7,329 research outputs found

    A hybrid model for capturing implicit spatial knowledge

    Get PDF
    This paper proposes a machine learning-based approach for capturing rules embedded in users’ movement paths while navigating in Virtual Environments (VEs). It is argued that this methodology and the set of navigational rules which it provides should be regarded as a starting point for designing adaptive VEs able to provide navigation support. This is a major contribution of this work, given that the up-to-date adaptivity for navigable VEs has been primarily delivered through the manipulation of navigational cues with little reference to the user model of navigation

    Deep Shape Matching

    Full text link
    We cast shape matching as metric learning with convolutional networks. We break the end-to-end process of image representation into two parts. Firstly, well established efficient methods are chosen to turn the images into edge maps. Secondly, the network is trained with edge maps of landmark images, which are automatically obtained by a structure-from-motion pipeline. The learned representation is evaluated on a range of different tasks, providing improvements on challenging cases of domain generalization, generic sketch-based image retrieval or its fine-grained counterpart. In contrast to other methods that learn a different model per task, object category, or domain, we use the same network throughout all our experiments, achieving state-of-the-art results in multiple benchmarks.Comment: ECCV 201

    Generic Subsequence Matching Framework: Modularity, Flexibility, Efficiency

    Get PDF
    Subsequence matching has appeared to be an ideal approach for solving many problems related to the fields of data mining and similarity retrieval. It has been shown that almost any data class (audio, image, biometrics, signals) is or can be represented by some kind of time series or string of symbols, which can be seen as an input for various subsequence matching approaches. The variety of data types, specific tasks and their partial or full solutions is so wide that the choice, implementation and parametrization of a suitable solution for a given task might be complicated and time-consuming; a possibly fruitful combination of fragments from different research areas may not be obvious nor easy to realize. The leading authors of this field also mention the implementation bias that makes difficult a proper comparison of competing approaches. Therefore we present a new generic Subsequence Matching Framework (SMF) that tries to overcome the aforementioned problems by a uniform frame that simplifies and speeds up the design, development and evaluation of subsequence matching related systems. We identify several relatively separate subtasks solved differently over the literature and SMF enables to combine them in straightforward manner achieving new quality and efficiency. This framework can be used in many application domains and its components can be reused effectively. Its strictly modular architecture and openness enables also involvement of efficient solutions from different fields, for instance efficient metric-based indexes. This is an extended version of a paper published on DEXA 2012.Comment: This is an extended version of a paper published on DEXA 201

    On the segmentation and classification of hand radiographs

    Get PDF
    This research is part of a wider project to build predictive models of bone age using hand radiograph images. We examine ways of finding the outline of a hand from an X-ray as the first stage in segmenting the image into constituent bones. We assess a variety of algorithms including contouring, which has not previously been used in this context. We introduce a novel ensemble algorithm for combining outlines using two voting schemes, a likelihood ratio test and dynamic time warping (DTW). Our goal is to minimize the human intervention required, hence we investigate alternative ways of training a classifier to determine whether an outline is in fact correct or not. We evaluate outlining and classification on a set of 1370 images. We conclude that ensembling with DTW improves performance of all outlining algorithms, that the contouring algorithm used with the DTW ensemble performs the best of those assessed, and that the most effective classifier of hand outlines assessed is a random forest applied to outlines transformed into principal components

    Characterization of image sets: the Galois Lattice approach

    Get PDF
    This paper presents a new method for supervised image classification. One or several landmarks are attached to each class, with the intention of characterizing it and discriminating it from the other classes. The different features, deduced from image primitives, and their relationships with the sets of images are structured and organized into a hierarchy thanks to an original method relying on a mathematical formalism called Galois (or Concept) Lattices. Such lattices allow us to select features as landmarks of specific classes. This paper details the feature selection process and illustrates this through a robotic example in a structured environment. The class of any image is the room from which the image is shot by the robot camera. In the discussion, we compare this approach with decision trees and we give some issues for future research

    Spatial-temporal data mining procedure: LASR

    Full text link
    This paper is concerned with the statistical development of our spatial-temporal data mining procedure, LASR (pronounced ``laser''). LASR is the abbreviation for Longitudinal Analysis with Self-Registration of large-pp-small-nn data. It was motivated by a study of ``Neuromuscular Electrical Stimulation'' experiments, where the data are noisy and heterogeneous, might not align from one session to another, and involve a large number of multiple comparisons. The three main components of LASR are: (1) data segmentation for separating heterogeneous data and for distinguishing outliers, (2) automatic approaches for spatial and temporal data registration, and (3) statistical smoothing mapping for identifying ``activated'' regions based on false-discovery-rate controlled pp-maps and movies. Each of the components is of interest in its own right. As a statistical ensemble, the idea of LASR is applicable to other types of spatial-temporal data sets beyond those from the NMES experiments.Comment: Published at http://dx.doi.org/10.1214/074921706000000707 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore