real FCG. Figures 10.3 and 10.4 show all 3-graphlet and 4-

graphlet types that have more a greater-than-2% frequency density in the GFD of at

least one of the (more than 1, 400) apps (including both malware and benign apps) in

our experiment: There are 5 3-graphlet types, 20 4-graphlet types, and 71 5-graphlet

types, respectively.

Note that, as we discuss in Section 10.2.2 and is verified here, graphlet types ω3,5

(outgoing invocations) and ω3,6 (incoming invocations) rank among the most frequent

3-graphlet types, while the mutually recursive type (ω3,13) is not. Moreover, except

for a few cases of mutual recursion, loops among a few functions of are rare. This

suggests that: 1. either inter-function loops have a long chain of invocations, 2. or

most functions have a clear invocator-invocatee relationship that is not reciprocal.

These observations suggest that we can significantly cut down the dimensions of

GFDs by projecting the GFD vectors onto the most frequent dimensions. Indeed, this

is what we do in our method after obtaining the full-spectrum (i.e., 9, 576-dimensional)

GFD estimation.

10.4 Experiment Results

10.4.1 Datasets

In our experiment, we use the benign app samples from PlayDrone [232] and use

the malware samples from the Android Malware Genome Project (AMGP) [99].

234

For the benign app portion of our datasets, we download the dataset of Play-

Drone. There are total 49000 benign samples in 9 different archives. To test the

scalability and robust of our algorithm, we randomly and repeatedly choose sets from

the PlayDrone and each set has thousands of benign samples. We also check the

package name, the version code and the MD5 message of each sample to prevent the

duplicate in it.

For the malware portion of our datasets, the AMGP lists 1, 249 malware samples of

49 families. The top 9 malware families that have over 40 samples are: DroidKungFu3

(303 samples), AnserverBot (185 samples), BaseBridge (118 samples), DroidKungFu4

(96 samples), Geinimi (69 samples), Pjapps (56 samples), KMin (52 samples), Gold-

Dream (47 samples), and DroidDreamLight (46 samples).

10.4.2 Procedure

We first use Androguard [233] Android app reverse engineering toolkit to extract

FCGs from the APK samples. Specifically, we use the androgexf.py script to extract

a GEXF4-format file that encodes the Java methods and their invocation relations in

the APK.

We implement our GFD estimation algorithm (Algorithm 9) to generate a GFD

vector for all n-graphlet types for n ∈ {3, 4, 5}. The majority of dimensions have a

frequency of 0; hence, we use the FCG-specific GFD dimension reduction heuristics

(Section 10.3.3) to reduce these 9, 576-dimensional vectors to 96-dimensional ones,

which only contain the dimensions that have a frequency density over 2% in at least

one of the apps in our datasets. These 96-dimensional vectors are the topological

signatures of their corresponding apps.

We then use the LIBSVM [234] support vector machine (SVM) library for classi-

fication; the details are mentioned below along with corresponding results.

4GEXF (Graph Exchange XML Format); http://gexf.net/format/.

235

RBF Linear Polynomial Sigmoid

60

70

80

90

100

Kernel Type

A
c
c
u
r
a
c
y

(
%
)

Fig. 10.5.: Malware detection accuracy of SVM-GFD (SVMs with GFD-based sig-
nature; dark) and SVM-DFD (SVMs with DFD-based signature; grey) using C-SVC
(C-support vector classification) SVMs (support vector machines) with different ker-
nels: RBF (radial basis function), linear, polynomial, and sigmoid.

Table 10.1.: Malware detection false positives (FPs) and false negatives (FNs): SVM-
GFD vs. SVM-DFD with different kernels.

RBF linear
FP FN FP FN

GFD 11.53% 12.78% 19.30% 19.55%
DFD 13.03% 27.07% 17.54% 27.82%

polynomial sigmoid
FP FN FP FN

GFD 20.80% 20.55% 22.01% 20.55%
DFD 21.30% 33.08% 26.57% 32.08%

10.4.3 Results

Malware detection performance

To understand how the local-topology-preservation property of GFD helps in

enhancing malware detection performance, we compare our method with another

method in which both the (preceding) FCG extraction phase and (subsequent) learn-

ing phase are the same. The only difference is the feature we extract from FCG.

Specifically, we use the degree frequency distribution (DFD) for comparison. In DFD,

236

Table 10.2.: Pair-wise malware family label accuracy (in percentage) of SVM-GFD
(GFD) vs. SVM-DFD (DFD) with the linear kernel of the 8 malware families
that have over 40 samples in the AMGP dataset: DroidKungFu3 (DKF3; 303 sam-
ples) AnserverBot (AB; 185 samples), BaseBridge (BB; 118 samples), DroidKungFu4
(DKF4; 96 samples), Pjapps (P; 56 samples), KMin (KM; 52 samples), GoldDream
(GD; 47 samples), and DroidDreamLight (DDL; 46 samples). Since this matrix is
symmetric, we only show the upper half of it.

DKF3 AB BB DKF4 P KM GD DDL Benign
GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD GFD DFD

DKF3 - - 92.6 60.09 71.63 67.77 75.94 71.08 84.40 77.38 85.35 78.08 86.82 78.96 86.82 79.14 76.73 71.78
AB - - - - 76.14 58.29 84.04 62.03 80.58 69.46 94.54 70.30 80.17 71.38 80.17 71.60 84.86 81.62
BB - - - - - - 77.78 53.90 68.18 61.94 83.72 62.88 72.29 64.09 72.29 64.34 81.25 56.25

DFK4 - - - - - - - - 63.15 58.20 87.16 59.17 67.61 60.43 67.61 60.63 71.88 53.13
P - - - - - - - - - - 76.85 51.25 54.90 52.38 54.90 52.58 81.58 76.32

KM - - - - - - - - - - - - 89.80 51.31 86.73 51.58 72.12 60.58
GD - - - - - - - - - - - - - - 57.61 52.97 73.40 63.83

DDL - - - - - - - - - - - - - - - - 75.00 67.39
Benign - - - - - - - - - - - - - - - - - -

237

vertices with the same degree frequencies are binned together and counted. DFD is

the probability distributions of element counts over these bins. In other words, the

only difference between the two methods is whether local topology information of

FCG is used in the subsequent learning phase: Our GFD-based method uses this

information, while the DFD- based method does not.

For reasons that will be explained shortly, in this experiment, we randomly and

repeatedly pick 1200 samples from the benign dataset to compare with the 1200 mal-

ware samples. In each comparison, we use the 10-fold cross-verification method, which

means that each time 120 benign samples and 120 malware samples are randomly

chosen as test set, other samples will be feed as training set and the result shows

the overall average accuracy. Then we compare malware detection performance of

SVMs with GFD-based signature (SVM-GFD) and SVMs with DFD-based signature

(SVM-DFD) using all 4 built-in SVM kernel functions in LIBSVM: RBF (radial basis

function: eγ|u−v|
2
), linear (u′ · v), polynomial ((γu′ · v)3), and sigmoid (tanh(γu′ · v)),

in which u and v are feature vectors, γ = 1/N , and N is the feature vector dimension.

Figure 10.5 shows the accuracy (the samples that are correctly labeled by the SVMs)

comparison and Table 10.1 shows the detailed false positives/negatives (the samples

that are incorrectly labeled by the SVMs).

The reason we use a 1:1 ratio between malware and benign app dataset is that a

skewed dataset may give misleading performance results. Later in this part we will

also present the influence of sample bias. In both Figure 10.5 and Table 10.1, the

performance of SVM-GFD and SVM-DFD appear to be consistent across learning

kernels. The high accuracy of the two algorithms implies that both of them could

successfully capture topological features and the information is helpful to Android

malware detection.

Comparing these two algorithms, SVM-GFD always give better results (by average

6% margin over the SVM-DFD algorithm, to over 80% accuracy). A recent study [102]

on commercial anti-virus scanners’ (AntiVir, AVG, BitDefender, ClamAV, ESET,

F-Secure, Kaspersky, McAfee, Panda, Sophos) performance on the AMGP dataset

238

shows that, except for two outliers (23.68% and 1.12%), the commercial AV scanners

have accuracy ranging from 84.23% to 98.90%. SVM-GFD attains a comparable

accuracy of 87.85% on the full AMGP dataset using only the structural features

without any semantic augmentation.

Figure 10.5 suggests that RBF kernel could give a better result than other three

kernels both for SVM-GFD and SVM-DFD. SVM-GFD could perform a 78% or higher

results on different kernels, while SVM-DFD show 70% accuracy when choosing poly-

nomial or sigmoid kernel. So the SVM-GFD seems more robust than SVM-DFD.

Table 10.1 shows that they have different performance among false positives (FP)

and false negatives (FN). Because the dataset is 1:1 ratio, FP and FN achieving a

nearly 1:1 ratio means the SVM could successfully divide the hyperplane. From Ta-

ble 10.1 we can see that these two SVM methods tend to give high accuracy under

the specified circumstances. And SVM-GFD often have a same FP or FN percentage

as SVM-DFD while the other is much better. Also there is a trade-off between FP

and FN. Taking the result of SVM-GFD with linear kernel as an example, it has

the slightly higher FP than the SVM-DFD while the FP is relative low. In other

words, comparing with SVM-DFD, SVM-GFD with linear kernel is an aggressive

malware detector that misses less malware at the cost of flagging more benign apps

as malicious. The mechanism behind this calls for further research.

Malware family labeling accuracy

To further understand the significance of capturing local topology in FCG for

malware detection, we compare our SVM-GFD together with the SVM-DFD in their

malware family labeling accuracy on the 8 malware families that have over 40 samples

in the AMGP dataset (Section 10.4.1). Specifically, we take the family labels on the

malware samples in the AMGP dataset as the ground truth, and compare the two

methods’ accuracy in assigning the correct family labels for the test data sets. We

also compare each family with a dynamic benign dataset that has the same number

239

of samples as the malware family to show the accuracy of malware detection in one

certain family. Table 10.2 shows the pair-wise malware family labeling accuracy of

SVM-GFD vs. SVM-DFD.

SVM-GFD outperforms SVM-DFD in all pairs of malware families by a mar-

gin from 2.32% (P/Pjapps vs. DDL/DroidDreamLight) to 38.49% (KM/KMin vs.

GD/GoldDream). The malware and benign software classification result in each fam-

ily also shows SVM-GFD could achieve 3.24% (AB/AnserverBot vs. Benign) to 25%

(BB/BaseBridge vs. Benign) higher performance. Note again, the additional local

topological information on FCG captured by GFD, alone, takes the credit for this

improvement in accuracy.

Given that we accept the manual labels as the ground truth, malware family la-

beling accuracy can be interpreted as a measure of how close two malware families are

due to code sharing. For instance, in Table 10.2, on the row of DKF3/DroidKungFu3,

DKF4/DroiKungFu4 has a low accuracy (75.94%). This lower labeling accuracy may

derive from the higher similarity between DKF4 to DKF3 due to their common lineage

in the DroidKungFu mega-family.

Performance against sample bias

In Section 10.4.3, we mention the peril of sample bias: If the ratio between positive

and negative samples (i.e., benign app and malware samples) is skewed, even a naive

strategy can give a misleadingly high accuracy without actually identifying malware

from benign apps. In real-world malware detection, positive/negative samples rarely

comes in evenly: It is highly likely we have to work with a skewed dataset.

Therefore, we study how SVM-GFD responds to sample bias. In order to avoid

the influence of the dataset’s size, we first fix the total number of benign and mali-

cious softwares to 1000. Then we perturb the ratio between malware and benign app

samples, and study the accuracy response of SVM-GFD/SVM-DFD with the linear

kernel. The 10-fold cross-validation method is also employed in this experiment. Fig-

240

20 30 40 50 60 70 80
50

55

60

65

70

75

80

85

90

95

100

Malware/Benign App Ratio (%)

A
c
c
u
r
a
c
y

(
%
)

SVM−GFD
SVM−DFD
naive

Fig. 10.6.: Accuracy response to different malware/benign-app ratios: SVM-GFD
(full line) vs SVM-DFD (dotted line) vs the naive strategy. Percentage on the x
axis is the ratio of malware over benign apps in the dataset; y axis is the malware
detection accuracy.

241

ure 10.6 shows the results and indicates that SVM-GFD get higher accuracy among

all kinds of malware and benign software combination. SVM-GFD has a variance of

4.1 while SVM-DFD has a variance of 11.4. We conclude that SVM-GFD is more

robust than SVM-DFD against sample bias, especially when malware or benign soft-

ware accounts a small proportion. When the ration between malware and benign

software is 2:8, as mentioned above it is a common real-world situation, SVM-GFD

outperforms 7% accuracy but SVM-DFD is just the same as the naive strategy.

Most frequent graphlets

To understand why malware detection accuracy improves only by replacing DFD

with GFD, we study the most frequent graphlets that appear in benign apps and in

malware. Figures 10.7 and 10.8 show the top 5 most frequent graphlet types for all

benign app and malware samples in our datasets, respectively. “Most frequent” in

this case means that these graphlet types have the highest average GFD densities in

that category (benign app or malware).

It is interesting to note that, in addition to different average density values, the

types of the most frequent graphlets are different. For example, while ω3,5 (outgoing

invocations; Figure 10.1) ranks the first and w3,6 (incoming invocations) ranks the

third for malware, ω3,5 ranks the third and ω3,6 ranks the first for benign apps. In

both cases, these two graphlet types have a graphlet frequency density gap of 0.1 or

more between them. And it also happens when a function invokes/is invoked by 3 or

more other functions. This suggests that incoming invocations to a same function is

more frequent than outgoing invocations from a single function in benign apps, while

the reverse is true for malware. The mechanism behind this calls for further research.

GFD estimation efficiency

In our experiment on a desktop workstation (8-core Intel Core i7-3820 CPU at

3.60GHz with 12GB RAM) with 100, 000 sampling iterations (at which point, the

242

0.45� 0.38� 0.35� 0.19� 0.16�

Fig. 10.7.: The top 5 most frequent graphlet types for benign apps, i.e., the ones that
have the highest average graphlet frequency densities across all benign apps.

0.52� 0.31� 0.26� 0.19� 0.19�

Fig. 10.8.: The top 5 most frequent graphlet types for malware, i.e., the ones that
have the highest average graphlet frequency densities across all malware.

243

GFD estimation has already converged), our GFD estimation algorithm (Algorithm 9)

takes less than 3 seconds to complete for many apps whose FCGs have less than 1, 000

vertices. For apps whose FCGs have less than 20, 000 vertices, GFD estimation takes

an average of less than 10 seconds. For the most complex app in our data set,

Facebook, which has 47, 539 vertices and 77, 900 edges, GFD estimation takes about

34 seconds on average with about 2 seconds variance. While the GFD estimation

just takes seconds of work to analyze each single app, the total calculation time

mainly depends on the size of the dataset. Because each apps and their FCGs are

independent, the topological features extraction work is absolutely convenient for

distributed computing system. Analyzing single extraction work, we note that GFD

estimation is dominated by the generation of 1-hop neighborhood on GG and the

graphlet-type identification, which are independent to the size of the graph unless

the graph is dense.

By contrast, the DFD calculation needs to traverse every edge and employ a

sorting algorithm to the vertices. So it takes more time to do the DFD calculation

especially on the complex networks. For instance, DFD calculation takes about 41

seconds for the Facebook application, 7 seconds longer than the GFD estimation.

Therefore, GFD estimation, and hence ACTS, is practically efficient and accurate

(Section 10.1).

10.5 Further Discussion

In order to verify the effectiveness of the graphlet-based analysis and to better

understand why the topological features used in ACTS could result in good perfor-

mance of benign/malicious software classification, we conducted a few case studies

using dynamic analysis that based on semantic features.

In detail, we obtain the critical API calls with the help of online analysis tools,

such as Andrubis and SanDroid. These critical calls are represented as edges in the

FCG. And if a function invokes one or more times of the critical API calls, we label

244

the mapping vertex as a critical vertex. Instead of taking the full FCG graph into

account, now we can just focus on the graphlets that contain the critical vertices.

Our experiment were taken on four APK files randomly chosen from four different

malware families, TapSnake [235], SndApps [236], NickySpy [237] and LoveTrap [238].

The result shows that for each particular malware, its top-2 graphlets with critical

vertices are always the same as the top-2 graphlets in GFD generated by ACTS.

And obviously, they are different from the top-2 graphlets generated from the benign

softwares. It implies that the most frequent graphlets of malware generated by ACTS

in Section 10.4.3 always contain the critical API calls. ACTS catches the critical API

calls by counting the graphlet distribution, which uses a different route from dynamic

analysis but achieves the similar result in malware detection.

We also in-depth analyzed one application com.typ3studios. airhorn in the mal-

ware family SndApps [236]. There are just four critical graphlets that were obtained

through dynamic analysis tools. After embedding the 3-node graphlets in 4&5-node

graphlets, we find that there are only 2 kinds of 3-node graphlets that contain the

critical API calls, ω3,5 and ω3,1 in Figure 10.1, while the possible 3-node graphlets

has 13 types. Also, ω3,5 (outgoing invocations) is included but w3,6 (incoming invo-

cations) is not. It supports the result in Figure 10.8 of Section 10.4.3 that outgoing

invocations to a same function is more frequent than incoming invocations from a

single function in malware.

In the future, we plan to firmly combine ACTS with the dynamic analysis methods.

Both the graphlet frequency and the semantic features will be analyzed to reveal the

hidden mechanisms of malware.

10.6 Related Works

The present work follows a line of recent works [100–105] that apply advances in

machine learning and data mining for Android malware detection. One main focus

is on extracting learning features at the different app representation levels: Droid

245

Analytics [104] focuses on the low-level platform Dalvik opcode level; Gascon et al.

[100] study function call graphs; DroidAPIMiner [103] extracts features from Android

API calls; Drebin [102] extracts string features from multiple Android-specific sources,

e.g., intent/permission requests, API calls, network addresses. Martinelli et al. [105]

formulates the malware detection problem as a subgraph mining problem.

Pržulj et al [110] first propose and coin the term graphlet. Two recent advances

on graph mining, MHRW [21] and GUISE [111], inspire our use of GFD as a robust

and efficient topological signature for apps.

A related problem to malware detection is app repackaging, in which an app is

transformed for a similar but different app through repackaging [106]. Repackaged

apps are often seen on alternative Android app market, and is a major vector for

carrying and propagating malware. Zhou et al. [107] propose a system called AppInk

that applies watermarking to prevent app repackaging.

Tainting analysis (e.g., TaintDroid [112] and FlowDroid [113, 114]) and Android

app analysis frameworks (e.g., DroidScope [115] and CopperDroid [116]) can be used

to further analyze malware families identified by ACTS.

10.7 Chapter Summary

In this chapter, we propose GFD as a feature for Android malware detection

and adapt recent advances in graph mining to make GFD estimation robust and

efficient. We demonstrate that local topological information (captured by graphlets)

is attributed to improvement in malware detection accuracy and efficiency. This

provides a new angle to Android malware detection research, and suggests that finding

structural features (e.g., graphlets) on a graphical representation of Android apps

(e.g., the FCG) that situates between local and global scope as a fertile ground for

future research.

246

11. FUTURE WORK AND CONCLUSION

Understanding the dynamics of temporal evolution of networks can help solve complex

tasks involving social and interaction networks. Our latent representation techniques

provide the ground-work for understanding the dynamics by providing a framework

for learning to position nodes and edges in a temporally smooth way to a lower

dimensional space. Thus the opportunity for the future works in the temporal network

domain is abundant.

On the other hand, one important property of our sentence embedding learning

model is that it encodes a sentence directly, and it considers neighboring sentences as

atomic units. Apart from the improvements that we achieve in topic classification,

clustering, and summarization tasks, this property makes our model quite efficient to

train compared to compositional methods like encoder-decoder models (e.g., SDAE,

Skip-Thought) that compose a sentence vector from the word vectors. This opens up

a research question whether this simple intuition of modeling discourse sentences as

atomic units could improve the discourse-informed translation [239]?

Also, methods for mining and calculating substructure statistics is another impor-

tant avenue for research. Recently, there are a lot of works [240, 241] which provide

algorithms for mining and using these structures, and statistics to solve tasks emerging

from various application domains. In this thesis, we provide MCMC-based sampling

strategy to mine and collect frequency statistics of different size substructures and

showed one application in biology and another in the security domain. In the next few

paragraphs, we discuss a few possible future directions from both the areas (latent

representation and sampling) to explore and conclude the thesis.

Providing expressive models on the tasks of generating random graphs that makes

no structural assumptions has become an important research direction in recent

years [31, 242]. However, none of the existing generative models take into account

247

the temporal dimension. Therefore, providing expressive generative models that can

handle the temporal dimension will significantly advance the field of network analysis

and also provide more ground for analyzing the dynamics of an evolving network.

Recently, there are studies on how to set the time granularity of the temporal net-

work in the neurology domain [243]. The research aims to investigate the effect of the

time parameter in an evolving network. So, building new evolving network datasets

from various domains and analyzing them would be another important research di-

rection. Moreover, to validate the analysis is statistically significant, we may need to

find methods to generate null evolving network which will allow us to distinguish the

characteristics which are non-random (specific to the evolving network) and which

are random (chance-level).

In our works for providing models to learn latent representation of nodes, we use

retrofitted and linear transformation models to capture the temporal smoothness.

For edges, we first concatenate the feature representation from different snapshot and

use an encoder-decoder models to learn meaningful information data by compressing

data in lower dimensional space. The models are shallow in terms of the number of

parameters to learn. In both cases, high-capacity sequential deep models like RNN

with or without attention [244–246] could be an important direction to explore for

modeling more complex structure in the data.

In a recent work [247], substructure information has been proved to be important

in capturing the structural information from the network in the latent representation.

However, in our latent representation methods, we did not provide ways to collect

and combine the information. Our retrofitted models would be particularly suited for

the task which we left as a future work.

The models we propose for sentence embedding in Chapter 5 and 6, it would be

interesting to see how our model compares with compositional models on sentiment

classification task. However, this would require creating a new dataset of comments

with sentence-level sentiment annotations. Creating such datasets can be an impor-

tant research which will help to evaluate latent representation models which want to

248

encode topical information inside the representation. Moreover, proposing machine

translation models which can capture discourse information is a promising direction

to pursue.

In our work on sampling, we experimentally show how good our methods are

in terms of mixing rate of random walk and suggested experimental methods for

deciding on stopping the random-walk. However, we did not provide any theoretical

analysis in the direction. It would be an important domain of research to bound the

mixing rate [241] based on different higher-order neighborhood generation techniques

and also providing the lower bound for number of iterations while performing the

random-walk over the higher order substructure space.

To conclude, in this dissertation, we introduce several models for learning latent

representation of network and textual units. We also provide sampling based tech-

niques for mining and collecting substructure statistics from a single large network

as well as from a set of networks. Finally, we provide two real-life application. One

uses these substructures and their statistics to find functional motif from a set of bi-

ological network. Another uses the same for classifying android apps as a malignant

or a benign app.

REFERENCES

249

REFERENCES

[1] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review
and new perspectives,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[2] E. C. Hansen, D. Battaglia, A. Spiegler, G. Deco, and V. K. Jirsa, “Functional
connectivity dynamics: Modeling the switching behavior of the resting state,”
NeuroImage, vol. 105, pp. 525 – 535, 2015.

[3] P. Cui, X. Wang, J. Pei, and W. Zhu, “A survey on network embedding,” arXiv
preprint arXiv:1711.08752, 2017.

[4] R. Korolov, D. Lu, J. Wang, G. Zhou, C. Bonial, C. Voss, L. Kaplan, W. Wal-
lace, J. Han, and H. Ji, “On predicting social unrest using social media,” in
Proceedings of the IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM), 2016, pp. 89–95.

[5] C. Xu, Y. Bai, J. Bian, B. Gao, G. Wang, X. Liu, and T.-Y. Liu, “Rc-net: A
general framework for incorporating knowledge into word representations,” in
Proceedings of the ACM International Conference on Information and Knowl-
edge Management (CIKM), 2014, pp. 1219–1228.

[6] M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. Hovy, and N. A. Smith,
“Retrofitting word vectors to semantic lexicons,” in Proceedings of the North
American Chapter of the Association for Computational Linguistics (NAACL),
2015, pp. 1606–1615.

[7] M. Yu and M. Dredze, “Improving lexical embeddings with semantic knowl-
edge,” in Proceedings of the Association for Computational Linguistics (ACL),
2014, pp. 545–550.

[8] G. A. Miller, “Wordnet: A lexical database for English,” Communications of
the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[9] C. F. Baker, C. J. Fillmore, and J. B. Lowe, “The Berkeley framenet project,”
in Proceedings of the Association for Computational Linguistics (ACL), 1998,
pp. 86–90.

[10] J. R. Hobbs, “Coherence and Coreference,” Cognitive Science, vol. 3, no. 1, pp.
67–90, 1979.

[11] M. Stede, Discourse Processing. Morgan & Claypool Publishers, 2011.

[12] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning of social rep-
resentations,” in Proceedings of the ACM International Conference on Knowl-
edge Discovery and Data Mining (KDD), 2014, pp. 701–710.

250

[13] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for networks,”
in Proceedings of the ACM International Conference on Knowledge Discovery
and Data Mining (KDD), 2016, pp. 855–864.

[14] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “LINE: Large-
scale information network embedding,” in Proceedings of the World Wide Web
(WWW), 2015, pp. 1067–1077.

[15] X. Huang, J. Li, and X. Hu, “Label informed attributed network embedding,”
in Proceedings of the ACM International Conference on Web Search and Data
Mining (WSDM), 2017, pp. 731–739.

[16] T. K. Saha, T. Williams, M. A. Hasan, S. Joty, and N. K. Varberg, “Mod-
els for capturing temporal smoothness in evolving networks for learning latent
representation of nodes,” arXiv preprint arXiv:1804.05816, 2018.

[17] M. Rahman, T. K. Saha, M. A. Hasan, K. S. Xu, and C. K. Reddy, “Dylink2vec:
Effective feature representation for link prediction in dynamic networks,” arXiv
preprint arXiv:1804.05755, 2018.

[18] T. K. Saha, S. Joty, N. Hassan, and M. A. Hasan, “Regularized and retrofitted
models for learning sentence representation with context,” in Proceedings of the
ACM International Conference on Information and Knowledge Management
(CIKM), 2017, pp. 547–556.

[19] T. K. Saha, S. Joty, and M. A. Hasan, “Con-S2V: A joint learning framework
for incorporating extra-sentential context into sen2vec,” in Proceedings of the
Joint European Conference on Machine Learning and Knowledge Discovery in
Databases (ECML-PKDD), 2017, pp. 753–769.

[20] T. K. Saha, A. Katebi, W. Dhifli, and M. A. Hasan, “Discovery of functional
motifs from the interface region of oligomeric proteins using frequent subgraph
mining,” IEEE/ACM Transactions on Computational Biology and Bioinformat-
ics (TCBB), 2017.

[21] T. K. Saha and M. A. Hasan, “Finding network motifs using MCMC sampling,”
in Proceedings of the 6th Workshop on Complex Networks (Complex Networks
VI), 2015, pp. 13–24.

[22] W. Peng, T. Gao, D. Sisodia, T. K. Saha, F. Li, and M. Al Hasan, “ACTS:
Extracting android app topological signature through graphlet sampling,” in
Proceedings of the IEEE Conference on Communications and Network Security
(CNS), 2016, pp. 37–45.

[23] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in Pro-
ceedings of the ACM International Conference on Knowledge Discovery and
Data Mining (KDD), 2016, pp. 1225–1234.

[24] A. R. Benson, D. F. Gleich, and J. Leskovec, “Higher-order organization of
complex networks,” Science, vol. 353, no. 6295, pp. 163–166, 2016.

[25] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convo-
lutional networks,” in Proceedings of the International Conference on Learning
Representations (ICLR), 2017.

251

[26] C. Tu, W. Zhang, Z. Liu, and M. Sun, “Max-margin Deepwalk: Discriminative
learning of network representation,” in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI), 2016, pp. 3889–3895.

[27] T. Mikolov, Q. V. Le, and I. Sutskever, “Exploiting similarities among languages
for machine translation,” arXiv preprint arXiv:1309.4168, 2013.

[28] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, “Network embedding
as matrix factorization: Unifying DeepWalk, LINE, PTE, and node2vec,” in
Proceedings of the ACM International Conference on Web Search and Data
Mining (WSDM), 2018, pp. 459–467.

[29] Z. Yang, W. W. Cohen, and R. Salakhutdinov, “Revisiting semi-supervised
learning with graph embeddings,” in Proceedings of the International Confer-
ence on Machine Learning (ICML), 2016, pp. 40–48.

[30] J. Weston, F. Ratle, H. Mobahi, and R. Collobert, “Deep learning via semi-
supervised embedding,” in Neural Networks: Tricks of the Trade, 2012, pp.
639–655.

[31] J. You, R. Ying, X. Ren, W. L. Hamilton, and J. Leskovec, “GraphRNN: A
deep generative model for graphs,” arXiv preprint arXiv:1802.08773, 2018.

[32] J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global geometric frame-
work for nonlinear dimensionality reduction,” Science, vol. 290, no. 5500, pp.
2319–2323, 2000.

[33] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally
linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[34] W. L. Hamilton, R. Ying, and J. Leskovec, “Representation learning on graphs:
Methods and Applications,” arXiv preprint arXiv:1709.05584, 2017.

[35] L. Zhu, D. Guo, J. Yin, G. Ver Steeg, and A. Galstyan, “Scalable temporal
latent space inference for link prediction in dynamic social networks,” IEEE
Transactions on Knowledge and Data Engineering (TKDE), vol. 28, no. 10, pp.
2765–2777, 2016.

[36] Y. Chi, X. Song, D. Zhou, K. Hino, and B. L. Tseng, “Evolutionary spectral
clustering by incorporating temporal smoothness,” in Proceedings of the Inter-
national Conference on Knowledge Discovery and Data Mining (KDD), 2007,
pp. 153–162.

[37] İ. Güneş, Ş. Gündüz-Öğüdücü, and Z. Çataltepe, “Link prediction using time
series of neighborhood-based node similarity scores,” Data Mining and Knowl-
edge Discovery (DMKD), vol. 30, no. 1, pp. 147–180, 2015.

[38] T. Tylenda, R. Angelova, and S. Bedathur, “Towards time-aware link prediction
in evolving social networks,” in Proceedings of the ACM Workshop on Social
Network Mining and Analysis, 2009, pp. 9:1–9:10.

[39] M. Rahman and M. A. Hasan, “Link prediction in dynamic networks using
graphlet,” in Proceedings of the Machine Learning and Knowledge Discovery in
Databases (ECML-PKDD), 2016, pp. 394–409.

252

[40] X. Li, N. Du, H. Li, K. Li, J. Gao, and A. Zhang, “A deep learning approach to
link prediction in dynamic networks,” in Proceedings of the SIAM International
Conference on Data Mining (SDM), 2014, pp. 289–297.

[41] D. M. Dunlavy, T. G. Kolda, and E. Acar, “Temporal link prediction using
matrix and tensor factorizations,” ACM Transactions on Knowledge Discovery
and Database (TKDD), vol. 5, no. 2, pp. 10:1–10:27, 2011.

[42] K. S. Xu, “Stochastic block transition models for dynamic networks,” in Pro-
ceedings of International Conference on Artificial Intelligence and Statistics
(AISTAT), 2015, pp. 1079–1087.

[43] S. Cao, W. Lu, and Q. Xu, “Grarep: Learning graph representations with global
structural information,” in Proceedings of the ACM International Conference
on Information and Knowledge Management (CIKM), 2015, pp. 891–900.

[44] Q. V. Le and T. Mikolov, “Distributed representations of sentences and doc-
uments,” in Proceedings of the International Conference on Machine Learning
(ICML), vol. 14, 2014, pp. 1188–1196.

[45] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation.” in Proceedings of the Empirical Methods in Natural Language
Processing (EMNLP), vol. 14, 2014, pp. 1532–1543.

[46] L. Yang, X. Chen, Z. Liu, and M. Sun, “Improving word representations with
document labels,” IEEE/ACM Transactions on Audio, Speech & Language Pro-
cessing, vol. 25, no. 4, pp. 863–870, 2017.

[47] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” in Proceedings
of the Advances in Neural Information Processing Systems (NIPS), 2013, pp.
3111–3119.

[48] F. Hill, K. Cho, and A. Korhonen, “Learning distributed representations of sen-
tences from unlabelled data,” in Proceedings of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT), 2016, pp. 1367–1377.

[49] T. Kenter, A. Borisov, and M. de Rijke, “Siamese CBOW: Optimizing word
embeddings for sentence representations,” in Proceedings of the Association for
Computational Linguistics (ACL), 2016, pp. 7–12.

[50] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a senti-
ment treebank,” in Proceedings of the Empirical Methods in Natural Language
Processing (EMNLP), 2013, pp. 1631–1642.

[51] K. Cho, B. van Merriënboer, Ç. Gülçehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN
encoder–decoder for statistical machine translation,” in Proceedings of the Em-
pirical Methods in Natural Language Processing (EMNLP), 2014, pp. 1724–
1734.

253

[52] R. Socher, J. Bauer, C. D. Manning, and N. Andrew Y., “Parsing with compo-
sitional vector grammars,” in Proceedings of the Association for Computational
Linguistics (ACL), 2013, pp. 455–465.

[53] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word
representations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[54] R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba, R. Urtasun, and
S. Fidler, “Skip-thought vectors,” in Proceedings of the International Conference
on Neural Information Processing Systems (NIPS), 2015, pp. 3294–3302.

[55] D. Cook and L. Holder, “Substructure discovery using minimal description
length and background knowledge,” Journal of Artificial Intelligence Research,
vol. 1, pp. 231–255, 1994.

[56] A. Inokuchi, T. Washio, and H. Motoda, “An apriori-based algorithm for mining
frequent substructures from graph data,” in Proceedings of the Principles and
Practice of Knowledge Discovery in Databases (PKDD), 2000, pp. 13–23.

[57] M. Kuramochi and G. Karypis, “An Efficient Algorithm for Discovering Fre-
quent Subgraphs,” IEEE Transactions on Knowledge and Data Engineering
(TKDE), vol. 16, no. 9, pp. 1038–1051, 2004.

[58] X. Yan and J. Han, “gSpan: Graph-based substructure pattern mining,” in
Proceedings of the IEEE International Conference on Data Mining (ICDM),
2002.

[59] V. Chaoji, M. Hasan, S. Salem, and M. Zaki, “An Integrated, Generic Ap-
proach to Pattern Mining: Data Mining Template Library,” Data Mining and
Knowledge Discovery (DMKD), vol. 17, no. 3, pp. 457–495, 2008.

[60] S. Nijssen and J. N. Kok, “The gaston tool for frequent subgraph mining,”
Electronic Notes in Theoretical Computer Science (ENTCS), vol. 127, no. 1,
pp. 77–87, 2005.

[61] J. Huan, W. W. 0010, J. Prins, and J. Yang, “SPIN: Mining maximal frequent
subgraphs from graph databases,” in Proceedings of the ACM International
Conference on Knowledge Discovery and Data Mining (KDD), 2004, pp. 581–
586.

[62] L. Thomas, S. Valluri, and K. Karlapalem, “Margin: Maximal frequent sub-
graph mining,” in International Conference on Data Mining, 2006, pp. 1097–
1101.

[63] X. Yan and J. Han, “Closegraph: Mining closed frequent graph patterns,” in
Proceedings of the ACM International Conference on Knowledge Discovery and
Data Mining (KDD), 2003, pp. 286–295.

[64] V. Chaoji, M. Hasan, S. Salem, J. Besson, and M. Zaki, “ORIGAMI: A Novel
and Effective Approach for Mining Representative Orthogonal Graph Patterns,”
Statistical Analysis and Data Mining (SADM), vol. 1, no. 2, pp. 67–84, 2008.

[65] M. Al Hasan and M. J. Zaki, “Output space sampling for graph patterns,” Very
Large DataBase Endowment (VLDB), vol. 2, no. 1, pp. 730–741, 2009.

254

[66] M. A. Hasan and M. Zaki, “MUSK: Uniform sampling of k maximal patterns,”
in Proceedings of the SIAM Data Mining (SDM), 2009, pp. 650–661.

[67] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon, “Efficient sampling algorithm
for estimating subgraph concentrations and detecting network motifs,” Bioin-
formatics, vol. 20, no. 11, pp. 1746–1758, 2004.

[68] S. Wernicke, “Efficient detection of network motifs,” IEEE/ACM Transactions
on Computational Biology and Bio-informatics (TCBB), vol. 3, no. 4, pp. 347–
359, 2006.

[69] P. Ribeiro and F. Silva, “G-tries: An efficient data structure for discovering
network motifs,” in Proceedings of the ACM Symposium on Applied Computing,
2010, pp. 1559–1566.

[70] Z. Kashani, H. Ahrabian, E. Elahi, A. Nowzari-Dalini, E. Ansari, S. Asadi,
S. Mohammadi, F. Schreiber, and A. Masoudi-Nejad, “Kavosh: A new algo-
rithm for finding network motifs,” BMC Bioinformatics, vol. 10, no. 1, p. 318,
2009.

[71] P. Wang, J. Lui, B. Ribeiro, D. Towsley, J. Zhao, and X. Guan, “Efficiently
estimating motif statistics of large networks,” ACM Transactions on Knowledge
Discovery from Data (TKDD), vol. 9, no. 2, 2014.

[72] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, “Network motifs in the
transcriptional regulation network of escherichia coli,” Nature Genetics, vol. 31,
no. 1, pp. 1061–4036, 2002.

[73] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon,
“Network motifs: Simple building blocks of complex networks,” Science, vol.
298, pp. 824–827, 2002.

[74] I. Albert and R. Albert, “Conserved network motifs allow protein–protein in-
teraction prediction,” Bioinformatics, vol. 20, no. 18, pp. 3346–3352, 2004.

[75] K. Juszczyszyn, P. Kazienko, and K. Musia l, “Local topology of social net-
work based on motif analysis,” in Proceedings of the International Conference
on Knowledge-Based Intelligent Information and Engineering Systems (KES),
2008, pp. 97–105.

[76] S. Itzkovitz and U. Alon, “Subgraphs and network motifs in geometric net-
works,” Physical Review E, Statistical, Nonlinear, and Soft Matter Physics,
vol. 71, no. 2, 2005.

[77] S. Omidi, F. Schreiber, and A. Masoudi-Nejad, “MODA: An efficient algorithm
for network motif discovery in biological networks.” Genes and Genetic Systems,
vol. 84, no. 5, pp. 385–395, 2009.

[78] J. Grochow and M. Kellis, “Network motif discovery using subgraph enumera-
tion and symmetry-breaking,” in Proceedings of the International Conference on
Research in Computational Molecular Biology (RECOMB), 2007, pp. 92–106.

[79] X. Li, D. S. Stones, H. Wang, H. Deng, X. Liu, and G. Wang, “Netmode:
Network motif detection without nauty,” PloS One, vol. 7, no. 12, p. e50093,
2012.

255

[80] G. Amitai, A. Shemesh, E. Sitbon, M. Shklar, D. Netanely, I. Venger, and
S. Pietrokovski, “Network analysis of protein structures identifies functional
residues,” Journal of Molecular Biology, vol. 344, no. 4, pp. 1135–1146, 2004.

[81] K. Brinda and S. Vishveshwara, “Oligomeric protein structure networks: In-
sights into protein-protein interactions,” BMC Bioinformatics, vol. 6, no. 1, p.
296, 2005.

[82] X. Zhang, T. Perica, and S. A. Teichmann, “Evolution of protein structures and
interactions from the perspective of residue contact networks,” Current Opinion
in Structural Biology, vol. 23, no. 6, pp. 954–963, 2013.

[83] A. Giuliani, A. Krishnan, J. P. Zbilut, and M. Tomita, “Proteins as networks:
Usefulness of graph theory in protein science,” Current Protein and Peptide
Science, vol. 9, no. 1, pp. 28–38, 2008.

[84] W. Dhifli, R. Saidi, and E. M. Nguifo, “Smoothing 3d protein structure motifs
through graph mining and amino acid similarities,” Journal of Computational
Biology, vol. 21, no. 2, pp. 162–172, 2014.

[85] W. Dhifli and A. B. Diallo, “Protnn: Fast and accurate protein 3d-structure
classification in structural and topological space,” BioData Mining, vol. 9, no. 1,
p. 30, 2016.

[86] P. P. Wangikar, A. V. Tendulkar, S. Ramya, D. N. Mali, and S. Sarawagi,
“Functional sites in protein families uncovered via an objective and automated
graph theoretic approach,” Journal of Molecular Biology, vol. 326, no. 3, pp.
955–978, 2003.

[87] C. Böde, I. A. Kovács, M. S. Szalay, R. Palotai, T. Korcsmáros, and P. Csermely,
“Network analysis of protein dynamics,” Febs Letters, vol. 581, no. 15, pp. 2776–
2782, 2007.

[88] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and
H.-P. Kriegel, “Protein function prediction via graph kernels,” Bioinformatics,
vol. 21, no. suppl 1, pp. 47–56, 2005.

[89] A. Harrison, F. Pearl, R. Mott, J. Thornton, and C. Orengo, “Quantifying the
similarities within fold space,” Journal of Molecular Biology, vol. 323, no. 5,
pp. 909–926, 2002.

[90] E. Krissinel and K. Henrick, “Protein structure comparison in 3D based on sec-
ondary structure matching (ssm) followed by c-alpha alignment, scored by a new
structural similarity function,” in Proceedings of the International Conference
on Molecular Structural Biology, vol. 88, 2003.

[91] R. Shen, N. C. Goonesekere, and C. Guda, “Mining functional subgraphs from
cancer protein-protein interaction networks,” BMC Systems Biology, vol. 6, no.
Suppl 3, p. S2, 2012.

[92] R. Shen, X. Wang, C. Guda, and C. B. Guda, “Discovering distinct functional
modules of specific cancer types using protein-protein interaction networks,”
BioMed Research International, vol. 2015, 2015.

256

[93] C. Ding, X. He, R. F. Meraz, and S. R. Holbrook, “A unified representation of
multiprotein complex data for modeling interaction networks,” Proteins: Struc-
ture, Function, and Bioinformatics, vol. 57, no. 1, pp. 99–108, 2004.

[94] J. Desaphy, E. Raimbaud, P. Ducrot, and D. Rognan, “Encoding protein–ligand
interaction patterns in fingerprints and graphs,” Journal of Chemical Informa-
tion and Modeling, vol. 53, no. 3, pp. 623–637, 2013.

[95] M. Bhattacharyya, S. Ghosh, and S. Vishveshwara, “Protein structure and
function: Looking through the network of side-chain interactions,” Current
Protein and Peptide Science, vol. 17, no. 1, pp. 4–25, 2016.

[96] N. Tuncbag, F. S. Salman, O. Keskin, and A. Gursoy, “Analysis and network
representation of hotspots in protein interfaces using minimum cut trees,” Pro-
teins: Structure, Function, and Bioinformatics, vol. 78, no. 10, pp. 2283–2294,
2010.

[97] N. W. Lemons, B. Hu, and W. S. Hlavacek, “Hierarchical graphs for rule-based
modeling of biochemical systems,” BMC Bioinformatics, vol. 12, no. 1, p. 45,
2011.

[98] L. H. Greene, “Protein structure networks,” Briefings in Functional Genomics,
vol. 11, no. 6, pp. 469–478, 2012.

[99] Y. Zhou and X. Jiang, “Dissecting Android malware: Characterization and
Evolution,” in Proceedings of the IEEE Symposium on Security and Privacy,
2012, pp. 95–109.

[100] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, “Structural detection of An-
droid malware using embedded call graphs,” in Proceedings of the ACM Work-
shop on Artificial Intelligence and Security (AISec), 2013, pp. 45–54.

[101] F. Yamaguchi, N. Golde, D. Arp, and K. Rieck, “Modeling and discovering vul-
nerabilities with code property graphs,” in Proceedings of the IEEE Symposium
on Security and Privacy, 2014, pp. 590–604.

[102] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, “Drebin:
Effective and explainable detection of Android malware in your pocket,” in
Proceedings of the ISOC Network and Distributed System Security Symposium
(NDSS), vol. 14, 2014, pp. 23–26.

[103] Y. Aafer, W. Du, and H. Yin, “DroidAPIMiner: Mining API-level features
for robust malware detection in android,” in Proceedings of the International
Conference on Security and Privacy in Communication Systems, 2013, pp. 86–
103.

[104] M. Zheng, M. Sun, and J. Lui, “Droid Analytics: A signature based analytic sys-
tem to collect, extract, analyze and associate Android malware,” in Proceedings
of the IEEE Trust, Security and Privacy in Computing and Communications
(TrustCom), 2013, pp. 163–171.

[105] F. Martinelli, A. Saracino, and D. Sgandurra, “Classifying Android malware
through subgraph mining,” in Proceedings of the Data Privacy Management
and Autonomous Spontaneous Security, 2014, pp. 268–283.

257

[106] W. Zhou, Y. Zhou, X. Jiang, and P. Ning, “Detecting repackaged smartphone
applications in third-party Android marketplaces,” in Proceedings of the ACM
Conference on Data and Application Security and Privacy (CODASPY), 2012,
pp. 317–326.

[107] W. Zhou, X. Zhang, and X. Jiang, “AppInk: Watermarking Android apps for
repackaging deterrence,” in Proceedings of the ACM SIGSAC Symposium on
Information, Computer and Communications Security (ASIA CCS), 2013, pp.
1–12.

[108] Saikoa, “Proguard,” http://proguard.sourceforge.net/, 2014.

[109] ——, “Dexguard,” https://www.saikoa.com/dexguard, 2014.

[110] N. Pržulj, D. G. Corneil, and I. Jurisica, “Modeling interactome: Scale-free or
geometric?” Bioinformatics, vol. 20, no. 18, pp. 3508–3515, 2004.

[111] M. Rahman, M. A. Bhuiyan, M. Rahman, and M. Al Hasan, “GUISE: A uniform
sampler for constructing frequency histogram of graphlets,” Knowledge and
Information Systems (KAIS), vol. 38, no. 3, pp. 511–536, 2014.

[112] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N.
Sheth, “TaintDroid: An information flow tracking system for real-time privacy
monitoring on smartphones,” Communications of the ACM, vol. 57, no. 3, pp.
99–106, 2014.

[113] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel, “Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for android apps,” ACM Sigplan
Notices, vol. 49, no. 6, pp. 259–269, 2014.

[114] C. Fritz, S. Arzt, S. Rasthofer, E. Bodden, A. Bartel, J. Klein, Y. le Traon,
D. Octeau, and P. McDaniel, “Highly precise taint analysis for Android appli-
cations,” TU Darmstadt, Tech. Rep., 2013.

[115] L.-K. Yan and H. Yin, “DroidScope: Seamlessly reconstructing the OS and
Dalvik semantic views for dynamic android malware analysis,” in Proceedings
of the USENIX Security, 2012, pp. 569–584.

[116] A. Reina, A. Fattori, and L. Cavallaro, “A system call-centric analysis and
stimulation technique to automatically reconstruct android malware behaviors,”
in Proceedings of the European Workshop on System Security (EuroSec), 2013.

[117] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, “Community preserving
network embedding,” in Proceedings of the Association for the Advancement of
Artificial Intelligence (AAAI), 2017, pp. 203–209.

[118] P. P. Talukdar and K. Crammer, “New regularized algorithms for transductive
learning,” in Proceedings of the European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML-PKDD), 2009, pp. 442–457.

[119] A. Globerson, G. Chechik, F. Pereira, and N. Tishby, “Euclidean embedding
of co-occurrence data,” Journal of Machine Learning Research (JMLR), vol. 8,
no. Oct, pp. 2265–2295, 2007.

258

[120] A. Paranjape, A. R. Benson, and J. Leskovec, “Motifs in temporal networks,”
in Proceedings of the ACM International Conference on Web Search and Data
Mining (WSDM), 2017, pp. 601–610.

[121] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the evolution of
user interaction in facebook,” in Proceedings of the ACM Workshop on Online
Social Networks, 2009, pp. 37–42.

[122] J. Davis and M. Goadrich, “The relationship between precision-recall and roc
curves,” in Proceedings of the International Conference on Machine Learning
(ICML), 2006, pp. 233–240.

[123] E. Otte and R. Rousseau, “Social network analysis: a powerful strategy, also
for the information sciences,” Journal of Information Science, vol. 28, no. 6,
pp. 441–453, 2002.

[124] B. J. Jansen and S. Y. Rieh, “The seventeen theoretical constructs of informa-
tion searching and information retrieval,” Journal of the American Society for
Information Science and Technology, vol. 61, no. 8, pp. 1517–1534, 2010.

[125] F. Ricci, L. Rokach, B. Shapira, and P. B. Kantor, Recommender Systems
Handbook, 1st ed. Springer-Verlag New York, Inc., 2010.

[126] D. J. Jacobs, A. J. Rader, L. A. Kuhn, and M. F. Thorpe, “Protein flexibility
predictions using graph theory,” Proteins: Structure, Function, and Bioinfor-
matics, vol. 44, no. 2, pp. 150–165, 2001.

[127] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for social net-
works,” Journal of the Association for Information Science and Technology,
vol. 58, no. 7, pp. 1019–1031, 2007.

[128] K. Miller, M. I. Jordan, and T. L. Griffiths, “Nonparametric latent feature mod-
els for link prediction,” in Proceedings of the Advances in Neural Information
Processing Systems (NIPS), 2009, pp. 1276–1284.

[129] B. Taskar, M. fai Wong, P. Abbeel, and D. Koller, “Link prediction in relational
data,” in Proceedings of the Advances in Neural Information Processing Systems
(NIPS), 2004, pp. 659–666.

[130] R. N. Lichtenwalter, J. T. Lussier, and N. V. Chawla, “New perspectives and
methods in link prediction,” in Proceedings of the ACM International Confer-
ence on Knowledge Discovery and Data Mining (KDD), 2010, pp. 243–252.

[131] N. Barbieri, F. Bonchi, and G. Manco, “Who to follow and why: Link prediction
with explanations,” in Proceedings of the ACM International Conference on
Knowledge Discovery and Data Mining (KDD), 2014, pp. 1266–1275.

[132] M. A. Hasan and M. J. Zaki, “A survey of link prediction in social networks,”
Social Network Data Analytics, pp. 243–275, 2011.

[133] P. Wang, B. Xu, Y. Wu, and X. Zhou, “Link prediction in social networks: The
state-of-the-art,” Science China Information Sciences, vol. 58, no. 1, pp. 1–38,
2015.

259

[134] A. K. Menon and C. Elkan, “Link prediction via matrix factorization,” in Pro-
ceedings of European Conference on Machine Learning and Knowledge Discov-
ery in Databases (ECML-PKDD), 2011, pp. 437–452.

[135] P. Sarkar, D. Chakrabarti, and M. I. Jordan, “Nonparametric link prediction in
dynamic networks,” in Proceedings of the International Conference on Machine
Learning (ICML), 2012, pp. 1687–1694.

[136] K. S. Xu and A. O. Hero III, “Dynamic stochastic blockmodels for time-evolving
social networks,” IEEE Journal of Selected Topics in Signal Processing, vol. 8,
no. 4, pp. 552–562, 2014.

[137] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel distributed pro-
cessing: Explorations in the microstructure of cognition,” pp. 318–362, 1986.

[138] C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park, “Scan statistics on
enron graphs,” Computational and Mathematical Organization Theory, vol. 11,
no. 3, pp. 229–247, 2005.

[139] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “Arnetminer: Extraction
and mining of academic social networks,” in Proceedings of the ACM Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD), 2008, pp.
990–998.

[140] C. Wang, V. Satuluri, and S. Parthasarathy, “Local probabilistic models for
link prediction,” in Proceedings of the IEEE International Conference on Data
Mining (ICDM), 2007, pp. 322–331.

[141] Y. Yang, R. N. Lichtenwalter, and N. V. Chawla, “Evaluating link prediction
methods,” Knowledge and Information Systems (KAIS), vol. 45, no. 3, pp.
751–782, 2015.

[142] G. Erkan and D. R. Radev, “LexRank: Graph-based lexical centrality as
salience in text summarization,” Journal of Artificial Intelligence Research,
vol. 22, no. 1, pp. 457–479, 2004.

[143] T. Joachims, “Training linear svms in linear time,” in Proceedings of the ACM
International Conference on Knowledge Discovery and Data Mining (KDD),
2006, pp. 217–226.

[144] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic
language model,” Journal of Machine Learning Research (JMLR), vol. 3, no.
Feb, pp. 1137–1155, 2003.

[145] I. Malioutov and R. Barzilay, “Minimum cut model for spoken lecture seg-
mentation,” in Proceedings of the International Conference on Computational
Linguistics (ACL), 2006, pp. 25–32.

[146] F. Wolf and E. Gibson, “Representing Discourse Coherence: A Corpus-Based
Study,” Computational Linguistics, vol. 31, no. 2, pp. 249–288, 2005.

[147] K. M. Hermann and P. Blunsom, “Multilingual models for compositional dis-
tributed semantics,” in Proceedings of the Annual Meeting of the Association
for Computational Linguistics (ACL), 2014, pp. 58–68.

260

[148] A. Nenkova and K. McKeown, “Automatic summarization,” Foundations and
Trends in Information Retrieval, vol. 5, no. 23, pp. 103–233, 2011.

[149] L. Page, S. Brin, R. Motwani, and T. Winograd, “The pagerank citation rank-
ing: Bringing order to the web.” Stanford InfoLab, Tech. Rep. 1999-66, 1999.

[150] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,” in Pro-
ceedings of the Workshop on Text Summarization Branches Out, 2004.

[151] D. Arthur and S. Vassilvitskii, “k-means++: The advantages of careful seed-
ing,” in Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
2007, pp. 1027–1035.

[152] A. Y. Ng, M. I. Jordan, Y. Weiss et al., “On spectral clustering: Analysis and
an algorithm,” in Proceedings of the Neural Information Processing Systems
(NIPS), vol. 14, no. 2, 2001, pp. 849–856.

[153] S. Van Dongen, “A cluster algorithm for graphs,” Report-Information systems,
no. R 0010, pp. 1–40, 2000.

[154] A. Rosenberg and J. Hirschberg, “V-measure: A conditional entropy-based ex-
ternal cluster evaluation measure.” in Proceedings of the Empirical Methods in
Natural Language Processing and Computational Natural Language Learning
(EMNLP-CoNLL), vol. 7, 2007, pp. 410–420.

[155] R. Socher, C. C.-Y. Lin, A. Y. Ng, and C. D. Manning, “Parsing natural scenes
and natural language with recursive neural networks,” in Proceedings of the
International Conference on Machine Learning (ICML), 2011, pp. 129–136.

[156] N. T. Pham, G. Kruszewski, A. Lazaridou, and M. Baroni, “Jointly optimiz-
ing word representations for lexical and sentential tasks with the C-PHRASE
model,” in Proceedings of the Association for Computational Linguistics (ACL),
2015, pp. 971–981.

[157] Y. Zhu, R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and
S. Fidler, “Aligning books and movies: Towards story-like visual explanations
by watching movies and reading books,” in arXiv preprint arXiv:1506.06724,
2015.

[158] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learn-
ing word vectors for sentiment analysis,” in Proceedings of the Association for
Computational Linguistics: Human Language Technologies (ACL HLT), 2011,
pp. 142–150.

[159] T. Mikolov, W.-t. Yih, and G. Zweig, “Linguistic regularities in continuous
space word representations,” in Proceedings of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies
(NAACL HLT), 2013, pp. 746–751.

[160] Z. Harris, “Distributional Structure,” Word, vol. 10, no. 2-3, pp. 146–162, 1954.

[161] J. Mitchell and M. Lapata, “Composition in distributional models of semantics,”
Cognitive Science, vol. 34, no. 8, pp. 1388–1439, 2010.

261

[162] F. Morin and Y. Bengio, “Hierarchical probabilistic neural network language
model,” in Proceedings of the International Workshop on Artificial Intelligence
and Statistics, 2005, pp. 246–252.

[163] M. Gutmann and A. Hyvärinen, “Noise-contrastive estimation: A new estima-
tion principle for unnormalize statistical models,” in Proceedings of the Inter-
national Conference on Artificial Intelligence and Statistics (AISTATS), vol. 9,
2010, pp. 297–304.

[164] M. Halliday and R. Hasan, Cohesion in English. Longman, 1976.

[165] N. X. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for cluster-
ings comparison: Variants, properties, normalization and correction for chance,”
Journal of Machine Learning Research (JMLR), vol. 11, no. Oct, pp. 2837–2854,
2010.

[166] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. D. Manning, A. Y. Ng, and
C. Potts, “Recursive deep models for semantic compositionality over a senti-
ment treebank,” in Proceedings of the Empirical Methods in Natural Language
Processing (EMNLP), 2013, pp. 1631–1642.

[167] M. Deshpande, M. Kuramochi, N. Wale, and G. Karypis, “Frequent
substructure-based approaches for classifying chemical compounds,” IEEE
Transactions on Knowledge and Data Engineering (TKDE), vol. 17, no. 8, pp.
1036–1050, 2005.

[168] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou, “Mining coherent dense
subgraphs across massive biological network for functional discovery,” Bioin-
formatics, vol. 1, no. 1, pp. 1–9, 2005.

[169] N. Jin, C. Young, and W. Wang, “GAIA: Graph classification using evolu-
tionary computation,” in Proceedings of the ACM Special Interest Group on
Management of Data (SIGMOD), 2010, pp. 879–890.

[170] X. Yan, P. S. Yu, and J. Han, “Graph indexing: A frequent structure-based
approach,” in Proceedings of the ACM Special Interest Group on Management
of Data (SIGMOD), 2004, pp. 335–346.

[171] T. Horváth, B. Bringmann, and L. De Raedt, “Frequent hypergraph mining,”
in Inductive Logic Programming, 2007, pp. 244–259.

[172] M. Wörlein, T. Meinl, I. Fischer, and M. Philippsen, “A quantitative compari-
son of the subgraph miners MoFA, gSpan, FFSM, and gaston,” in Proceedings of
the Practice of Knowledge Discovery in Databases (PKDD), 2005, pp. 392–403.

[173] W. Lin, X. Xiao, and G. Ghinita, “Large-scale frequent subgraph mining in
mapreduce,” in Proceedings of the IEEE International Conference on Data En-
gineering (ICDE), 2014, pp. 844–855.

[174] M. A. Bhuiyan and M. Al Hasan, “An iterative mapreduce based frequent
subgraph mining algorithm,” IEEE Transactions on Knowledge and Data En-
gineering (TKDE), vol. 27, no. 3, pp. 608–620, 2015.

[175] X. Yan, H. Cheng, J. Han, and P. S. Yu, “Mining significant graph patterns by
leap search,” in Proceedings of ACM Special Interest Group on Management of
Data (SIGMOD), 2008, pp. 433–444.

262

[176] M.Thoma, H. Cheng, A. Gretton, J. Han, H. Kriegel, A. Smola, L. Song, P. Yu,
X. Yan, and K. Borgwardt, “Near-optimal supervised feature selection among
frequent subgraphs,” in Proceedings of the SIAM International Conference on
Data Mining (SDM), 2009, pp. 1076–1987.

[177] A. Inokuchi, T. Washio, K. Nishimura, and H. Motoda, “A fast algorithm for
mining frequent connected subgraphs,” IBM Research, Tech. Rep., 2002.

[178] T. Horváth, J. Ramon, and S. Wrobel, “Frequent subgraph mining in outerpla-
nar graphs,” Data Mining and Knowledge Discovery (DMKD), vol. 21, no. 3,
pp. 472–508, 2010.

[179] T. Horváth and J. Ramon, “Efficient frequent connected subgraph mining in
graphs of bounded tree-width,” Theoretical Computer Science, vol. 411, no.
31-33, pp. 2784–2797, 2010.

[180] R. Vijayalakshmi, R. Nadarajan, J. F. Roddick, M. Thilaga, and P. Nirmala,
“Fp-graphminer-a fast frequent pattern mining algorithm for network graphs,”
Journal of Graph Algorithms and Applications, vol. 15, no. 6, pp. 753–776, 2011.

[181] E. Keogh, S. Lonardi, and C. A. Ratanamahatana, “Towards parameter-free
data mining,” in Proceedings of the ACM Conference on Knowledge Discovery
and Data Mining (KDD), 2004, pp. 206–215.

[182] T. K. Saha and M. A. Hasan, “FS3: A sampling based method for top-k frequent
subgraph mining,” Statistical Analysis and Data Mining (SADM), vol. 8, no. 4,
pp. 245–261, 2015.

[183] R. R. Y. and K. D. K., Simulation and the Monte Carlo Method. John Wiley
and Sons, 2008.

[184] J. Cheng, Y. Ke, W. Ng, and A. Lu, “Fg-index: Towards verification-free query
processing on graph databases,” in Proceedings of the ACM Special Interest
Group on Management of Data (SIGMOD), 2007, pp. 857–872.

[185] B. Bringmann, A. Zimmermann, L. D. Raedt, and S. Nijssen, “Don’t be afraid
of simpler patterns,” in Proceedings of the Principles and Practice of Knowledge
Discovery (PKDD), 2006, pp. 55–66.

[186] R. K. Chung, Spectral Graph Theory. American Mathematical Society, 1997.

[187] V. Guruswami, “Rapidly mixing markov chains: A comparison of techniques,”
A Survey, 2000.

[188] R. Montenegro and P. Tetali, “Mathematical aspects of mixing times in markov
chains,” Foundations and Trends in Theoretical Computer Science, vol. 1, no. 3,
pp. 237–354, 2006.

[189] J. S. Rosenthal, “Optimal proposal distributions and adaptive MCMC,” Hand-
book of Markov Chain Monte Carlo, pp. 93–112, 2011.

[190] A. Gelman and D. B. Rubin, “Inference from iterative simulation using multiple
sequences,” Statistical Science, vol. 7, pp. 457–472, 1992.

263

[191] A. Tomovic and E. J. Oakeley, “Computational structural analysis: Multiple
proteins bound to DNA,” PloS One, vol. 3, no. 9, pp. 32–43, 2008.

[192] R. Chen and Z. Weng, “A novel shape complementarity scoring function for
protein-protein docking,” Proteins: Structure, Function, and Bioinformatics,
vol. 51, no. 3, pp. 397–408, 2003.

[193] R. Chen, L. Li, and Z. Weng, “Zdock: An initial-stage protein-docking algo-
rithm,” Proteins: Structure, Function, and Bioinformatics, vol. 52, no. 1, pp.
80–87, 2003.

[194] I. S. Moreira, J. M. Martins, J. T. Coimbra, M. J. Ramos, and P. A. Fernan-
des, “A new scoring function for protein–protein docking that identifies native
structures with unprecedented accuracy,” Physical Chemistry Chemical Physics,
vol. 17, no. 4, pp. 2378–2387, 2015.

[195] N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, E. De Castro, P. S. Langendijk-
Genevaux, M. Pagni, and C. J. Sigrist, “The prosite database,” Nucleic Acids
Research, vol. 34, no. suppl 1, pp. D227–D230, 2006.

[196] C. G. Nevill-Manning, T. D. Wu, and D. L. Brutlag, “Highly specific protein
sequence motifs for genome analysis,” Proceedings of the National Academy of
Sciences, vol. 95, no. 11, pp. 5865–5871, 1998.

[197] J. Y. Huang and D. L. Brutlag, “The emotif database,” Nucleic Acids Research,
vol. 29, no. 1, pp. 202–204, 2001.

[198] R. Saidi, M. Maddouri, and E. M. Nguifo, “Protein sequences classification by
means of feature extraction with substitution matrices,” BMC Bioinformatics,
vol. 11, no. 1, p. 1, 2010.

[199] M. Vendruscolo, N. Dokholyan, E. Paci, and M. Karplus, “Small-world view
of the amino acids that play a key role in protein folding,” Physical Review E,
vol. 65, no. 6, p. 061910, 2002.

[200] E. Wong, B. Baur, S. Quader, and C.-H. Huang, “Biological network motif
detection: Principles and practice,” Briefings in Bioinformatics, vol. 13, no. 2,
pp. 202–215, 2011.

[201] B. K. Kamapantula, M. L. Mayo, E. J. Perkins, and P. Ghosh, “The structural
role of feed-forward loop motif in transcriptional regulatory networks,” Mobile
Networks and Applications, vol. 21, no. 1, pp. 191–205, 2016.

[202] S. Gao, A. Chen, A. Rahmani, J. Zeng, M. Tan, R. Alhajj, J. Rokne, D. De-
metrick, and X. Wei, “Multi-scale modularity and motif distributional effect in
metabolic networks,” Current Protein and Peptide Science, vol. 17, no. 1, pp.
82–92, 2016.

[203] M. Elseidy, E. Abdelhamid, S. Skiadopoulos, and P. Kalnis, “Grami: Frequent
subgraph and pattern mining in a single large graph,” Proceedings of the Very
Large Database (VLDB) Endowment, vol. 7, no. 7, pp. 517–528, 2014.

[204] D. Aparicio, P. Paredes, and P. Ribeiro, “A scalable parallel approach for sub-
graph census computation,” in Proceedings of the European Conference on Par-
allel Processing, 2014, pp. 194–205.

264

[205] C. H. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and A. Aboul-
naga, “Arabesque: A system for distributed graph mining,” in Proceedings of
the Symposium on Operating Systems Principles (SOSP), 2015, pp. 425–440.

[206] J. Huan, W. Wang, and J. Prins, “Efficient mining of frequent subgraphs in the
presence of isomorphism,” in Proceedings of the IEEE International Conference
on Data Mining (ICDM), 2003, pp. 549–552.

[207] M. A. Bhuiyan and M. Al Hasan, “An iterative mapreduce based frequent
subgraph mining algorithm,” IEEE Transactions on Knowledge and Data En-
gineering (TKDE), vol. 27, no. 3, pp. 608–620, 2015.

[208] A. R. Katebi, K. Sankar, K. Jia, and R. L. Jernigan, “The use of experimental
structures to model protein dynamics,” in Molecular Modeling of Proteins, 2015,
pp. 213–236.

[209] P. D. Dobson and A. J. Doig, “Distinguishing enzyme structures from non-
enzymes without alignments,” Journal of Molecular Biology, vol. 330, no. 4,
pp. 771–783, 2003.

[210] A. R. Rao, R. Jana, and S. Bandyopadhyay, “A markov chain monte carlo
method for generating random (0, 1)-matrices with given marginals,” Sankhyā:
The Indian Journal of Statistics, Series A, pp. 225–242, 1996.

[211] R. Milo, N. Kashtan, S. Itzkovitz, M. E. Newman, and U. Alon, “On the uniform
generation of random graphs with prescribed degree sequences,” arXiv preprint
cond-mat/0312028, 2003.

[212] W. Kabsch, “A solution for the best rotation to relate two sets of vectors,”
Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and
General Crystallography, vol. 32, no. 5, pp. 922–923, 1976.

[213] M. W. Walker, L. Shao, and R. A. Volz, “Estimating 3-d location parameters
using dual number quaternions,” CVGIP: Image Understanding, vol. 54, no. 3,
pp. 358–367, 1991.

[214] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne, “The protein data bank,” Nucleic Acids Re-
search, vol. 28, no. 1, pp. 235–242, 2000.

[215] A. R. Katebi and R. L. Jernigan, “The critical role of the loops of triosephos-
phate isomerase for its oligomerization, dynamics, and functionality,” Protein
Science, vol. 23, no. 2, pp. 213–228, 2014.

[216] E. Lolis, T. Alber, R. C. Davenport, D. Rose, F. C. Hartman, and G. A.
Petsko, “Structure of yeast triosephosphate isomerase at 1.9-. ang. resolution,”
Biochemistry, vol. 29, no. 28, pp. 6609–6618, 1990.

[217] G. M. Cooper, The Cell: A Molecular Approach, 2nd Edition. Sunderland
(MA): Sinauer Associates, 2000.

[218] C. T. Porter, G. J. Bartlett, and J. M. Thornton, “The catalytic site atlas: A
resource of catalytic sites and residues identified in enzymes using structural
data,” Nucleic Acids Research, vol. 32, no. suppl 1, pp. D129–D133, 2004.

265

[219] J. P. Nilmeier, D. A. Kirshner, S. E. Wong, and F. C. Lightstone, “Rapid
catalytic template searching as an enzyme function prediction procedure,” PloS
One, vol. 8, no. 5, p. e62535, 2013.

[220] N. Furnham, G. L. Holliday, T. A. de Beer, J. O. Jacobsen, W. R. Pearson,
and J. M. Thornton, “The catalytic site atlas 2.0: Cataloging catalytic sites
and residues identified in enzymes,” Nucleic Acids Research, vol. 42, no. D1,
pp. D485–D489, 2014.

[221] W. Dhifli, S. Aridhi, and E. M. Nguifo, “Mr-simlab: Scalable subgraph selection
with label similarity for big data,” Information Systems, vol. 69, pp. 155 – 163,
2017.

[222] L. A. Goodman, “Snowball sampling,” The Annals of Mathematical Statistics,
pp. 148–170, 1961.

[223] M. Gjoka, M. Kurant, C. Butts, and A. Markopoulou, “Walking in Facebook:
A Case Study of Unbiased Sampling of OSNs,” in Proceedings of the IEEE
International Conference on Computer Communications (INFOCOMM), 2010,
pp. 1–9.

[224] M. Rahman, M. Bhuiyan, and M. A. Hasan, “GRAFT: An approximate
graphlet counting algorithm for large graph analysis,” in Proceedings of the
ACM International Conference on Information and Knowledge Management
(CIKM), 2012, pp. 1467–1471.

[225] S. P. Borgatti and M. G. Everett, “A graph-theoretic perspective on centrality,”
Social Networks, vol. 28, no. 4, pp. 466–484, 2006.

[226] S. Dorogovtsev, J. Mendes, and A. Samukhin, “Size-dependent degree distri-
bution of a scale-free growing network,” Physical Review E, vol. 63, no. 6, p.
062101, 2001.

[227] H. A. Soufiani and E. M. Airoldi, “Graphlet decomposition of a weighted net-
work,” arXiv preprint arXiv:1203.2821, 2012.

[228] P. Ribeiro, “Efficient and scalable algorithms for network motifs discovery,”
Ph.D. dissertation, University of Porto, 2011.

[229] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, “Introducing Markov chain
Monte Carlo,” in Markov Chain Monte Carlo in Practice, 1996, pp. 1–19.

[230] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
“Equation of state calculations by fast computing machines,” The Journal of
Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[231] P. Indyk and R. Motwani, “Approximate nearest neighbors: Towards removing
the curse of dimensionality,” in Proceedings of the ACM Symposium on Theory
of Computing (STOC), 1998, pp. 604–613.

[232] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google play,” in
Proceedings of the ACM International Conference on Measurement and Model-
ing of Computer Systems, 2014, pp. 221–233.

[233] A. Labs, “Androguard,” https://code.google.com/p/androguard/, 2014.

266

[234] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology (TIST), vol. 2, no. 3,
p. 27, 2011.

[235] S. Narang, “Tapsnake,” http://www.symantec.com/connect/blogs/
android-tapsnake-mobile-scareware-ads-push-antivirus, 2013.

[236] X. Jiang, “Sndapps,” http://www.csc.ncsu.edu/faculty/jiang/SndApps/, 2011.

[237] J. Grunzweig, “Nickyspy,” https://www.trustwave.com/Resources/
SpiderLabs-Blog/NickiSpy-C---Android-Malware-Analysis--Demo/, 2011.

[238] Y. Li, “Lovetrap,” https://www.symantec.com/security response/writeup.jsp?
docid=2011-072806-2905-99&tabid=2, 2011.

[239] R. Bawden, R. Sennrich, A. Birch, and B. Haddow, “Evaluating discourse phe-
nomena in neural machine translation,” arXiv preprint arXiv:1711.00513, 2017.

[240] G. Han and H. Sethu, “Waddling random walk: Fast and accurate mining
of motif statistics in large graphs,” in Proceedings of the IEEE International
Conference on Data Mining (ICDM), 2016, pp. 181–190.

[241] M. Bressan, F. Chierichetti, R. Kumar, S. Leucci, and A. Panconesi, “Counting
graphlets: Space vs time,” in Proceedings of the ACM International Conference
on Web Search and Data Mining (WSDM), 2017, pp. 557–566.

[242] Y. Li, O. Vinyals, C. Dyer, R. Pascanu, and P. Battaglia, “Learning deep
generative models of graphs,” arXiv preprint arXiv:1803.03324, 2018.

[243] R. K. Darst, C. Granell, A. Arenas, S. Gómez, J. Saramäki, and S. Fortunato,
“Detection of timescales in evolving complex systems,” Scientific Reports, vol. 6,
p. 39713, 2016.

[244] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Compu-
tation, vol. 9, no. 8, pp. 1735–1780, 1997.

[245] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly
learning to align and translate,” arXiv preprint arXiv:1409.0473, 2014.

[246] S. Sukhbaatar, J. Weston, R. Fergus et al., “End-to-end memory networks,” in
Proceedings of the Advances in Neural Information Processing Systems (NIPS),
2015, pp. 2440–2448.

[247] T. Lyu, Y. Zhang, and Y. Zhang, “Enhancing the network embedding quality
with structural similarity,” in Proceedings of the ACM Conference on Informa-
tion and Knowledge Management (CIKM), 2017, pp. 147–156.

VITA

267

VITA

Tanay Kumar Saha received his BSc in computer science and engineering from

Bangladesh University of Engineering and Technology (BUET) in October, 2009. Af-

ter graduation, he served as a Lecturer in Jagannath University, Dhaka, Bangladesh.

He joined Purdue University in August, 2012 to pursue his Ph.D. degree in computer

science under the supervision of Dr. Mohammad Al Hasan. His research focused

on information retrieval, deep learning, graph analysis and bio-informatics. During

his Ph.D. study, he interned at Qatar Computing Research Institute (QCRI) in 2016

from January to June and NEC labs, America in Summer, 2017.

	Latent Representation and Sampling in Network: Application in Text Mining and Biology.
	Recommended Citation

	tmp.1645418511.pdf.2fW1r

