33 research outputs found

    Object-oriented querying of existing relational databases

    Get PDF
    In this paper, we present algorithms which allow an object-oriented querying of existing relational databases. Our goal is to provide an improved query interface for relational systems with better query facilities than SQL. This seems to be very important since, in real world applications, relational systems are most commonly used and their dominance will remain in the near future. To overcome the drawbacks of relational systems, especially the poor query facilities of SQL, we propose a schema transformation and a query translation algorithm. The schema transformation algorithm uses additional semantic information to enhance the relational schema and transform it into a corresponding object-oriented schema. If the additional semantic information can be deducted from an underlying entity-relationship design schema, the schema transformation may be done fully automatically. To query the created object-oriented schema, we use the Structured Object Query Language (SOQL) which provides declarative query facilities on objects. SOQL queries using the created object-oriented schema are much shorter, easier to write and understand and more intuitive than corresponding S Q L queries leading to an enhanced usability and an improved querying of the database. The query translation algorithm automatically translates SOQL queries into equivalent SQL queries for the original relational schema

    A Tutorial on Visual Representations of Relational Queries

    Full text link
    Query formulation is increasingly performed by systems that need to guess a user's intent (e.g. via spoken word interfaces). But how can a user know that the computational agent is returning answers to the "right" query? More generally, given that relational queries can become pretty complicated, how can we help users understand existing relational queries, whether human-generated or automatically generated? Now seems the right moment to revisit a topic that predates the birth of the relational model: developing visual metaphors that help users understand relational queries. This lecture-style tutorial surveys the key visual metaphors developed for visual representations of relational expressions. We will survey the history and state-of-the art of relationally-complete diagrammatic representations of relational queries, discuss the key visual metaphors developed in over a century of investigating diagrammatic languages, and organize the landscape by mapping their used visual alphabets to the syntax and semantics of Relational Algebra (RA) and Relational Calculus (RC).Comment: 4 page tutorial paper at VLDB 2023, tutorial web page with slides to be posted in time: https://northeastern-datalab.github.io/visual-query-representation-tutorial/. arXiv admin note: text overlap with arXiv:2208.0161

    Federating Queries to RDF repositories

    Get PDF
    Currently large amounts of RDF data are being published in the Web. These data is commonly accessed by means of SPARQL endpoints. However to query a set of SPARQL endpoints new mechanisms are needed due to neither the SPARQL protocol nor the language provide any norms or guidelines about how to proceed. In this paper we present an approach for federating queries to a set of SPARQL endpoints, using relational database distributed query processing techniques and part of the WS-DAI specification for web-service based access to relational and XML databases

    Database architectures for modern hardware: report from Dagstuhl Seminar 18251

    Get PDF
    The requirements of emerging applications on the one hand and the trends in computing hardware and systems on the other hand demand a fundamental rethinking of current data management architectures. Based on the broad consensus that this rethinking requires expertise from different research disciplines, the goal of this seminar was to bring together researchers and practitioners from these areas representing both the software and hardware sides and to foster cross-cutting architectural discussions. The outcome of this seminar was not only an identification of promising hardware technologies and their exploitation in data management systems but also a set of use cases, studies, and experiments for new architectural concepts

    Towards an Efficient Evaluation of General Queries

    Get PDF
    Database applications often require to evaluate queries containing quantifiers or disjunctions, e.g., for handling general integrity constraints. Existing efficient methods for processing quantifiers depart from the relational model as they rely on non-algebraic procedures. Looking at quantified query evaluation from a new angle, we propose an approach to process quantifiers that makes use of relational algebra operators only. Our approach performs in two phases. The first phase normalizes the queries producing a canonical form. This form permits to improve the translation into relational algebra performed during the second phase. The improved translation relies on a new operator - the complement-join - that generalizes the set difference, on algebraic expressions of universal quantifiers that avoid the expensive division operator in many cases, and on a special processing of disjunctions by means of constrained outer-joins. Our method achieves an efficiency at least comparable with that of previous proposals, better in most cases. Furthermore, it is considerably simpler to implement as it completely relies on relational data structures and operators
    corecore