1,662 research outputs found

    Joining up health and bioinformatics: e-science meets e-health

    Get PDF
    CLEF (Co-operative Clinical e-Science Framework) is an MRC sponsored project in the e-Science programme that aims to establish methodologies and a technical infrastructure forthe next generation of integrated clinical and bioscience research. It is developing methodsfor managing and using pseudonymised repositories of the long-term patient histories whichcan be linked to genetic, genomic information or used to support patient care. CLEF concentrateson removing key barriers to managing such repositories ? ethical issues, informationcapture, integration of disparate sources into coherent ?chronicles? of events, userorientedmechanisms for querying and displaying the information, and compiling the requiredknowledge resources. This paper describes the overall information flow and technicalapproach designed to meet these aims within a Grid framework

    Open Data, Grey Data, and Stewardship: Universities at the Privacy Frontier

    Full text link
    As universities recognize the inherent value in the data they collect and hold, they encounter unforeseen challenges in stewarding those data in ways that balance accountability, transparency, and protection of privacy, academic freedom, and intellectual property. Two parallel developments in academic data collection are converging: (1) open access requirements, whereby researchers must provide access to their data as a condition of obtaining grant funding or publishing results in journals; and (2) the vast accumulation of 'grey data' about individuals in their daily activities of research, teaching, learning, services, and administration. The boundaries between research and grey data are blurring, making it more difficult to assess the risks and responsibilities associated with any data collection. Many sets of data, both research and grey, fall outside privacy regulations such as HIPAA, FERPA, and PII. Universities are exploiting these data for research, learning analytics, faculty evaluation, strategic decisions, and other sensitive matters. Commercial entities are besieging universities with requests for access to data or for partnerships to mine them. The privacy frontier facing research universities spans open access practices, uses and misuses of data, public records requests, cyber risk, and curating data for privacy protection. This paper explores the competing values inherent in data stewardship and makes recommendations for practice, drawing on the pioneering work of the University of California in privacy and information security, data governance, and cyber risk.Comment: Final published version, Sept 30, 201

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Perceptual and technical barriers in sharing and formatting metadata accompanying omics studies

    Full text link
    Metadata, often termed "data about data," is crucial for organizing, understanding, and managing vast omics datasets. It aids in efficient data discovery, integration, and interpretation, enabling users to access, comprehend, and utilize data effectively. Its significance spans the domains of scientific research, facilitating data reproducibility, reusability, and secondary analysis. However, numerous perceptual and technical barriers hinder the sharing of metadata among researchers. These barriers compromise the reliability of research results and hinder integrative meta-analyses of omics studies . This study highlights the key barriers to metadata sharing, including the lack of uniform standards, privacy and legal concerns, limitations in study design, limited incentives, inadequate infrastructure, and the dearth of well-trained personnel for metadata management and reuse. Proposed solutions include emphasizing the promotion of standardization, educational efforts, the role of journals and funding agencies, incentives and rewards, and the improvement of infrastructure. More accurate, reliable, and impactful research outcomes are achievable if the scientific community addresses these barriers, facilitating more accurate, reliable, and impactful research outcomes

    ForensiBlock: A Provenance-Driven Blockchain Framework for Data Forensics and Auditability

    Full text link
    Maintaining accurate provenance records is paramount in digital forensics, as they underpin evidence credibility and integrity, addressing essential aspects like accountability and reproducibility. Blockchains have several properties that can address these requirements. Previous systems utilized public blockchains, i.e., treated blockchain as a black box, and benefiting from the immutability property. However, the blockchain was accessible to everyone, giving rise to security concerns and moreover, efficient extraction of provenance faces challenges due to the enormous scale and complexity of digital data. This necessitates a tailored blockchain design for digital forensics. Our solution, Forensiblock has a novel design that automates investigation steps, ensures secure data access, traces data origins, preserves records, and expedites provenance extraction. Forensiblock incorporates Role-Based Access Control with Staged Authorization (RBAC-SA) and a distributed Merkle root for case tracking. These features support authorized resource access with an efficient retrieval of provenance records. Particularly, comparing two methods for extracting provenance records off chain storage retrieval with Merkle root verification and a brute-force search the offchain method is significantly better, especially as the blockchain size and number of cases increase. We also found that our distributed Merkle root creation slightly increases smart contract processing time but significantly improves history access. Overall, we show that Forensiblock offers secure, efficient, and reliable handling of digital forensic dataComment: This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessibl
    corecore