1,106 research outputs found

    Long term nonlinear propagation of uncertainties in perturbed geocentric dynamics using automatic domain splitting

    Get PDF
    Current approaches to uncertainty propagation in astrodynamics mainly refer tolinearized models or Monte Carlo simulations. Naive linear methods fail in nonlinear dynamics, whereas Monte Carlo simulations tend to be computationallyintensive. Differential algebra has already proven to be an efficient compromiseby replacing thousands of pointwise integrations of Monte Carlo runs with thefast evaluation of the arbitrary order Taylor expansion of the flow of the dynamics. However, the current implementation of the DA-based high-order uncertainty propagator fails in highly nonlinear dynamics or long term propagation. We solve this issue by introducing automatic domain splitting. During propagation, the polynomial of the current state is split in two polynomials when its accuracy reaches a given threshold. The resulting polynomials accurately track uncertainties, even in highly nonlinear dynamics and long term propagations. Furthermore, valuable additional information about the dynamical system is available from the pattern in which those automatic splits occur. From this pattern it is immediately visible where the system behaves chaotically and where its evolution is smooth. Furthermore, it is possible to deduce the behavior of the system for each region, yielding further insight into the dynamics. In this work, the method is applied to the analysis of an end-of-life disposal trajectory of the INTEGRAL spacecraft

    Differentiable Genetic Programming

    Full text link
    We introduce the use of high order automatic differentiation, implemented via the algebra of truncated Taylor polynomials, in genetic programming. Using the Cartesian Genetic Programming encoding we obtain a high-order Taylor representation of the program output that is then used to back-propagate errors during learning. The resulting machine learning framework is called differentiable Cartesian Genetic Programming (dCGP). In the context of symbolic regression, dCGP offers a new approach to the long unsolved problem of constant representation in GP expressions. On several problems of increasing complexity we find that dCGP is able to find the exact form of the symbolic expression as well as the constants values. We also demonstrate the use of dCGP to solve a large class of differential equations and to find prime integrals of dynamical systems, presenting, in both cases, results that confirm the efficacy of our approach

    An automatic domain splitting technique to propagate uncertainties in highly nonlinear orbital dynamics

    Get PDF
    Current approaches to uncertainty propagation in astrodynamics mainly refer to linearized models or Monte Carlo simulations. Naive linear methods fail in nonlinear dynamics, whereas Monte Carlo simulations tend to be computationally intensive. Differential algebra has already proven to be an efficient compromise by replacing thousands of pointwise integrations of Monte Carlo runs with the fast evaluation of the arbitrary order Taylor expansion of the flow of the dynamics. However, the current implementation of the DA-based high-order uncertainty propagator fails in highly nonlinear dynamics or long term propagation. We solve this issue by introducing automatic domain splitting. During propagation, the polynomial of the current state is split in two polynomials when its accuracy reaches a given threshold. The resulting polynomials accurately track uncertainties, even in highly nonlinear dynamics. The method is tested on the propagation of (99942) Apophis post-encounter motion

    Lazy Multivariate Higher-Order Forward-Mode AD

    Get PDF
    A method is presented for computing all higher-order partial derivatives of a multivariate function Rn → R. This method works by evaluating the function under a nonstandard interpretation, lifting reals to multivariate power series. Multivariate power series, with potentially an infinite number of terms with nonzero coefficients, are represented using a lazy data structure constructed out of linear terms. A complete implementation of this method in SCHEME is presented, along with a straightforward exposition, based on Taylor expansions, of the method’s correctness

    Multivariate Residues and Maximal Unitarity

    Full text link
    We extend the maximal unitarity method to amplitude contributions whose cuts define multidimensional algebraic varieties. The technique is valid to all orders and is explicitly demonstrated at three loops in gauge theories with any number of fermions and scalars in the adjoint representation. Deca-cuts realized by replacement of real slice integration contours by higher-dimensional tori encircling the global poles are used to factorize the planar triple box onto a product of trees. We apply computational algebraic geometry and multivariate complex analysis to derive unique projectors for all master integral coefficients and obtain compact analytic formulae in terms of tree-level data.Comment: 34 pages, 3 figure

    Two-Loop Vertices in Quantum Field Theory: Infrared and Collinear Divergent Configurations

    Full text link
    A comprehensive study is performed of two-loop Feynman diagrams with three external legs which, due to the exchange of massless gauge-bosons, give raise to infrared and collinear divergencies. Their relevance in assembling realistic computations of next-to-next-to-leading corrections to physical observables is emphasised. A classification of infrared singular configurations, based on solutions of Landau equations, is introduced. Algorithms for the numerical evaluation of the residues of the infrared poles and of the infrared finite parts of diagrams are introduced and discussed within the scheme of dimensional regularization. Integral representations of Feynman diagrams which form a generalization of Nielsen - Goncharov polylogarithms are introduced and their numerical evaluation discussed. Numerical results are shown for all different families of multi-scale, two-loop, three-point infrared divergent diagrams and successful comparisons with analytical results, whenever available, are performed. Part of these results has already been included in a recent evaluation of electroweak pseudo-observables at the two-loop level.Comment: 62 pages, 15 figures, 16 table

    Energy flow polynomials: A complete linear basis for jet substructure

    Get PDF
    We introduce the energy flow polynomials: a complete set of jet substructure observables which form a discrete linear basis for all infrared- and collinear-safe observables. Energy flow polynomials are multiparticle energy correlators with specific angular structures that are a direct consequence of infrared and collinear safety. We establish a powerful graph-theoretic representation of the energy flow polynomials which allows us to design efficient algorithms for their computation. Many common jet observables are exact linear combinations of energy flow polynomials, and we demonstrate the linear spanning nature of the energy flow basis by performing regression for several common jet observables. Using linear classification with energy flow polynomials, we achieve excellent performance on three representative jet tagging problems: quark/gluon discrimination, boosted W tagging, and boosted top tagging. The energy flow basis provides a systematic framework for complete investigations of jet substructure using linear methods.Comment: 41+15 pages, 13 figures, 5 tables; v2: updated to match JHEP versio

    Lower order terms in the full moment conjecture for the Riemann zeta function

    Full text link
    We describe an algorithm for obtaining explicit expressions for lower terms for the conjectured full asymptotics of the moments of the Riemann zeta function, and give two distinct methods for obtaining numerical values of these coefficients. We also provide some numerical evidence in favour of the conjecture.Comment: 37 pages, 4 figure
    corecore