
Federating Queries to RDF repositories

Carlos Buil-Aranda1, Oscar Corcho1

1 Ontology Engineering Group, Departamento de Inteligencia Artificial, Facultad de
Informática, Universidad Politécnica de Madrid. Boadilla del Monte, Spain

{cbuil, ocorcho}@fi.upm.es

Abstract. Currently large amounts of RDF data are being published in the Web.
These data is commonly accessed by means of SPARQL endpoints. However to
query a set of SPARQL endpoints new mechanisms are needed due to neither
the SPARQL protocol nor the language provide any norms or guidelines about
how to proceed. In this paper we present an approach for federating queries to a
set of SPARQL endpoints, using relational database distributed query
processing techniques and part of the WS-DAI specification for web-service
based access to relational and XML databases.

Keywords: SPARQL, query federation, RDF, Distributed Query Processing.

1 Introduction

Currently there is a high increase of RDF data available in the Web. The list of RDF
datasets accessible, among other ways, by Linked Data-enabled URLs and SPARQL
endpoints is increasing every day. In the W3C Wiki1 there are listed more than 40
SPARQL Endpoints and more than 70 RDF datasets and wrappers offering RDF data
and there are even more that are not listed there. In the same wiki there is an
estimation that there exist more than 13 billion RDF triples available on the Web2

This proliferation of RDF datasets brings a new problem: how to query them in a
way we can obtain useful information. In some situations, to query a single dataset
might be enough. However if we want to query a set of RDF datasets and link their
data some difficulties arise. Let’s imagine that we work in a genome project and we
want to obtain the information related to a specific protein (orf5F

 .

3), together with
additional information, such as the gene that codifies it, in which species the gene
participates and some features of the taxonomy to which the species belong. In this
scenario we need to query four SPARQL endpoints: Iproclass4 (to obtain the protein
and its information), GeneId5 (gene information), Taxon6

1 http://esw.w3.org/topic/SparqlEndpoints

 (taxonomy related

2 http://esw.w3.org/topic/TaskForces/CommunityProjects/LinkingOpenData/DataSets/Statistics
3 http://www.uniprot.org/uniprot/Q8KKD2.html
4 http://iproclass.bio2rdf.org/sparql
5 http://geneid.bio2rdf.org/sparql
6 http://taxon.bio2rdf.org/sparql

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Coordinación de Bibliotecas de la Universidad Politécnica de Madrid

https://core.ac.uk/display/148654099?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

information about species) and Genbank7

In this paper we propose to federate SPARQL queries to a set of SPARQL
endpoints. We base this proposal on existing studies that show the relationship
between SPARQL and SQL

 (more gene related information). Finally we
have to join together these query results.

[4]. We also base our proposal in the need of efficiently
querying RDF datasets as it was proved in [6]. In there, the authors state that
SPARQL access and optimization techniques are still in their infancy. We use
relational database DQP techniques and SQL optimization techniques to generate and
optimize query plans to be executed against RDF datasets available as SPARQL
endpoints. Hence in this paper we describe a SPARQL query federation system based
on the transformation of a subset of SPARQL queries8

[12]

 into their equivalent SQL
queries, the extension of an existing relational database DQP system (OGSA-DQP

) to generate optimized query plans across distributed RDF datasets, and the use
of the OGSA-DAI [2] framework for the robust execution of those queries and for
managing direct and indirect access to datasets following the WS-DAI
recommendation [3]. The indirect access model, described in the WS-DAI
recommendation allows to leave the queries’ results in the server which can later on
be iteratively accessed. Using the WS-DAI resource properties is also possible to
generate better statistics to improve the access generated by the underlying query
engine.

Our approach is the first that combines relational database DQP techniques with
the use of indirect access modes to data sources, which can be useful for the creation
of complex data workflows, such as those generated in many e-Science applications.

This paper is structured as follows. Section 2 presents the background needed for a

better understanding of this paper, describing previous work on relating SPARQL
with the relational model, and some background on relational distributed query
processing. Section 3 describes our solution, SPARQL-DQP, detailing the design
decisions we took and a brief description of some implementation details. Section 4
describes the existing solutions to SPARQL query federation. Section 5 presents an
evaluation comparing some of the existing similar systems with our solution. Section
6 presents conclusions of this paper and our future workplan.

2 Background: SPARQL and Relational Algebra

2.1 SPARQL and Relational Algebra

We based our proposal to federated RDF querying in the application of existing data
query processing techniques. These techniques come from highly used relational
database systems which include distribution and optimization techniques. Previously
to apply such techniques we have to verify the validity of our solution, in terms of the

7 http://genbank.bio2rdf.org/sparql
8 Some SPARQL features like unions or filters have been left temporarily outside the

implementation of the system, but they will be implemented in the short term.

preservation of the query language semantics in the transformation between SPARQL
and SQL.

Such analysis can be already found in the literature. In [1] the authors demonstrate
that Relational Algebra under bag semantics and the W3C SPARQL specification
have the same expressive power. The authors base this claim in the fact that
Relational algebra has the same expressive power than non-recursive Datalog with
negation (nr-Datalog). Together with the previous demonstration, they show that
SPARQL with compositional semantics is equivalent to nr-Datalog with negation. In
[13] the authors demonstrate that SPARQL and SPARQL with compositional
semantics are equivalent to the W3C SPARQL specification. Therefore we can claim
that using a relational algebra representation in our system we will not have a relevant
impact in terms of losing expressivity.

In [4] the author claims that SQL Logical Query Plans (LQPs) may be used to
represent the most common SPARQL queries. As a result, most of the SPARQL
queries can be actually transformed to SQL without losing any expressivity and
preserving the query semantics. Not all SPARQL queries can be translated directly to
SQL LQPs. In [4] the author also describes some limitations and mismatches between
SPARQL and Relational Algebra. These mismatches are:

• Relational Algebra and SPARQL behaves different with unbound variables.
While SPARQL does not take into account null values - they are left in
blank -, the relational model specifies the null value, which is ignored.

• join behaviour differs when there is missing information (due to the previous
problem of null values and blank nodes),

• nested optional problems (for the same reason)
• different filter scope (in which FILTER may not affect the right triple

pattern).

These limitations will be addressed in further iterations of our solution, as specified

in the future work section of this paper.
Finally in [13] the authors describe the semantics of SPARQL and its complexity.

They define the concept of well-designed patterns for SPARQL queries, which
impose restrictions on how to write SPARQL queries in order to ensure a low
complexity in their treatment and the possibility of applying optimizations in query
plans9

2.2 Distributed Query Processing

. Well-designed patterns are those where every variable occurring in the first
part of a query occurs in both the first part of the pattern and in the last. For instance,
an AND-FILTER-OPT pattern is well–designed if for every OPT in the pattern (...(A
OPT B)...) if a variable occurs inside B and anywhere outside the OPT operator, then
the variable also occurs inside A. Following this approach, we limit the queries to be
handled in our system to those following well-designed patterns.

Once we have analyzed the relationship between SPARQL and relational algebra, we
move into describing the most important components of a DQP system [9]. Figure 1

9 The complexity of well-designed patterns is coNP-complete [13].

shows a generic architecture for a DQP system, which considers the following
components: query parser, query rewriter, query optimizer, plan refinement
component and query execution engine. The parser reads the query and transforms it
into the system’s internal representation. Next, the query rewriter creates a Logical
Query Plan from this internal representation. The query optimizer is in charge of
applying different optimizations depending on the type of DQP system, the physical
state of the system, which indices to use, which nodes to send the query to, etc. As a
result, the query optimizer generates an optimized query plan that specifies how the
query is going to be executed. This plan is refined and transformed into an executable
plan by the plan refinement component. This plan will be executed by the query
execution engine in each local node. The query execution engine provides generic
implementations for every operator in the query plan. Finally, the catalog (or
metadata) component stores information about the databases (schema, tables, views or
physical information about it), which can be used during parsing, query rewriting and
query optimization.

Figure 1: Most common phases of query processing.

This is a generic architecture, which can be adapted depending on the types of data
sources that are handled, on the type of metadata available, etc. One of the most
important elements in this architecture, since it heavily influences the quality of the
DQP system, is the query optimizer. Some of the most common optimizations that
may be performed by this component are Cost estimation which use cost estimations
based on resource consumption or on response time estimating a cost model for each
query. Plan enumeration with dynamic programming, in which iterative dynamic
programming algorithms build complex subplans from simpler plans. In each
iteration, the algorithm selects the plan with minimal cost and updates the existing
plan list. The result is the plan with minimal cost. Site selection, in which every site
has annotations that indicate where the operator is to be executed, and operators can
be executed either at the client side or at the server side. Based on this information the
optimizer chooses the best operator/site to execute each part of the query plan. Two
step optimization. This technique is based on two optimization cycles, done at
compile and execution time. At compile time the initial query plan is generated,
specifying joins, selections, projections and other operators. At the time of actual
execution, the query plan is optimized again using annotations available at each data
source site, taking into account their current status.

These are the most common architectural components and optimizations that are
applied in classical DQP systems. We base our system in the architecture described
here and we plan to apply some of the described optimisers (cost based optimizations

and site selection at least), which, as it was described in the previous subsection,
might need some adaptations to work with SPARQL.

3 A SQL-based distributed query processor for SPARQL

In this section we describe our solution for executing SPARQL queries over
distributed RDF datasets, based on the theoretical results discussed in section 2.1 and
the usual DQP architecture described in section 2.2. We describe first our simple
extension to SPARQL (SPARQL-D), so as to support distributed dataset querying.
Then we describe how to generating basic query plans, the optimizations selected and
the execution of the final and optimized data workflow, focusing on the most relevant
components from Figure 1. For an easier understanding of our approach we show the
walkthrough of a sample SPARQL-D query in our system.

3.1 SPARQL extension for distributed data querying

One of the first issues that we have had to tackle is the identification of the datasets to
which the SPARQL queries will be sent, which is basic for query partitioning.
Different possibilities are to specify where triples may be coming from in this
distributed setting, extend SPARQL and use configuration files to describe the RDF
datasets to access each namespace, use a pure Linked Data approach, considering that
URIs should be dereferenceable, or use a registry of data sources with a summary of
their content so that queries can be partitioned adequately taking into account this
information.

In our approach we extend the SPARQL language to allow specifying the source of
each namespace. This extension (SPARQL-D) consists in allowing several FROM
clauses in the SPARQL query, where each of these FROM clauses identifies the RDF
resources to be accessed. While this is a restricted approach, we consider that it is not
too relevant for the time being for our approach, since the major contributions are on
the query transformation and optimization steps. We do not aim for a new extension
to SPARQL, neither extending its syntax nor its semantics. Here we describe a simple
means for querying a set of RDF datasets using a simple extension of the SPARQL
query language. In the future we plan to provide more flexibility, considering the use
of an ad-hoc registry of sources or a general-purpose search engine (e.g., Watson10,
Sindice11

We will use throughout the rest of this section the following query about the orf5F
protein and its related information. The query asks Iproclass for those genes that are
involved in the codification of the protein, together with the species’ taxonomy in
which the gene is present, if any, according to the Geneid endpoint. The query has
two main parts: the first triple pattern retrieves all the information about the protein.

, etc.) to locate the sources that can provide results for query parts, and
considering that URIs belonging to a namespace may be coming from different data
sources.

10 http://watson.kmi.open.ac.uk/
11 http://sindice.com/

The second triple pattern is optional, and asks for the taxonomical information about
the genes that participated in the codification of this protein, if any. The results of
both patterns are merged with a left outer join. Our SPARQL extensions are
represented in bold font, including the datasets to access and the variables to bind
from each of them.

PREFIX ipr: <http://bio2rdf.org/ns/iproclass>
PREFIX gn: <http://bio2rdf.org/ns/bio2rdf>
SELECT ?iproclass.protein ?geneid.taxon
FROM iproclass: <http://iproclass.bio2rdf.org/sparql>
FROM geneid: <http://geneid.bio2rdf.org/sparql>
WHERE{
 ?iprcolass.protein ipr:xGeneid ?iproclass.gene .
 OPTIONAL {?geneid.gene gn:xTaxon ?geneid.taxon}}

3.2 SPARQL-D Distributed Query Processor

We will now describe the characteristics of each of the components of our distributed
query processor, according to the set of components identified in Figure 1.

SPARQL-D parser. It is the module in charge of creating an Abstract Syntax Tree
(AST) from the initial SPARQL-D query.

SPARQL-D Logical Query Plan (LQP) Builder. The SPARQL LQP builder
receives the previous AST as an input and generates an operator representing the
SPARQL-D LQP (as shown in Figure 2). A SPARQL-D logical query plan is a
directed graph whose nodes are a mix of relational and SPARQL operators. The
processing of the query is done in two stages: first we process the prologue section of
the SPARQL query, obtaining the SPARQL prefixes and the variables to be retrieved
from the RDF repository, as specified in the FROM list; then we process the WHERE
clause, considering two major blocks: graph-matching triples and OPTIONAL
clauses. Solution modifiers like DISTINCT are also processed here. However, in our
current implementation we leave out FILTER clauses.

The processing of the WHERE clause is based on the equivalence between
SPARQL and SQL described in [4]: any two triples are translated as equi-joins if they
share a variable, and OPTIONAL clauses are treated as SQL left outer joins. Besides,
we apply the well-designed pattern concept [13] to OPTIONAL clauses.

For the special case of blank nodes and results without any value we assign the
value “BlankNode” (which is adequately escaped in case that this specific string
appears as a normal result of a query). Attributes that do not contain any value will
have this special value, so that it will be possible to make joins with them. Otherwise
errors and problems like the ones commented in the background section may arise.

SPARQL-D Query Optimizer. The SPARQL-D query optimizer receives the
previous LQP and generates an optimised query plan. As we described in the
background section, the majority of optimisers are based on relational database
information, such as the schema of the underlying database or the estimated number
of tuples that the query will retrieve. In RDF datasets the schema can be always
considered conceptually the same (subject, predicate and object), although different
implementations have varying schemas. Therefore, optimization-wise it is more
important to know how many properties of a certain type exist between subjects and
objects, or the number of instances of certain concepts. This helps determining the
cost of a specific SPARQL query, which can be measured as the estimated number of
RDF triples that will be retrieved from each of the RDF datasets to be accessed.
Another consideration related to the number of triples retrieved from each RDF
dataset is the cost of joining them. In this case it is possible to apply cost based
algorithms and other SQL optimizations, since the operators are the same. Real or
estimated cost plans that select the operators with the minimal cost will be applied.

In our approach we apply some of the default optimisations available in the
underlying query management infrastructure: OGSA-DQP. We benefit from this
infrastructure (service based distributed architecture and OGSA-DAI data services)
using its parallel query distribution and the multi-phase query plan optimisation
(physical and logical optimisations). Query evaluation in OGSA-DQP is based on the
algorithm described in [16]. This algorithm describes two types of parallelisms in
query evaluation, which are pipelined and partitioned parallelisms. Partitioned
parallelism separates instances of an operator that exist in different nodes while
pipelined parallelism processes sequentially different sets of data in the same node.
Other optimisations applied by OGSA-DQP are heuristic based optimisations, cost
based optimisations (using two step optimizations and mixing them with other cost-
based optimisations) and those based on pushing the select clauses as next to the data
sources as possible. In the SPARQL-DQP extension we apply the parallel and
pipelined optimisations while other optimisations are left for future work due to the
missing component in the SPARQL query federation state of the art (e.g., cost-based
optimisations).

Besides, we add a new optimiser: the RDFTableScanImplosion optimiser. As
aforementioned, SPARQL-D queries are translated into LQPs, which represent the
original query using SQL operators. Normally, the first operator to be applied is the
RDF Scan, which retrieves all the triples from an RDF dataset (this would be in
general very inefficient, since a data set may contain a huge amount of RDF triples);
then the Select operator would be applied (which selects the triples from the triples
initially retrieved from the Scan operator), and finally a Project operator would be
applied (which contains the variable to be retrieved from the RDF triples). The
RDFTableScanImplosion optimiser unifies these operations into a single one in order
to perform at the RDF dataset the most restricting query. An example is the following:
the SPARQL query contains a triple pattern "<http://bio2rdf.org/iproclass:Q8KKD2>
<http://bio2rdf.org/ns/iproclass#xGeneid> ?gene>". The translation into a LQP is
RDF Scan (select * where {?s ?p ?o}), Select (p<-p:
<http://bio2rdf.org/iproclass:Q8KKD2>, o<- ipr:xGeneid) and next the Project

operator (?o <- ?gene). Using the optimisation the query that is done to the triple store
is select * where {<http://bio2rdf.org/iproclass:Q8KKD2> ipr:xGeneid ?gene>. }.

Besides the RDFTableScanImplosion optimiser, we also use a normalizer (which
normalizes the LQP removing unnecessary operators) and a query partitioner
(explained in the next section).

SPARQL-D Query Partitioner. The previous query plan is partitioned into
subqueries addressed to the nodes where they will be executed. OGSA-DQP provides
an algorithm in charge of partitioning the logical query plan according to the data
nodes from which the data is retrieved. If a query plan contains a join or product of
two data streams that are located on different data nodes, the partitioning algorithm
detects this and transforms the LQP by inserting exchange operators that represent
data transfers between two remote data nodes. The output from the partitioner is a set
of partitions and the LQP where every operator is annotated with the partition to
which it belongs. In our approach we have directly used the OGSA-DQP partitioner
optimiser, since the LQP partitioning logic is the same in both situations.

3.3 SPARQL-DQP implementation

In this section we describe the implementation details of the SPARQL-DQP system.
Besides the previously described work on query parsing, logical query plan
generation, optimisation and partitioning, following a classical approach, we also base
our implementation in the use of Web Service-based access to data sources, as a result
of our choice of implementation. A reason for selecting a WS-based approach for
accessing RDF data sources is the availability of indirect access modes, which are not
common in the current state of the art in SPARQL centralized and distributed
querying. We will first provide some background on this type of access to data
sources, and will then describe more details about our implementation.

3.3.1 WS-based access to RDF repositories

WS-DAI (Web Service Data Access and Integration) [3] is a recommendation of the
Open Grid Forum that defines interfaces to access data resources as web services. The
general WS-DAI specification has two extended realizations, one for accessing
relational databases (WS-DAIR) and another for accessing XML databases (WS-
DAIX), and work is being done in providing another extended realization for RDF
data (WS-DAI-RDF [5]). The key elements of the WS-DAI specification are data
services. A data service is a Web service that implements one or more of the DAIS-
WG12

In WS-DAI, there are two access modes to data resources, as shown in

 specified interfaces to provide access to data resources (relational or XML
databases, file systems, RDF datasets, etc.).

Figure 2:

12 https://forge.gridforum.org/projects/dais-wg

• Direct access. Data resources are accessed like a regular service: a request
containing a query is sent to the data resource and the web service returns a
rowset with the requested data.

• Indirect access. It implements a factory pattern for data requests. When a data
resource is queried the data resource creates a new data resource where the query
results will be populated incrementally when they are available.

Figure 2: Direct and Indirect access to data resources respectively

OGSA-DAI [2] is a framework that was primarily intended as the WS-DAI
reference implementation but which evolved differently, extending it. It executes
data-centric workflows involving heterogeneous data resources for the purposes of
data access, integration, transformation and delivery. OGSA-DAI is integrated in
Apache Tomcat13 and within the Globus Toolkit14, and is used in OMII-UK15

OGSA-DAI relies on two key elements: data resources, which implement some of
the WS-DAI methods, and activities, which are operations or named units of
functionality (data goes in, something is done, data comes out) that can be combined
to create workflows, by combining inputs and outputs from the activities that access
the different resources. OGSA-DAI uses a tuple-based format for the internal
representation of data types. If a query returns two values, the internal representation
is <value1, value2>. This is encoded as a data stream for a faster transfer of data
between OGSA-DAI nodes.

, the UK
e-Science platform.

OGSA-DQP [12] is the Distributed Query Processing extension of OGSA-DAI,
which optimises the access to distributed OGSA-DAI data resources. We take
advantage of the WS-DAI used in OGSA-DAI/DQP indirect access by using its
parallelisation system. This query parallelism system, as it was previously stated, is
based in [16], which can hardly be done without a WS*/OGSA approach and its
indirect access functionality. We also benefit from the security and resource
management available in the WS-DAI specification plus the different set of OGSA-
DAI activities for transforming and delivery of data.

13 http://tomcat.apache.org/
14 http://www.globus.org/toolkit
15 http://www.omii.ac.uk/

3.3.2 SPARQL-DQP OGSA-DAI and OGSA-DQP implementation

From a high level point of view, SPARQL-DQP can be defined as an extension of
OGSA-DQP that considers an additional query language: SPARQL. The design of
SPARQL-DQP follows the idea of adding a new type of resource to the standard data
resources provided by OGSA-DAI (relational databases, XML databases and file
systems), and extending the parsers, planners, operators and optimizers that are
handled by OGSA-DQP in order to handle this new type of resource.

Therefore our first extension to OGSA-DAI consists in adding a new type of data
resource that accesses RDF datasets. This RDF data resource provides access to these
RDF stores that offer their data by means of SPARQL endpoints. This resource is
configured with the URL of the SPARQL endpoint to which the query is addressed,
together with other lifetime properties.

Queries are sent to this new type of RDF data resource by means of OGSA-DAI
activities. The implementation of the RDF data resource sends the query to the
corresponding SPARQL endpoint and waits for the results. These results can be
directly returned to the requester or kept at the server wrapped as a new data resource,
following direct and indirect access modes respectively. These results are provided as
RDF data streams, using the internal data representation used by OGSA-DAI, what
allows faster communication between nodes in the distributed settings.

Once it is possible to access RDF datasets using OGSA-DAI, it is also possible to
extend OGSA-DQP to accept, optimize and distribute SPARQL queries across
different data nodes. SPARQL-DQP extends OGSA-DQP with the new parsers, LQP
builders, operators and optimizers described in the previous section, so as to read the
query, create a basic query plan, optimize it, partition it and send it to the different
nodes in which the different parts of the query will be processed. The extension
follows the recommendations described in [7] and [9].

Once the query plan has been created, optimized and distributed across the nodes it
is time for executing it. From the original planning a set of OGSA-DAI workflows is
created. Each of these workflows represents a partition of the logical query plan
created and these workflows are connected through their inputs and outputs to
produce the result of the query. Once the workflow has been created the generated
remote requests and local sub-workflows are executed and the results collected and
returned by the activity.

4 Related Work

Several approaches to access distributed RDF datasets using SPARQL endpoints
have been described in the literature. Some of them use follow-up queries to the
different endpoints (e.g. in our example, we would first query Iproclass endpoint to
obtain the bacterium information, then we may let users filter these results, then each
of these results/URIs would be used in follow up queries to the proteins endpoint, the
results would be joined in the presentation layer, and so on), others are based on
querying a central collection of datasets where all the data is stored in a single

location16 [11], others use query mediation and federation systems (e.g. SemWIQ ,
DARQ [14], Networked Graphs [15]) and other more recent approaches follow an
automated link traversal approach over the Web of Linked Data (e.g. Hartig and
colleagues’ proposal [8]).

We will now describe briefly some of these approaches: SemWIQ, DARQ,
Networked Graphs and Hartig and colleagues’. We will not focus on those operating
over partial or complete stored copies of existing datasets, since our assumption is
that distributed datasets may change at their own pace and we are not interested in
devising synchronization mechanisms, caches, etc., even if a pure distributed
approach to querying will obviously have more performance constraints.

SemWIQ [11] is a mediator-wrapper based system, where heterogeneous data
sources (available as CSV files, RDF datasets or relational databases) are accessed by
a mediator through wrappers. Queries are expressed in SPARQL and consider OWL
as the vocabulary for the RDF data. SemWIQ uses the Jena’s SPARQL processor
ARQ to generate query plans and it applies its own optimizers. These optimizers
mainly consist in rules to move down filters or unary operators in the query plan,
together with join reordering based on the application of an iterative dynamic
programming algorithm. The system has a registry catalogue that indicates where the
sources to be queried are and the vocabulary to be used. Currently the system does not
handle SPARQL endpoints but this is being updated at the time of writing this paper.

DARQ [14] is a SPARQL query federation system, which also extends the Jena’s
SPARQL processor ARQ. This extension requires attaching a configuration file to the
SPARQL query, with information about the SPARQL endpoint, vocabulary and
statistics. DARQ applies logical and physical optimizations, focused on using rules
for rewriting the original query before query planning (so as to merge basic graph
patterns as soon as possible) and moving value constrains into subqueries to reduce
the size of intermediate results. Other important drawback of DARQ is that it can only
execute queries with bound predicates. Unfortunately DARQ is no longer maintained.

Networked Graphs [15] also follows a SPARQL query federation approach
(Distributed SPARQL17

Finally, Hartig and colleagues

), based on the creation of graphs for representing views,
content or transformations from other RDF graphs, and allowing the composition of
sets of graphs to be queried in an integrated manner. The implementation considers
optimizations such as the application of distributed semi-join optimization algorithms.

[8] propose a more novel model that tries to exploit
the navigational structure of the Web of Data, by incrementally executing queries
over it. They discover new URIs from the initial SPARQL query and populate a local
RDF repository, which is queried again for new answers to the initial query. Although
this approach looks promising, the optimizations that are being applied for the time
being are still naïve, and there are inherent limitations related to the fact that it is
focused on exploiting the navigational nature of the Web of Data.

The aforementioned systems are the most relevant in terms of distributed RDF
dataset querying. All of them apply some form of optimization, mainly based in join
reordering algorithms and push down filters (SemWIQ and DARQ also implement

16 http://lod.openlinksw.com/sparql
17http://www.uni-koblenz-

landau.de/koblenz/fb4/institute/IFI/AGStaab/Research/systeme/DistributedSPARQL

cost based optimizations). In the case of SemWIQ and Networked Graphs,
optimizations are inspired by existing work in the area of distributed query processing
(DQP) in relational databases, adapting them to RDF databases.

6 Conclusions and Future Work

We have presented a Distributed Query Processing (DQP) system, SPARQL-DQP,
which is able to process SPARQL-D queries across distributed RDF datasets. We
follow the approach of classical DQP and we base our solution on an existing
relational framework like OGSA-DAI and OGSA-DQP. This allows us to reuse SQL
optimizers already implemented in this framework, although we also create new ones
that are specific for the types of queries that are handled in SPARQL and that can be
attached to the optimization chain.

Besides, our choice of implementation also provides us with additional advantages
that we will be exploiting in the future. The use and extension of OGSA-DAI
provides us with the possibility of creating data workflows that make use of several
data resources available in heterogeneous formats (e.g., relational databases, XML
databases and RDF repositories). It is possible to create a workflow that access a SQL
database, use these results to merge them with a SPARQL query to a RDF repository
and send the results from this merge to another store or print them on the screen.
Since the results of queries to RDF resources are provided in a tuple-based format,
which is the basic data format handled in OGSA-DAI, it is also possible to integrate
these results easily with queries performed to relational or XML databases.

Our future work will be devoted to the extension of the current SPARQL-DQP
expressivity, so that it covers more aspects of the SPARQL query language (more
query types like ASK, CONSTRUCT and DESCRIBE, result modifiers and SPARQL
operators), and to the creation of additional optimizers specialized for the type of data
that we are handling, while trying to understand better which other SQL-related
optimizers we can apply in combination with those ones.

As it is stated in [4] and previously mentioned in the Preliminaries section, the
transformation of SPARQL query plans to SQL query plans has certain limitations.
The problems described with null/blank values, nested optionals and filters require a
more detailed study.

Finally, our approach would clearly benefit from the existence of statistics about
the RDF datasets to query, so that more optimized query plans can be created.
Systems like RDFStats [10] or examineRDF18

18 http://www.zaltys.net/examineRDF/

 which produce statistics about large
datasets should be used in our system. It is important to know how many specific
properties, classes or instances of a class an RDF repository contains. Statistics are
widely used in the database world to perform optimizations over the logical query
plans created due to the same reason.

7 Acknowledgments

This work has been performed in the context of the ADMIRE project (FP7 ICT-
215024). We would like to thank the OGSA-DAI team (Ally, Bartek, Amy, Tilaye,
Mario, Alastair, Mike and Elias) for the help provided during the system
implementation, and to Marcelo Arenas and Renzo Angles for their collaboration in
the understanding of the relationship between SPARQL and SQL. Finally we thank
Alexander de León for his support on the generation of the testbed for bio2rdf.org.

8 References

[1] Angles R, Gutiérrez C (2008) The Expressive Power of SPARQL. In Proc. of the
7th International Semantic Web Conference (ISWC 2008). LNCS 5318:114-129.

[2] Antonioletti M, Chue Hong NP, Hume AC, Jackson M, Karasavvas K, Krause A,
Schopf JM, Atkinson MP, Dobrzelecki B, Illingworth M, McDonnell N, Parsons
M, Theocharopoulos E (2007) OGSA-DAI 3.0 - The Whats and the Whys,
Proceedings of the UK e-Science All Hands Meeting 2007, pp. 158-165

[3] Antonioletti M, Krause A, Paton NW, Eisenberg A, Laws S, Malaika S, Melton J,
Pearson D. The WS-DAI family of specifications for web service data access and
integration, ACM SIGMOD Record 35(1), March 2006

[4] Cyganiak, R. (2005) A relational algebra for SPARQL. Technical Report. HP
Laboratories Bristol. HPL-2005-170

[5] Esteban-Gutiérrez M, Kojima I, Pahlevi SM, Corcho O, Gómez-Pérez A (2009)
Accessing RDF(S) data resources in service-based Grid infrastructures.
Concurrency and Computation: Practice and Experience 21(8):1029-1051

[6] Gray A J, Gray N, Ounis I (2009) Can RDB2RDF Tools Feasibly Expose Large
Science Archives for Data Integration? In Proceedings of the 6th European
Semantic Web Conference. LNCS 5554:491-505. Springer-Verlag.

[7] Haas LM, Freytag JC, Lohman GM, Pirahesh H (1989) Extensible Query
Processing in Starburst. SIGMOD Conference 1989:377-388

[8] Hartig O, Bizer C, Freytag JC (2009) Executing SPARQL Queries over the Web
of Linked Data. Proceedings of the 8th International Semantic Web Conference

[9] Kossmann D (2000) The state of the art in distributed query processing. ACM
Comput. Surv. 32(4):422-469.

[10] Langegger A, Wöß W (2009) RDFStats - An Extensible RDF Statistics Generator
and Library. DEXA 2009 Workshop on Web Semantics

[11] Langegger A, Wöß W, Blöchl M (2008) SemWIQ – Semantic Web Integrator
and Query Engine. In Lecture Notes in Informatics, International Applications of
Semantic Web Workshop (AST'08), Gesellschaft für Informatik, Bonn.

[12] Lynden S, Mukherjee A, Hume AC, Fernandes AAA, Paton NW, Sakellariou R,
Watson P (2009) The design and implementation of OGSA-DQP: A service-
based distributed query processor. Future Generation Computer Systems.

[13] Pérez, J., Arenas, M., and Gutierrez, C. 2009. Semantics and complexity of
SPARQL. ACM Trans. Database Syst. 34, 3 (Aug. 2009), 1-45

[14] Quilitz B, Leser U (2008) Querying distributed RDF data sources with SPARQL.
In: Proceedings of the 5th European Semantic Web Conference (ESWC2008).
LNCS 5021:524-538. Springer-Verlag.

[15] Schenk S, Staab S (2008) Networked graphs: a declarative mechanism for
SPARQL rules, SPARQL views and RDF data integration on the Web. In Proc.
of the International World Wide Web Conference (WWW2008), pp. 585–594

[16] Goetz Graefe, Encapsulation of parallelism in the Volcano query processing
system, Proceedings of the 1990 ACM SIGMOD international conference on
Management of data, p.102-111,

[17] S. Schenk, C. Saathoff, A. Baumesberger, F. Jochum, A. Kleinen, S. Staab, and
A. Scherp. Semaplorer - interactive semantic exploration of data and media based
on a federated cloud infrastructure. In Billion Triple Challenge at ISWC, 2008.

	1 Introduction
	2 Background: SPARQL and Relational Algebra
	2.1 SPARQL and Relational Algebra
	2.2 Distributed Query Processing
	3 A SQL-based distributed query processor for SPARQL
	3.1 SPARQL extension for distributed data querying
	3.2 SPARQL-D Distributed Query Processor
	SPARQL-D parser. It is the module in charge of creating an Abstract Syntax Tree (AST) from the initial SPARQL-D query.
	SPARQL-D Logical Query Plan (LQP) Builder. The SPARQL LQP builder receives the previous AST as an input and generates an operator representing the SPARQL-D LQP (as shown in Figure 2). A SPARQL-D logical query plan is a directed graph whose nodes are a mix of relational and SPARQL operators. The processing of the query is done in two stages: first we process the prologue section of the SPARQL query, obtaining the SPARQL prefixes and the variables to be retrieved from the RDF repository, as specified in the FROM list; then we process the WHERE clause, considering two major blocks: graph-matching triples and OPTIONAL clauses. Solution modifiers like DISTINCT are also processed here. However, in our current implementation we leave out FILTER clauses.
	SPARQL-D Query Optimizer. The SPARQL-D query optimizer receives the previous LQP and generates an optimised query plan. As we described in the background section, the majority of optimisers are based on relational database information, such as the schema of the underlying database or the estimated number of tuples that the query will retrieve. In RDF datasets the schema can be always considered conceptually the same (subject, predicate and object), although different implementations have varying schemas. Therefore, optimization-wise it is more important to know how many properties of a certain type exist between subjects and objects, or the number of instances of certain concepts. This helps determining the cost of a specific SPARQL query, which can be measured as the estimated number of RDF triples that will be retrieved from each of the RDF datasets to be accessed. Another consideration related to the number of triples retrieved from each RDF dataset is the cost of joining them. In this case it is possible to apply cost based algorithms and other SQL optimizations, since the operators are the same. Real or estimated cost plans that select the operators with the minimal cost will be applied.
	SPARQL-D Query Partitioner. The previous query plan is partitioned into subqueries addressed to the nodes where they will be executed. OGSA-DQP provides an algorithm in charge of partitioning the logical query plan according to the data nodes from which the data is retrieved. If a query plan contains a join or product of two data streams that are located on different data nodes, the partitioning algorithm detects this and transforms the LQP by inserting exchange operators that represent data transfers between two remote data nodes. The output from the partitioner is a set of partitions and the LQP where every operator is annotated with the partition to which it belongs. In our approach we have directly used the OGSA-DQP partitioner optimiser, since the LQP partitioning logic is the same in both situations.
	3.3 SPARQL-DQP implementation
	3.3.1 WS-based access to RDF repositories
	3.3.2 SPARQL-DQP OGSA-DAI and OGSA-DQP implementation

	4 Related Work
	6 Conclusions and Future Work
	7 Acknowledgments
	8 References

