887 research outputs found

    Deep Learning-Based Approach for Missing Data Imputation

    Get PDF
    The missing values in the datasets are a problem that will decrease the machine learning performance. New methods arerecommended every day to overcome this problem. The methods of statistical, machine learning, evolutionary and deeplearning are among these methods. Although deep learning methods is one of the popular subjects of today, there are limitedstudies in the missing data imputation. Several deep learning techniques have been used to handling missing data, one of themis the autoencoder and its denoising and stacked variants. In this study, the missing value in three different real-world datasetswas estimated by using denoising autoencoder (DAE), k-nearest neighbor (kNN) and multivariate imputation by chainedequations (MICE) methods. The estimation success of the methods was compared according to the root mean square error(RMSE) criterion. It was observed that the DAE method was more successful than other statistical methods in estimating themissing values for large datasets

    Deep Self-Taught Learning for Handwritten Character Recognition

    Full text link
    Recent theoretical and empirical work in statistical machine learning has demonstrated the importance of learning algorithms for deep architectures, i.e., function classes obtained by composing multiple non-linear transformations. Self-taught learning (exploiting unlabeled examples or examples from other distributions) has already been applied to deep learners, but mostly to show the advantage of unlabeled examples. Here we explore the advantage brought by {\em out-of-distribution examples}. For this purpose we developed a powerful generator of stochastic variations and noise processes for character images, including not only affine transformations but also slant, local elastic deformations, changes in thickness, background images, grey level changes, contrast, occlusion, and various types of noise. The out-of-distribution examples are obtained from these highly distorted images or by including examples of object classes different from those in the target test set. We show that {\em deep learners benefit more from out-of-distribution examples than a corresponding shallow learner}, at least in the area of handwritten character recognition. In fact, we show that they beat previously published results and reach human-level performance on both handwritten digit classification and 62-class handwritten character recognition

    Contractive De-noising Auto-encoder

    Full text link
    Auto-encoder is a special kind of neural network based on reconstruction. De-noising auto-encoder (DAE) is an improved auto-encoder which is robust to the input by corrupting the original data first and then reconstructing the original input by minimizing the reconstruction error function. And contractive auto-encoder (CAE) is another kind of improved auto-encoder to learn robust feature by introducing the Frobenius norm of the Jacobean matrix of the learned feature with respect to the original input. In this paper, we combine de-noising auto-encoder and contractive auto- encoder, and propose another improved auto-encoder, contractive de-noising auto- encoder (CDAE), which is robust to both the original input and the learned feature. We stack CDAE to extract more abstract features and apply SVM for classification. The experiment result on benchmark dataset MNIST shows that our proposed CDAE performed better than both DAE and CAE, proving the effective of our method.Comment: Figures edite

    Semi-Supervised Radio Signal Identification

    Full text link
    Radio emitter recognition in dense multi-user environments is an important tool for optimizing spectrum utilization, identifying and minimizing interference, and enforcing spectrum policy. Radio data is readily available and easy to obtain from an antenna, but labeled and curated data is often scarce making supervised learning strategies difficult and time consuming in practice. We demonstrate that semi-supervised learning techniques can be used to scale learning beyond supervised datasets, allowing for discerning and recalling new radio signals by using sparse signal representations based on both unsupervised and supervised methods for nonlinear feature learning and clustering methods

    Energy-based temporal neural networks for imputing missing values

    Get PDF
    Imputing missing values in high dimensional time series is a difficult problem. There have been some approaches to the problem [11,8] where neural architectures were trained as probabilistic models of the data. However, we argue that this approach is not optimal. We propose to view temporal neural networks with latent variables as energy-based models and train them for missing value recovery directly. In this paper we introduce two energy-based models. The first model is based on a one dimensional convolution and the second model utilizes a recurrent neural network. We demonstrate how ideas from the energy-based learning framework can be used to train these models to recover missing values. The models are evaluated on a motion capture dataset
    • …
    corecore