93 research outputs found

    Fractals in the Nervous System: conceptual Implications for Theoretical Neuroscience

    Get PDF
    This essay is presented with two principal objectives in mind: first, to document the prevalence of fractals at all levels of the nervous system, giving credence to the notion of their functional relevance; and second, to draw attention to the as yet still unresolved issues of the detailed relationships among power law scaling, self-similarity, and self-organized criticality. As regards criticality, I will document that it has become a pivotal reference point in Neurodynamics. Furthermore, I will emphasize the not yet fully appreciated significance of allometric control processes. For dynamic fractals, I will assemble reasons for attributing to them the capacity to adapt task execution to contextual changes across a range of scales. The final Section consists of general reflections on the implications of the reviewed data, and identifies what appear to be issues of fundamental importance for future research in the rapidly evolving topic of this review

    Annotated Bibliography: Anticipation

    Get PDF

    Computer Science & Technology Series : XVI Argentine Congress of Computer Science - Selected papers

    Get PDF
    CACIC’10 was the sixteenth Congress in the CACIC series. It was organized by the School of Computer Science of the University of Moron. The Congress included 10 Workshops with 104 accepted papers, 1 main Conference, 4 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 5 courses. (http://www.cacic2010.edu.ar/). CACIC 2010 was organized following the traditional Congress format, with 10 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of three chairs of different Universities. The call for papers attracted a total of 195 submissions. An average of 2.6 review reports were collected for each paper, for a grand total of 507 review reports that involved about 300 different reviewers. A total of 104 full papers were accepted and 20 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI

    INVESTIGATIONS ON COGNITIVE COMPUTATION AND COMPUTATIONAL COGNITION

    Get PDF
    This Thesis describes our work at the boundary between Computer Science and Cognitive (Neuro)Science. In particular, (1) we have worked on methodological improvements to clustering-based meta-analysis of neuroimaging data, which is a technique that allows to collectively assess, in a quantitative way, activation peaks from several functional imaging studies, in order to extract the most robust results in the cognitive domain of interest. Hierarchical clustering is often used in this context, yet it is prone to the problem of non-uniqueness of the solution: a different permutation of the same input data might result in a different clustering result. In this Thesis, we propose a new version of hierarchical clustering that solves this problem. We also show the results of a meta-analysis, carried out using this algorithm, aimed at identifying specific cerebral circuits involved in single word reading. Moreover, (2) we describe preliminary work on a new connectionist model of single word reading, named the two-component model because it postulates a cascaded information flow from a more cognitive component that computes a distributed internal representation for the input word, to an articulatory component that translates this code into the corresponding sequence of phonemes. Output production is started when the internal code, which evolves in time, reaches a sufficient degree of clarity; this mechanism has been advanced as a possible explanation for behavioral effects consistently reported in the literature on reading, with a specific focus on the so called serial effects. This model is here discussed in its strength and weaknesses. Finally, (3) we have turned to consider how features that are typical of human cognition can inform the design of improved artificial agents; here, we have focused on modelling concepts inspired by emotion theory. A model of emotional interaction between artificial agents, based on probabilistic finite state automata, is presented: in this model, agents have personalities and attitudes that can change through the course of interaction (e.g. by reinforcement learning) to achieve autonomous adaptation to the interaction partner. Markov chain properties are then applied to derive reliable predictions of the outcome of an interaction. Taken together, these works show how the interplay between Cognitive Science and Computer Science can be fruitful, both for advancing our knowledge of the human brain and for designing more and more intelligent artificial systems

    Reinforcement Learning

    Get PDF
    Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices. Brain-like computation is about processing and interpreting data or directly putting forward and performing actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in terms of theory and applications and it shall stimulate and encourage new research in this field

    PRINCIPLES OF INFORMATION PROCESSING IN NEURONAL AVALANCHES

    Get PDF
    How the brain processes information is poorly understood. It has been suggested that the imbalance of excitation and inhibition (E/I) can significantly affect information processing in the brain. Neuronal avalanches, a type of spontaneous activity recently discovered, have been ubiquitously observed in vitro and in vivo when the cortical network is in the E/I balanced state. In this dissertation, I experimentally demonstrate that several properties regarding information processing in the cortex, i.e. the entropy of spontaneous activity, the information transmission between stimulus and response, the diversity of synchronized states and the discrimination of external stimuli, are optimized when the cortical network is in the E/I balanced state, exhibiting neuronal avalanche dynamics. These experimental studies not only support the hypothesis that the cortex operates in the critical state, but also suggest that criticality is a potential principle of information processing in the cortex. Further, we study the interaction structure in population neuronal dynamics, and discovered a special structure of higher order interactions that are inherent in the neuronal dynamics

    Tracking the Temporal-Evolution of Supernova Bubbles in Numerical Simulations

    Get PDF
    The study of low-dimensional, noisy manifolds embedded in a higher dimensional space has been extremely useful in many applications, from the chemical analysis of multi-phase flows to simulations of galactic mergers. Building a probabilistic model of the manifolds has helped in describing their essential properties and how they vary in space. However, when the manifold is evolving through time, a joint spatio-temporal modelling is needed, in order to fully comprehend its nature. We propose a first-order Markovian process that propagates the spatial probabilistic model of a manifold at fixed time, to its adjacent temporal stages. The proposed methodology is demonstrated using a particle simulation of an interacting dwarf galaxy to describe the evolution of a cavity generated by a Supernov

    Self-Organized Criticality as a Neurodynamical Correlate of Consciousness: A neurophysiological approach to measure states of consciousness based on EEG-complexity features

    Get PDF
    Background and Objectives This thesis was based on the hypothesis that the physics-derived theoretical framework of self-organized criticality can be applied to the neuronal dynamics of the human brain. From a consciousness science perspective, this is especially appealing as critical brain dynamics imply a vicinity a phase transition, which is associated with optimized information processing functions as well as the largest repertoire of configurations that a system explores throughout its temporal evolution. Hence, self-organised criticality could serve as a neurodynamical correlate for consciousness, which provides the possibility of deriving empirically testable neurophysiological indices suitable to characterise and quantify states of consciousness. The purpose of this work was to experimentally examine the feasibility of the self-organized criticality theory as a correlate for states of consciousness. Therefore, it was aimed at answering the following research questions based on the analysis of three 64 channel EEG datasets: (i) Can signatures of self-organized criticality be found on the level of the EEG in terms of scale-free distribution of neuronal avalanches and the presence of long-range temporal correlations (LRTC) in neuronal oscillations? (ii) Are criticality features suitable to differentiate state of consciousness in the spectrum of wakefulness? (iii) Can the neuronal dynamics be shifted towards the critical point of a phase transition associated with optimized information processing function by mind-body interventions? (iv) Can an explicit relationship to other nonlinear complexity features and power spectral density parameter be identified? (v) Do EEG-based criticality features reflect individual temperament traits? Material and Methods (1): Re-analysis: Thirty participants highly proficient in meditation (mean age 47 years, 11 females/19 males, meditation experience of at least 5 years practice or more than 1000 h of total meditation time) were measured with 64-channel EEG during one session consisting of a task-free baseline resting, a reading condition and three meditation conditions, namely thoughtless emptiness, presence monitoring and focused attention. (2): 64-channel EEG was recorded from 34 participants (mean age 36.0 ±13.4 years, 24 females/ 10 males) before, during and after a professional singing bowl massage. Further, psychometric data was assessed including absorption capacity defined as the individual’s capacity for engaging attentional resources in sensory and imaginative experiences measured by the Tellegen-Absorption Scale (TAS-D), subjective changes in in body sensation, emotional state, and mental state (CSP-14) as well as the phenomenology of consciousness (PCI-K). (3): Electrophysiological data (64 channels of EEG, EOG, ECG, skin conductance, and respiration) was recorded from 116 participants (mean age 40.0 ±13.4 years, 83 females/ 33 males) – in collaboration with the Institute of Psychology, Bundeswehr University Munich - during a task-free baseline resting state. The individual level of sensory processing sensitivity was assessed using the High Sensitive Person Scale (HSPS-G). The datasets were analysed applying analytical tools from self-organized criticality theory (detrended fluctuation analysis, neuronal avalanche analysis), nonlinear complexity algorithms (multiscale entropy, Higuchi’s fractal dimension) and power spectral density. In study 1 and 2, task conditions were contrasted, and effect sizes were compared using a paired two-tailed t-test calculated across participants, and features. T-values were corrected for multiple testing using false discovery rate. To calculate correlations between the EEG features, Spearman’s rank correlation was applied after determining that the distribution was not appropriate for parametric testing by the Shapiro-Wilk test. In addition, in study 1, a discrimination analysis was carried out to determine the classification performance of the EEG features. Here, partial least squares regression and receiver operating characteristics analysis was applied. To determine whether the EEG features reflect individual temperament traits, the individual level of absorption capacity (study 2) and sensory processing sensitivity (study 3) was correlated with the EEG features using Spearman’s rank correlation. Results Signatures of self-organized criticality in the form of scale-free distribution of neuronal avalanches and long-range temporal correlations (LRTCs) in the amplitude of neural oscillations were observed in three distinct EEG-datasets. EEG criticality as well as complexity features were suitable to characterise distinct states of consciousness. In study 1, compared to the task-free resting condition, all three meditative states revealed significantly reduced long-range temporal correlation with moderate effect sizes (presence monitoring: d= -0.49, p<.001; thoughtless emptiness: d= -0.37, p<.001; and focused attention: d= -0.28, p=.003). The critical exponent was suitable to differentiate between focused attention and presence monitoring (d= -0.32, p=.02). Further, in study 2, the criticality features significantly changed during the course of the experiment, whereby values indicated a shift towards the critical regime during the sound condition. Both analyses of the first and second dataset revealed that the critical exponent was significantly negatively correlated with the sample entropy, the scaling exponent resulting from the DFA denoting the amount of long-range temporal correlations as well as Higuchi’s fractal dimension in each condition, respectively. In addition, the critical scaling exponent was found to be significantly negatively correlated with the trait absorption (Spearman's ρ= -0.39, p= .007), whereas an association between critical dynamics and the level of sensory processing sensitivity could not be verified (study 3). Conclusion The findings of this thesis suggest that neuronal dynamics are governed by the phenomena of self-organized criticality. EEG-based criticality features were shown to be sensitive to detect experimentally induced alterations in the state of consciousness. Further, an explicit relationship with nonlinear measures determining the degree of neuronal complexity was identified. Thus, self-organized criticality seems feasible as a neurodynamical correlate for consciousness with the potential to quantify and characterize states of consciousness. Its agreement with the current most influencing theories in the field of consciousness research is discussed
    corecore