
 

 

Physics Procedia 00 (2008) 000–000 

www.elsevier.com/locate/XXX
 

Available online at www.sciencedirect.com

Proceedings of the Seventh International Conference on Charged Particle Optics 

Mathematica program for extracting one-turn Lie generator map. 
application of TPSA. 

Dobrin Kaltchev∗ 

TRIUMF 4004 Wesbrook Mall, Vancouver, B.C., Canada V6T2A3 

Elsevier use only: Received date here; revised date here; accepted date here 

Abstract 

The Lie Algebra package LieMath, written in the Mathematica language, constructs the one-turn nonlinear map for a given 
lattice of optical elements. The method used is a BCH-based map concatenation. Truncated power series algebra (TPSA) 
techniques have been implemented to compute the Poisson bracket and extract the map faster than when one relies on the 
symbolic capabilities of Mathematica to operate on truncated multivariate Taylor series. In addition, this makes possible 
obtaining parameter-dependent numerical maps and optimization of nonlinear parameters.

  © 2008 Elsevier B.V. 
PACS: 41.85.-p; 02.70.Wz 

Keywords: Beam optics, Lie algebra, Nonlinear maps 

1. Introduction 

The Lie algebraic method allows us to create the nonlinear map of a beamline, either in Lie operator form, or as 
Taylor expansions of final coordinates in terms of initial coordinates. In a map concatenation based on the Baker- 
Cambell-Hausdorff (BCH) expansion, the most computationally intensive part is calculation of the Poisson brackets 
(PB). Therefore, differential algebra libraries are needed to carry out fast computations with polynomials and vector 
functions of polynomials. To build the map, a symbolic computational system may be used such as Mathematica [1], 
[2], [3]. The most straightforward approach involves encoding the PB as an operator on multivariate polynomials 
produced by the truncated series expansion of the (piecewise constant) Hamiltonian. One then relies on the symbolic 
engine to perform the product and derivative needed for the PB. Using a symbolic system gives additional 
flexibility: easy switching between numerical and analytical calculations and also getting analytical dependence on 
parameters [1],[5]. The main disadvantage is speed, which is slow for large lattices. 

 
In automatic differentiation, or Truncated power series algebra (TPSA) [6–8], the array of Taylor coefficients in 

the expansion of a multivariate function is computed not by symbolic differentiation, or by numerical 

 

∗ Corresponding author: +1-604-222-7319 
E-mail address:  kaltchev@triumf.ca 

Physics Procedia 1 (2008) 333–338

Received 9 July 2008; received in revised form 9 July 2008; accepted 9 July 2008

www.elsevier.com/locate/procedia

doi:10.1016/j.phpro.2008.07.113

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82476995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/procedia
http://dx.doi.org/10.1016/j.phpro.2008.07.113
http://creativecommons.org/licenses/by-nc-nd/3.0/


2 D. Kaltchev / Physics Procedia 00 (2008) 000–000 

approximations, but by manipulating the coefficient arrays of other (simpler) functions. In our case this means 
replacing the symbolic PB with an operator on coefficient arrays, called in this paper derivative structures (DS). 
These differ from the differential algebra vectors in [6] only in the order in which the entries are stored in the 
computer memory. Such an inexpensive modification of the code LieMath [3] increases its speed by a factor of 
around ten and also provides parameter dependent maps, while preserving its general Lie-algebraic algorithm. 

 
Section 2 shows how to implement the pyramid structure of coefficients of multivariate polynomials and 

efficiently handle the index set manipulation. One needs to assign addresses for all possible monomials in a 
polynomial. We use a direct addressing with an index array and create and store reference arrays that list the indices 
needed for each operation. Such a “preprocessing” is performed only once, at the beginning of execution. This 
method saves computing time at some expense of space and only requires implementation of a few manipulations on 
vectors of integers. 

 
Section 3 describes the algorithm of LieMath. Comparisons with other codes and sample applications can be 

found in [3] and [4]. 
 
An important notice is that both the choice of addressing and the maximum achievable improvement in 

computing time (Section 5) have been substantially influenced by the Mathematica’s built-in means of handling 
sparse structures.  

 

2. Implementation of TPSA 

This section describes the algorithm allowing one to replace the operations on polynomials in the Poisson bracket 
with operations on coefficient arrays (derivative structures). For a beamline of optical elements with lengths Lp and 
Hamiltonians Hp, p = 1, 2, ..., the polynomials in question are the truncated at order m expansions of the individual-
element Lie generators – LpHp(x) in the components of x. The coordinate vector x is of dimension n and, besides the 
six phase-space coordinates, may include some parameters, i.e. n > 6 in the case of maps with knobs described in 
Section 4. If a parameter dependence is not sought for, then n = 6 and the order of the Taylor map to be generated is 
M = m − 1.  

2.1. Pyramid of Coefficients – Derivative Structure 

The expansion of a function of n variables x = {x1, x2, . . . , xn}, truncated at order m, is 

  (1) 

|k| = k1 + k2 + … + kn. 

Here k = {k1, k2, . . . kn} is the index vector: a vector of nonnegative integers indicating the term in the series and 
Fk is the coefficient array or (with accuracy to factorial factors) the array of all partial derivatives up to order m. This 
array can be visualized as an n-dimensional pyramid where n specifies the dimension and m the size [7]. The total 

number of entries is given by the binomial coefficient:   In what follows, we call Fk the derivative 

structure, or simply the pyramid of f.  
 
The index set as an array joining all index vectors: . Let p be an integer or zero. A 

composition of p of order n is a particular arrangement of n nonnegative integers whose sum is p. We build the 
index set in the following way: 

Join  Compositions p,n
   (2) 

Where Compositions[p,n] [10] are all compositions for fixed p.  For example, the expansion  
(n = 3, m = 2): 

334 D. Kaltchev / Physics Procedia 1 (2008) 333–338



 D. Kaltchev / Physics Procedia 00 (2008) 000–000 3 

 

the index set (with compositions shown on different rows) is: 

 

  (3) 

The dimensions n and m are fixed at the start of the program, hence all pyramids have the same index set which 
can be represented as a matrix Γl,i = (kl)i. 

 
Although in Mathematica it is not a syntactic problem to index directly one array with another, even when their 

dimensions are arbitrary, we choose to work with a linear index l and a linear array F(l), where l has a corresponding 
entry F(l) = Fkl . For example in (3) Γ3,* = {0, 1, 0} and F(3) = F{0,1,0}. 

2.2. TPSA Poisson bracket 

All polynomials (f, h, u, . . . ) are associated with corresponding pyramids (F,H, U, . . . ), all indexed with the 
same set Γ. If h is given as an arithmetic operation combining u and v and U and V are known, then one needs to 
define a corresponding operation on U and V that yields H. For the Poisson bracket, such operations are only the 
product and derivative since addition and multiplication by a number are performed coordinatewise, as in matrix 
addition and multiplication by a constant. Preprocessing (see the Introduction) of an operation means creating 
subsets of the index array and storing them together with information on what to do with the subset. Such a subset 
corresponds to a group of pyramid entries called a box. When the product or derivative is actually called, only the 
box elements are operated upon. For the product of polynomials, the elements of H=PROD[U,V] are found by the 
Leibniz’ rule. From Eqn (1) substituted into h(x) = u(x)v(x):  

 

we get: 
    (4) 

A similar rule can be deduced for the derivative with respect to the ith  th variable: , which defines 

the derivative operator: H=DER[F,i]. Implementation details are given in the Appendix. The Poisson bracket can 
be defined as 

  PBDS[F, G] := PROD[DER[F,1], DER[G,2]] − PROD[DER[F,2], DER[G,1]] + ... (5) 

or, in a similar fashion, it can be encoded via its own reference arrays. 

2.3. Other method of indexing 

A question is in order whether the above method is optimum for sparse arrays which occur since in some 
polynomials only a few of the variables are present. Therefore, we have tried the same addressing as for the 
differential algebra vector in [6], i.e. according to decimals in base m+1. This brings the advantage that, for the 
polynomial product for example, the resultant coefficient is automatically stored into the correct location thus 
avoiding multiple operations on zeros. No improvement in speed is observed, attributed to the already built in 
abilities of Mathematica to operate on sparse arrays.  

D. Kaltchev / Physics Procedia 1 (2008) 333–338 335



4 D. Kaltchev / Physics Procedia 00 (2008) 000–000 

3. LieMath Code 

The input to LieMath conforms closely to the standard format for accelerator lattices [16], made possible by a 
lattice parser written in the same language. The map transforms a vector of canonical coordinates {x, px, y, py, cτ, pτ} 
– deviations from the reference trajectory with design energy E0, momentum p0 and local curvature h(s) (s is the 
path length along the reference trajectory). The motion of a particle with charge e and energy E, assumed to be a 
constant, is governed by the Hamiltonian:  

      (6) 

where the Hamiltonian and momenta have been scaled by the design momentum, τ = t − t0 is the time of flight 
relative to the reference particle and pτ = −(E − E0)/p0c. Above  (the canonical vector potential) 
with  being the vector potential and  the unit vector in direction tangent to the reference trajectory. For a drift, 
bend (curvature h), quadrupole (strength k1) and sextupole (strength k2),  is given by (see. eg. [13]): 

 

The algorithm is as outlined in [3], [11], [14] with the BCH formula replaced by its DS equivalent BCHDS. At 
first, Γ is created and the generators −LpHp(x) are series-expanded to order m = M + 1 and converted into pyramids. 
The kick factorization of an element is made by replacing it with a Lie operator and a following linear matrix. All 
matrices are moved to the end of the lattice, which changes each Lie operator with a similarity transform. Next, all 
nonlinear generators are combined into one with BCHDS applied in a loop over the elements.  

       (7) 

 
where F and G are the DS of two polynomials whose linear terms are removed and O((f, g)6) means terms of 

order ≥  6. Applying on this generator the formal expansion of the Lie exponent (in DS form) yields the Taylor map. 
For periodic cells this one-turn map is converted to a normal form by using symbolic transformations, see [5].  

 

4. Numerical nonlinear optimization 

One natural extension of the above algorithm allows us to get numerical maps depending on nonlinear parameters 
(maps with knobs [9]). Consider a beamline for which Q parameters nl1, nl2, . . . , nlQ have been declared to be 
variables. These may be the strengths of some nonlinear elements. To create dependence (as a power expansion) on 
these parameters, the above names are appended to the coordinate vector:  

 
  x = {x, px, y, py, cτ, pτ , nl1, nl2, . . . nlQ} (8) 
 
and the value of m is increased. All steps in the algorithm in Section 3 are preserved: for the new m and n = 6+Q, 

Γ is constructed and the DS are filled in by differentiating analytically the Hamiltonians with respect the new x. The 
final map elements depend on parameters and can be optimized numerically. For instance, increasing the map order 
from two to three will produce linear dependence on sextupole strengths, making it possible to match second order 
map elements and linear chromaticities.  

336 D. Kaltchev / Physics Procedia 1 (2008) 333–338



 D. Kaltchev / Physics Procedia 00 (2008) 000–000 5 

 

5. Computing time 

The computing time (TIMING command) per one BCHDS call is independent on the kind of optical elements 
concatenated. On a 1-GHz processor, for six-dimensional numerical maps of third order, this time is 0.22 seconds.  

 
For the same maps (n=6, M=3) the gain in total execution time due to TPSA is around one order of magnitude 

even if (as it is logical to assume) the result from the symbolic BCH is truncated at order m after each element. 
Table 1 shows timings of the truncated BCH and BCHDS loops for a beamline of 70 elements including strong 
interleaved sextupoles [1].  

 

Table 1 
CPU time (seconds) of the concatenation loop for a lattice of 70 elements ([1]) 

M BCHDS truncated symbolic BCH 

3 15 125 

4 52 846 

 
For large n and m the effect of implementing TPSA increases (Table 1), which is explained with the increasing 

fraction of nonzero coefficients. By taking now the untruncated BCH, Figure 1 shows the ratio of times versus the 
pyramid fraction populated with non-zero real numbers (the nonzero entires are chosen randomly). The plot 
illustrates the ability of Mathematica to operate efficiently on sparse numerical arrays. The ratio reaches several 
orders of magnitude for large and dense pyramids (m=5, filling fraction >0.5). The maximum effect is observed 
when all coefficients are symbols (filling fraction =1).  

 

 
 

Fig. 1. Time needed for one call of the untruncated BCH divided by the same time for BCHDS. Here n=4. 

References 

[1] N. J. Walker, J. Irwin, M. Woodley, Analysis of Higher Order Optical Aberrations in the SLC Final Focus, using Lie Algebra Techniques, 
Proc. Of PAC 1993. 

[2] J. Irwin, Analytic Nonlinear Methods for Beam Optics, in Proc. PAC (1997). 
[3] D. Kaltchev, Building Truncated Taylor Maps with Mathematica and Applications to FFAG, in Proc. EPAC (2004). 
[4] D. Kaltchev,Implementation of TPSA in the Mathematica Code LieMath, in Proc. EPAC (2006). 
[5] Chunxi Wang and Alex Chao, Analytic Second- and Third-Order Achromat Designs, Proc. of PAC (1995). 

D. Kaltchev / Physics Procedia 1 (2008) 333–338 337



6 D. Kaltchev / Physics Procedia 00 (2008) 000–000 

[6] Berz, M. Differential algebraic description of beam dynamics to very high orders, Particle Accelerators 24, 109 (1989) 
[7] Richard Neidinger, An efficient method for the numerical evaluation of partial derivatives of arbitrary order, ACM Transactions on 

Mathematical Software (TOMS) (1992). 
[8] D. Kalman, R. Lindell, Recursive Multivariate Automatic Differentiation, Optimization Methods and Software, 6 (1995) 161. 
[9] M. Berz and K. Makino, COSY Infinity Version 8.1, http://cosy.pa.msu.edu 
[10] The Mathematica Book, Wolfram Media, Fifth edition, 2003 
[11] Tanaji Sen, Y.T. Yan, J. Irwin, Liemap : A Program for Extracting a Oneturn Single Exponent Lie Generator map, IEEE 1991 Particle 

Accelerator Conference, San Francisco, May 1991. 
[12] J. Irwin, Computation of Lattice maps Using Modular BCH and Similarity Composition Rules, PAC 5 (1995) 2871. 
[13] Johan Bengtsson, Doctorate Thesis CERN 88-05. 
[14] A. Dragt and E. Forest, Computation of nonlinear behavior of Hamiltonian systems using Lie algebraic methods, J. Math. Phys. 24 (12), 

(1983). 
[15] J. Murray, K. Brown, T. Fieguth, The Completed Design of the SLC Final Focus System , SLAC-PUB-4219 (1987). 
[16] D. Carey, F. Iselin,Standard Input Language for Particle Beam and Accelerator Computer Programs, Proc of Snow-mass, Colorado, 

(1984). 
 

6. Appendix 

Preprocessor of product: The product is defined by Eqn. 4. For each k ↔ l we find all vectors j that are smaller 
or equal to k coordinate-wise and store their linear indices in the reference array rl,j ; l = 1, . . . ,L, j = 1, . . . , J(l). 
Here “coordinate-wise” means j ≤ k if and only if ji ≤ ki for all i = 1, 2, . . . n. For a fixed l, the vector rl,* defines the 
lth box. 

 
Product: H(l) is the scalar product between the lth box for U and the same box for V, but with its order inverted: 
 
Hk _ H(l) = 
J(l) X 
j=1 
U(rl,j)V (rl,J(l)−j+1). 
 
For example, in (3) Γ5,* = {0, 0, 2} and one finds r5,* = {1, 2, 5}. Hence H(5) = U(1)V(5) + U(2)V(2) + U(5)V(1), 

or by going back to multi-indices:  H(5) = U{0,0,0} V{0,0,2} + U{0,0,1} V{0,0,1} + U{0,0,2} V{0,0,0}. 
 
Preprocessor of derivative: The subset of indices which defines the ith box consists of all vectors k that are 

present in both Γl,i and Γl,i+1. We again denote this subset by ri,j , where j = 1, . . . , J. 
 
Derivative: The first J entries of H are: 
 
   H(j) = (Γj,i + 1)F(ri,j), 1 ≤ j ≤ J (A.1) 
 
and the rest (for j > J) are zero. 
 
For example, to compute DER[F,1] we add unity to all first elements of n-vectors in (3).  

One finds r1,* = {4, 8, 9, 10} and DER[F, 1] = {F{1,0,0}, F{1,0,1}, F{1,1,0}, 2 F{2,0,0}, 0, . . . , 0}. 

338 D. Kaltchev / Physics Procedia 1 (2008) 333–338


