123,076 research outputs found

    Report on the XBase Project

    Get PDF
    This project addressed the conceptual fundamentals of data storage, investigating techniques for provision of highly generic storage facilities that can be tailored to produce various individually customised storage infrastructures, compliant to the needs of particular applications. This requires the separation of mechanism and policy wherever possible. Aspirations include: actors, whether users or individual processes, should be able to bind to, update and manipulate data and programs transparently with respect to their respective locations; programs should be expressed independently of the storage and network technology involved in their execution; storage facilities should be structure-neutral so that actors can impose multiple interpretations over information, simultaneously and safely; information should not be discarded so that arbitrary historical views are supported; raw stored information should be open to all; where security restrictions on its use are required this should be achieved using cryptographic techniques. The key advances of the research were: 1) the identification of a candidate set of minimal storage system building blocks, which are sufficiently simple to avoid encapsulating policy where it cannot be customised by applications, and composable to build highly flexible storage architectures 2) insight into the nature of append-only storage components, and the issues arising from their application to common storage use-cases

    The MMT API: A Generic MKM System

    Full text link
    The MMT language has been developed as a scalable representation and interchange language for formal mathematical knowledge. It permits natural representations of the syntax and semantics of virtually all declarative languages while making MMT-based MKM services easy to implement. It is foundationally unconstrained and can be instantiated with specific formal languages. The MMT API implements the MMT language along with multiple backends for persistent storage and frontends for machine and user access. Moreover, it implements a wide variety of MMT-based knowledge management services. The API and all services are generic and can be applied to any language represented in MMT. A plugin interface permits injecting syntactic and semantic idiosyncrasies of individual formal languages.Comment: Conferences on Intelligent Computer Mathematics (CICM) 2013 The final publication is available at http://link.springer.com

    IGUANA Architecture, Framework and Toolkit for Interactive Graphics

    Full text link
    IGUANA is a generic interactive visualisation framework based on a C++ component model. It provides powerful user interface and visualisation primitives in a way that is not tied to any particular physics experiment or detector design. The article describes interactive visualisation tools built using IGUANA for the CMS and D0 experiments, as well as generic GEANT4 and GEANT3 applications. It covers features of the graphical user interfaces, 3D and 2D graphics, high-quality vector graphics output for print media, various textual, tabular and hierarchical data views, and integration with the application through control panels, a command line and different multi-threading models.Comment: Presented at the 2003 Computing in High Energy and Nuclear Physics (CHEP03), La Jolla, Ca, USA, March 2003, 6 pages LaTeX, 4 eps figures. PSN MOLT008 More and higher res figs at http://iguana.web.cern.ch/iguana/snapshot/main/gallery.htm

    Towards a framework for investigating tangible environments for learning

    Get PDF
    External representations have been shown to play a key role in mediating cognition. Tangible environments offer the opportunity for novel representational formats and combinations, potentially increasing representational power for supporting learning. However, we currently know little about the specific learning benefits of tangible environments, and have no established framework within which to analyse the ways that external representations work in tangible environments to support learning. Taking external representation as the central focus, this paper proposes a framework for investigating the effect of tangible technologies on interaction and cognition. Key artefact-action-representation relationships are identified, and classified to form a structure for investigating the differential cognitive effects of these features. An example scenario from our current research is presented to illustrate how the framework can be used as a method for investigating the effectiveness of differential designs for supporting science learning

    Context-adaptive learning designs by using semantic web services

    Get PDF
    IMS Learning Design (IMS-LD) is a promising technology aimed at supporting learning processes. IMS-LD packages contain the learning process metadata as well as the learning resources. However, the allocation of resources - whether data or services - within the learning design is done manually at design-time on the basis of the subjective appraisals of a learning designer. Since the actual learning context is known at runtime only, IMS-LD applications cannot adapt to a specific context or learner. Therefore, the reusability is limited and high development costs have to be taken into account to support a variety of contexts. To overcome these issues, we propose a highly dynamic approach based on Semantic Web Services (SWS) technology. Our aim is moving from the current data- and metadata-based to a context-adaptive service-orientated paradigm We introduce semantic descriptions of a learning process in terms of user objectives (learning goals) to abstract from any specific metadata standards and used learning resources. At runtime, learning goals are accomplished by automatically selecting and invoking the services that fit the actual user needs and process contexts. As a result, we obtain a dynamic adaptation to different contexts at runtime. Semantic mappings from our standard-independent process models will enable the automatic development of versatile, reusable IMS-LD applications as well as the reusability across multiple metadata standards. To illustrate our approach, we describe a prototype application based on our principles
    • …
    corecore