5,670 research outputs found

    Media-based navigation with generic links

    No full text

    The computational magic of the ventral stream

    Get PDF
    I argue that the sample complexity of (biological, feedforward) object recognition is mostly due to geometric image transformations and conjecture that a main goal of the ventral stream – V1, V2, V4 and IT – is to learn-and-discount image transformations.

In the first part of the paper I describe a class of simple and biologically plausible memory-based modules that learn transformations from unsupervised visual experience. The main theorems show that these modules provide (for every object) a signature which is invariant to local affine transformations and approximately invariant for other transformations. I also prove that,
in a broad class of hierarchical architectures, signatures remain invariant from layer to layer. The identification of these memory-based modules with complex (and simple) cells in visual areas leads to a theory of invariant recognition for the ventral stream.

In the second part, I outline a theory about hierarchical architectures that can learn invariance to transformations. I show that the memory complexity of learning affine transformations is drastically reduced in a hierarchical architecture that factorizes transformations in terms of the subgroup of translations and the subgroups of rotations and scalings. I then show how translations are automatically selected as the only learnable transformations during development by enforcing small apertures – eg small receptive fields – in the first layer.

In a third part I show that the transformations represented in each area can be optimized in terms of storage and robustness, as a consequence determining the tuning of the neurons in the area, rather independently (under normal conditions) of the statistics of natural images. I describe a model of learning that can be proved to have this property, linking in an elegant way the spectral properties of the signatures with the tuning of receptive fields in different areas. A surprising implication of these theoretical results is that the computational goals and some of the tuning properties of cells in the ventral stream may follow from symmetry properties (in the sense of physics) of the visual world through a process of unsupervised correlational learning, based on Hebbian synapses. In particular, simple and complex cells do not directly care about oriented bars: their tuning is a side effect of their role in translation invariance. Across the whole ventral stream the preferred features reported for neurons in different areas are only a symptom of the invariances computed and represented.

The results of each of the three parts stand on their own independently of each other. Together this theory-in-fieri makes several broad predictions, some of which are:

-invariance to small transformations in early areas (eg translations in V1) may underly stability of visual perception (suggested by Stu Geman);

-each cell’s tuning properties are shaped by visual experience of image transformations during developmental and adult plasticity;

-simple cells are likely to be the same population as complex cells, arising from different convergence of the Hebbian learning rule. The input to complex “complex” cells are dendritic branches with simple cell properties;

-class-specific transformations are learned and represented at the top of the ventral stream hierarchy; thus class-specific modules such as faces, places and possibly body areas should exist in IT;

-the type of transformations that are learned from visual experience depend on the size of the receptive fields and thus on the area (layer in the models) – assuming that the size increases with layers;

-the mix of transformations learned in each area influences the tuning properties of the cells oriented bars in V1+V2, radial and spiral patterns in V4 up to class specific tuning in AIT (eg face tuned cells);

-features must be discriminative and invariant: invariance to transformations is the primary determinant of the tuning of cortical neurons rather than statistics of natural images.

The theory is broadly consistent with the current version of HMAX. It explains it and extend it in terms of unsupervised learning, a broader class of transformation invariance and higher level modules. The goal of this paper is to sketch a comprehensive theory with little regard for mathematical niceties. If the theory turns out to be useful there will be scope for deep mathematics, ranging from group representation tools to wavelet theory to dynamics of learning

    The Computational Magic of the Ventral Stream: Towards a Theory

    Get PDF
    I conjecture that the sample complexity of object recognition is mostly due to geometric image transformations and that a main goal of the ventral stream – V1, V2, V4 and IT – is to learn-and-discount image transformations. The most surprising implication of the theory emerging from these assumptions is that the computational goals and detailed properties of cells in the ventral stream follow from symmetry properties of the visual world through a process of unsupervised correlational learning.

From the assumption of a hierarchy of areas with receptive fields of increasing size the theory predicts that the size of the receptive fields determines which transformations are learned during development and then factored out during normal processing; that the transformation represented in each area determines the tuning of the neurons in the aerea, independently of the statistics of natural images; and that class-specific transformations are learned and represented at the top of the ventral stream hierarchy.

Some of the main predictions of this theory-in-fieri are:
1. the type of transformation that are learned from visual experience depend on the size (measured in terms of wavelength) and thus on the area (layer in the models) – assuming that the aperture size increases with layers;
2. the mix of transformations learned determine the properties of the receptive fields – oriented bars in V1+V2, radial and spiral patterns in V4 up to class specific tuning in AIT (eg face tuned cells);
3. invariance to small translations in V1 may underly stability of visual perception
4. class-specific modules – such as faces, places and possibly body areas – should exist in IT to process images of object classes

    Improved shape-signature and matching methods for model-based robotic vision

    Get PDF
    Researchers describe new techniques for curve matching and model-based object recognition, which are based on the notion of shape-signature. The signature which researchers use is an approximation of pointwise curvature. Described here is curve matching algorithm which generalizes a previous algorithm which was developed using this signature, allowing improvement and generalization of a previous model-based object recognition scheme. The results and the experiments described relate to 2-D images. However, natural extensions to the 3-D case exist and are being developed

    M\"obius Invariants of Shapes and Images

    Full text link
    Identifying when different images are of the same object despite changes caused by imaging technologies, or processes such as growth, has many applications in fields such as computer vision and biological image analysis. One approach to this problem is to identify the group of possible transformations of the object and to find invariants to the action of that group, meaning that the object has the same values of the invariants despite the action of the group. In this paper we study the invariants of planar shapes and images under the M\"obius group PSL(2,C)\mathrm{PSL}(2,\mathbb{C}), which arises in the conformal camera model of vision and may also correspond to neurological aspects of vision, such as grouping of lines and circles. We survey properties of invariants that are important in applications, and the known M\"obius invariants, and then develop an algorithm by which shapes can be recognised that is M\"obius- and reparametrization-invariant, numerically stable, and robust to noise. We demonstrate the efficacy of this new invariant approach on sets of curves, and then develop a M\"obius-invariant signature of grey-scale images

    Estimating proportions of objects from multispectral scanner data

    Get PDF
    Progress is reported in developing and testing methods of estimating, from multispectral scanner data, proportions of target classes in a scene when there are a significiant number of boundary pixels. Procedures were developed to exploit: (1) prior information concerning the number of object classes normally occurring in a pixel, and (2) spectral information extracted from signals of adjoining pixels. Two algorithms, LIMMIX and nine-point mixtures, are described along with supporting processing techniques. An important by-product of the procedures, in contrast to the previous method, is that they are often appropriate when the number of spectral bands is small. Preliminary tests on LANDSAT data sets, where target classes were (1) lakes and ponds, and (2) agricultural crops were encouraging

    Visual identification by signature tracking

    Get PDF
    We propose a new camera-based biometric: visual signature identification. We discuss the importance of the parameterization of the signatures in order to achieve good classification results, independently of variations in the position of the camera with respect to the writing surface. We show that affine arc-length parameterization performs better than conventional time and Euclidean arc-length ones. We find that the system verification performance is better than 4 percent error on skilled forgeries and 1 percent error on random forgeries, and that its recognition performance is better than 1 percent error rate, comparable to the best camera-based biometrics
    corecore