5,120 research outputs found

    Hipster: Integrating Theory Exploration in a Proof Assistant

    Full text link
    This paper describes Hipster, a system integrating theory exploration with the proof assistant Isabelle/HOL. Theory exploration is a technique for automatically discovering new interesting lemmas in a given theory development. Hipster can be used in two main modes. The first is exploratory mode, used for automatically generating basic lemmas about a given set of datatypes and functions in a new theory development. The second is proof mode, used in a particular proof attempt, trying to discover the missing lemmas which would allow the current goal to be proved. Hipster's proof mode complements and boosts existing proof automation techniques that rely on automatically selecting existing lemmas, by inventing new lemmas that need induction to be proved. We show example uses of both modes

    Proof-Pattern Recognition and Lemma Discovery in ACL2

    Full text link
    We present a novel technique for combining statistical machine learning for proof-pattern recognition with symbolic methods for lemma discovery. The resulting tool, ACL2(ml), gathers proof statistics and uses statistical pattern-recognition to pre-processes data from libraries, and then suggests auxiliary lemmas in new proofs by analogy with already seen examples. This paper presents the implementation of ACL2(ml) alongside theoretical descriptions of the proof-pattern recognition and lemma discovery methods involved in it

    Metaphysics and Law

    Get PDF
    The dichotomy between questions of fact and questions of law serves as a starting point for the following discussion of the nature of legal reasoning. In the course of the dialogue the author notes similarities and dissimilarities between legal reasoning and philosophical and mathematical reasoning. In the end we are left with a clearer insight into the distinctive features of the adjudicative process

    Non-wellfounded trees in Homotopy Type Theory

    Full text link
    We prove a conjecture about the constructibility of coinductive types - in the principled form of indexed M-types - in Homotopy Type Theory. The conjecture says that in the presence of inductive types, coinductive types are derivable. Indeed, in this work, we construct coinductive types in a subsystem of Homotopy Type Theory; this subsystem is given by Intensional Martin-L\"of type theory with natural numbers and Voevodsky's Univalence Axiom. Our results are mechanized in the computer proof assistant Agda.Comment: 14 pages, to be published in proceedings of TLCA 2015; ancillary files contain Agda files with formalized proof

    Metaphysics and Law

    Get PDF
    The dichotomy between questions of fact and questions of law serves as a starting point for the following discussion of the nature of legal reasoning. In the course of the dialogue the author notes similarities and dissimilarities between legal reasoning and philosophical and mathematical reasoning. In the end we are left with a clearer insight into the distinctive features of the adjudicative process

    Mining State-Based Models from Proof Corpora

    Full text link
    Interactive theorem provers have been used extensively to reason about various software/hardware systems and mathematical theorems. The key challenge when using an interactive prover is finding a suitable sequence of proof steps that will lead to a successful proof requires a significant amount of human intervention. This paper presents an automated technique that takes as input examples of successful proofs and infers an Extended Finite State Machine as output. This can in turn be used to generate proofs of new conjectures. Our preliminary experiments show that the inferred models are generally accurate (contain few false-positive sequences) and that representing existing proofs in such a way can be very useful when guiding new ones.Comment: To Appear at Conferences on Intelligent Computer Mathematics 201

    ACL2(ml):machine-learning for ACL2

    Get PDF
    ACL2(ml) is an extension for the Emacs interface of ACL2. This tool uses machine-learning to help the ACL2 user during the proof-development. Namely, ACL2(ml) gives hints to the user in the form of families of similar theorems, and generates auxiliary lemmas automatically. In this paper, we present the two most recent extensions for ACL2(ml). First, ACL2(ml) can suggest now families of similar function definitions, in addition to the families of similar theorems. Second, the lemma generation tool implemented in ACL2(ml) has been improved with a method to generate preconditions using the guard mechanism of ACL2. The user of ACL2(ml) can also invoke directly the latter extension to obtain preconditions for his own conjectures.Comment: In Proceedings ACL2 2014, arXiv:1406.123
    • …
    corecore