769 research outputs found

    Neural-symbolic computing: An effective methodology for principled integration of machine learning and reasoning

    Get PDF
    Current advances in Artificial Intelligence and machine learning in general, and deep learning in particular have reached unprecedented impact not only across research communities, but also over popular media channels. However, concerns about interpretability and accountability of AI have been raised by influential thinkers. In spite of the recent impact of AI, several works have identified the need for principled knowledge representation and reasoning mechanisms integrated with deep learning-based systems to provide sound and explainable models for such systems. Neural-symbolic computing aims at integrating, as foreseen by Valiant, two most fundamental cognitive abilities: the ability to learn from the environment, and the ability to reason from what has been learned. Neural-symbolic computing has been an active topic of research for many years, reconciling the advantages of robust learning in neural networks and reasoning and interpretability of symbolic representation. In this paper, we survey recent accomplishments of neural-symbolic computing as a principled methodology for integrated machine learning and reasoning. We illustrate the effectiveness of the approach by outlining the main characteristics of the methodology: principled integration of neural learning with symbolic knowledge representation and reasoning allowing for the construction of explainable AI systems. The insights provided by neural-symbolic computing shed new light on the increasingly prominent need for interpretable and accountable AI systems

    Machine Learning of Molecular Electronic Properties in Chemical Compound Space

    Get PDF
    The combination of modern scientific computing with electronic structure theory can lead to an unprecedented amount of data amenable to intelligent data analysis for the identification of meaningful, novel, and predictive structure-property relationships. Such relationships enable high-throughput screening for relevant properties in an exponentially growing pool of virtual compounds that are synthetically accessible. Here, we present a machine learning (ML) model, trained on a data base of \textit{ab initio} calculation results for thousands of organic molecules, that simultaneously predicts multiple electronic ground- and excited-state properties. The properties include atomization energy, polarizability, frontier orbital eigenvalues, ionization potential, electron affinity, and excitation energies. The ML model is based on a deep multi-task artificial neural network, exploiting underlying correlations between various molecular properties. The input is identical to \emph{ab initio} methods, \emph{i.e.} nuclear charges and Cartesian coordinates of all atoms. For small organic molecules the accuracy of such a "Quantum Machine" is similar, and sometimes superior, to modern quantum-chemical methods---at negligible computational cost

    Use of artificial intelligence in analytical systems for the clinical laboratory

    Get PDF
    The incorporation of information-processing technology into analytical systems in the form of standard computing software has recently been advanced by the introduction of artificial intelligence (AI), both as expert systems and as neural networks

    Integration of Legacy Appliances into Home Energy Management Systems

    Full text link
    The progressive installation of renewable energy sources requires the coordination of energy consuming devices. At consumer level, this coordination can be done by a home energy management system (HEMS). Interoperability issues need to be solved among smart appliances as well as between smart and non-smart, i.e., legacy devices. We expect current standardization efforts to soon provide technologies to design smart appliances in order to cope with the current interoperability issues. Nevertheless, common electrical devices affect energy consumption significantly and therefore deserve consideration within energy management applications. This paper discusses the integration of smart and legacy devices into a generic system architecture and, subsequently, elaborates the requirements and components which are necessary to realize such an architecture including an application of load detection for the identification of running loads and their integration into existing HEM systems. We assess the feasibility of such an approach with a case study based on a measurement campaign on real households. We show how the information of detected appliances can be extracted in order to create device profiles allowing for their integration and management within a HEMS

    Automatic log parser to support forensic analysis

    Get PDF
    Event log parsing is a process to split and label each field in a log entry. Existing approaches commonly use regular expressions or parsing rules to extract the fields. However, such techniques are time-consuming as a forensic investigator needs to define a new rule for each log file type. In this paper, we present a tool, namely nerlogparser, to parse the log entries automatically, where log parsing is modeled as a named entity recognition problem. We use a deep machine learning technique, specifically the bidirectional long short-term memory networks, as the underlying architecture for this purpose. Unlike existing tools, nerlogparser is a fully automatic tool as the investigators do not need to define any parsing rules and it is generic as there is only one model to parse various types of log files. Experimental results show that nerlogparser achieves superior performance compared with other traditional machine learning methods

    Automatic log parser to support forensic analysis

    Get PDF
    Event log parsing is a process to split and label each field in a log entry. Existing approaches commonly use regular expressions or parsing rules to extract the fields. However, such techniques are time-consuming as a forensic investigator needs to define a new rule for each log file type. In this paper, we present a tool, namely nerlogparser, to parse the log entries automatically, where log parsing is modeled as a named entity recognition problem. We use a deep machine learning technique, specifically the bidirectional long short-term memory networks, as the underlying architecture for this purpose. Unlike existing tools, nerlogparser is a fully automatic tool as the investigators do not need to define any parsing rules and it is generic as there is only one model to parse various types of log files. Experimental results show that nerlogparser achieves superior performance compared with other traditional machine learning methods

    Extracting Symbolic Representations Learned by Neural Networks

    Get PDF
    Understanding what neural networks learn from training data is of great interest in data mining, data analysis, and critical applications, and in evaluating neural network models. Unfortunately, the product of neural network training is typically opaque matrices of floating point numbers that are not obviously understandable. This difficulty has inspired substantial past research on how to extract symbolic, human-readable representations from a trained neural network, but the results obtained so far are very limited (e.g., large rule sets produced). This problem occurs in part due to the distributed hidden layer representation created during learning. Most past symbolic knowledge extraction algorithms have focused on progressively more sophisticated ways to cluster this distributed representation. In contrast, in this dissertation, I take a different approach. I develop ways to alter the error backpropagation neural network training process itself so that it creates a representation of what has been learned in the hidden layer activation space that is more amenable to existing symbolic representation extraction methods. In this context, this dissertation research makes four main contributions. First, modifications to the backpropagation learning procedure are derived mathematically, and it is shown that these modifications can be accomplished as local computations. Second, the effectiveness of the modified learning procedure for feedforward networks is established by showing that, on a set of benchmark tasks, it produces rule sets that are substantially simpler than those produced by standard backpropagation learning. Third, this approach is extended to simple recurrent networks, and experimental evaluation shows remarkable reduction in the sizes of the finite state machines extracted from the recurrent networks trained using this approach. Finally, this method is further modified to work on echo state networks, and computational experiments again show significant improvement in finite state machine extraction from these networks. These results clearly establish that principled modification of error backpropagation so that it constructs a better separated hidden layer representation is an effective way to improve contemporary symbolic extraction methods

    Knowledge-augmented Graph Machine Learning for Drug Discovery: A Survey from Precision to Interpretability

    Full text link
    The integration of Artificial Intelligence (AI) into the field of drug discovery has been a growing area of interdisciplinary scientific research. However, conventional AI models are heavily limited in handling complex biomedical structures (such as 2D or 3D protein and molecule structures) and providing interpretations for outputs, which hinders their practical application. As of late, Graph Machine Learning (GML) has gained considerable attention for its exceptional ability to model graph-structured biomedical data and investigate their properties and functional relationships. Despite extensive efforts, GML methods still suffer from several deficiencies, such as the limited ability to handle supervision sparsity and provide interpretability in learning and inference processes, and their ineffectiveness in utilising relevant domain knowledge. In response, recent studies have proposed integrating external biomedical knowledge into the GML pipeline to realise more precise and interpretable drug discovery with limited training instances. However, a systematic definition for this burgeoning research direction is yet to be established. This survey presents a comprehensive overview of long-standing drug discovery principles, provides the foundational concepts and cutting-edge techniques for graph-structured data and knowledge databases, and formally summarises Knowledge-augmented Graph Machine Learning (KaGML) for drug discovery. A thorough review of related KaGML works, collected following a carefully designed search methodology, are organised into four categories following a novel-defined taxonomy. To facilitate research in this promptly emerging field, we also share collected practical resources that are valuable for intelligent drug discovery and provide an in-depth discussion of the potential avenues for future advancements
    • …
    corecore