8,614 research outputs found

    Aspect-oriented design model.

    Get PDF
    Designing crosscutting concerns (aspects) is a challenging task. Since crosscutting concerns were not addressed while developing contemporary software design techniques, so they lack support for accommodating representation of such concerns along with base program. Some design languages like UML have been extended to express aspects and their elements but they do not fully represent aspects. Some lack adequate representation of aspect elements and some lack an efficient and reusable composition technique. In this paper, some of the aspect-oriented design techniques have been critically discussed. A proposed aspect model has been discussed which helps in overcoming the deficiencies in the contemporary aspect-oriented design techniques. This model represents aspects and their elements throughout the software development life cycle

    Enhancement Of Join Point Designation Diagrams (Jpdds) With Procedural Logic And Timing Constraint For Aspect-Oriented Modeling

    Get PDF
    Aspect-Oriented Software Development (AOSD) is a technology that helps achieve better Separation of Concern (SOC) by providing mechanisms to localize cross-cutting concerns. Aspect-Oriented Modeling (AOM) is a design technique in AOSD which attempts to separate crosscutting concerns in the earliest steps of software development. Queries on join points are an essential part of AOSD. Join point queries are necessary to identify all relevant points in a program at which aspectual adaptations need to take place. Finding appropriate means to designate such sets of relevant join points is a highly active field of research in AOSD. Join Point Designation Diagrams (JPDDs) are means that visualize join point queries graphically and separately from the adaptation specification. They provide a visual means to constrain the selection of join points based on static and dynamic, structural and behavioral context. Based on the latest researches on JPDDs, it has been lacking of support in procedural logic by JPDDs such as loops, alternative structures, and conditional branching between object interactions in the selection criteria of the join points. It causes some join points could not be modeled by JPDDs when join point specifications get complex in aspect-oriented programs. There is another issue in JPDDs which is lack of supporting timing constraints in the join points. There is no way or notation to visualize any timing constraint in a JPDD. Since time constraint is a major issue in real time systems, this lack of support makes a gap between real time system design and join point diagrams. In order to solve the stated problems, three new extension models are introduced in this research based on UML 2.0. Loop Condition Constraint Model (LCCM) and Alternative Constraint Model (ACM) are presented which aim to support procedural logic and reduce the redundancy of the message flows in JPDDs. Time Constraint Model (TCM) is introduced to fill the gap between real time systems and JPDDs. Some examples are used to evaluate the proposed models. Each example firstly is modeled by JPDDs without the proposed extensions and then is modeled by JPDDs with the proposed extensions. The results of the experiments showed that the proposed extensions are able to support the missing structures and eased the designation of join points. Introducing the proposed extensions in this thesis creates new opportunities in the join point selection research

    A graph-based aspect interference detection approach for UML-based aspect-oriented models

    Get PDF
    Aspect Oriented Modeling (AOM) techniques facilitate separate modeling of concerns and allow for a more flexible composition of these than traditional modeling technique. While this improves the understandability of each submodel, in order to reason about the behavior of the composed system and to detect conflicts among submodels, automated tool support is required. Current techniques for conflict detection among aspects generally have at least one of the following weaknesses. They require to manually model the abstract semantics for each system; or they derive the system semantics from code assuming one specific aspect-oriented language. Defining an extra semantics model for verification bears the risk of inconsistencies between the actual and the verified design; verifying only at implementation level hinders fixng errors in earlier phases. We propose a technique for fully automatic detection of conflicts between aspects at the model level; more specifically, our approach works on UML models with an extension for modeling pointcuts and advice. As back-end we use a graph-based model checker, for which we have defined an operational semantics of UML diagrams, pointcuts and advice. In order to simulate the system, we automatically derive a graph model from the diagrams. The result is another graph, which represents all possible program executions, and which can be verified against a declarative specification of invariants.\ud To demonstrate our approach, we discuss a UML-based AOM model of the "Crisis Management System" and a possible design and evolution scenario. The complexity of the system makes conĀ°icts among composed aspects hard to detect: already in the case of two simulated aspects, the state space contains 623 diĀ®erent states and 9 different execution paths. Nevertheless, in case the right pruning methods are used, the state-space only grows linearly with the number of aspects; therefore, the automatic analysis scales

    Model-driven performance evaluation for service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Software quality aspects such as performance are of central importance for the integration of heterogeneous, distributed service-based systems. Empirical performance evaluation is a process of measuring and calculating performance metrics of the implemented software. We present an approach for the empirical, model-based performance evaluation of services and service compositions in the context of model-driven service engineering. Temporal databases theory is utilised for the empirical performance evaluation of model-driven developed service systems

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    UML-F: A Modeling Language for Object-Oriented Frameworks

    Full text link
    The paper presents the essential features of a new member of the UML language family that supports working with object-oriented frameworks. This UML extension, called UML-F, allows the explicit representation of framework variation points. The paper discusses some of the relevant aspects of UML-F, which is based on standard UML extension mechanisms. A case study shows how it can be used to assist framework development. A discussion of additional tools for automating framework implementation and instantiation rounds out the paper.Comment: 22 pages, 10 figure

    Semantic model-driven development of web service architectures.

    Get PDF
    Building service-based architectures has become a major area of interest since the advent of Web services. Modelling these architectures is a central activity. Model-driven development is a recent approach to developing software systems based on the idea of making models the central artefacts for design representation, analysis, and code generation. We propose an ontology-based engineering methodology for semantic model-driven composition and transformation of Web service architectures. Ontology technology as a logic-based knowledge representation and reasoning framework can provide answers to the needs of sharable and reusable semantic models and descriptions needed for service engineering. Based on modelling, composition and code generation techniques for service architectures, our approach provides a methodological framework for ontology-based semantic service architecture

    Towards a Base UML Profile for Architecture Description

    Get PDF
    This paper discusses a base UML profile for architecture description as supported by existing Architecture Description Languages (ADLs). The profile may be extended so as to enable architecture modeling both as expressed in conventional ADLs and according to existing runtime infrastructures (e.g., system based on middleware architectures).

    Real world evaluation of aspect-oriented software development : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    Software development has improved over the past decade with the rise in the popularity of the Object-Oriented (OO) development approach. However, software projects continue to grow in complexity and continue to have alarmingly low rates of success. Aspect-Oriented Programming (AOP) is touted to be one solution to this software development problem. It shows promise of reducing programming complexity, making software more flexible and more amenable to change. The central concept introduced by AOP is the aspect. An aspect is used to modularise crosscutting concerns in a similar fashion to the way classes modularise business concerns. A crosscutting concern cannot be modularised in approaches such as OO because the code to realise the concern must be spread throughout the module (e.g. a tracing concent is implemented by adding code to every method in a system). AOP also introduces join points, pointcuts, and advice which are used with aspects to capture crosscutting concerns so they can be localised in a modular unit. OO took approximately 20 years to become a mainstream development approach. AOP was only invented in 1997. This project considers whether AOP is ready for commercial adoption. This requires analysis of the AOP implementations available, tool support, design processes, testing tools, standards, and support infrastructure. Only when AOP is evaluated across all these criteria can it be established whether it is ready to be used in commercial projects. Moreover, if companies are to invest time and money into adopting AOP, they must be aware of the benefits and risks associated with its adoption. This project attempts to quantify the potential benefits in adopting AOP, as well as identifying areas of risk. SolNet Solutions Ltd, an Information Technology (IT) company in Wellington, New Zealand, is used in this study as a target environment for integration of aspects into a commercial development process. SolNet is in the business of delivering large scale enterprise Java applications. To assist in this process they have developed a Common Services Architecture (CSA) containing components that can be reused to reduce risk and cost to clients. However, the CSA is complicated and SolNet have identified aspects as a potential solution to decrease the complexity. Aspects were found to bring substantial improvement to the Service Layer of SolNet. applications, including substantial reductions in complexity and size. This reduces the cost and time of development, as well as the risk associated with the projects. Moreover, the CSA was used in a more consistent fashion making the system easier to understand and maintain, and several crosscutting concerns were modularised as part of a reusable aspect library which could eventually form part of their CSA. It was found that AOP is approaching commercial readiness. However, more work is needed on defining standards for aspect languages and modelling of design elements. The current solutions in this area are commercially viable, but would greatly benefit from a standardised approach. Aspect systems can be difficult to test and the effect of the weaving process on Java serialisation requires further investigation
    • ā€¦
    corecore