26,290 research outputs found

    Extending the mutual information measure to rank inferred literature relationships

    Get PDF
    BACKGROUND: Within the peer-reviewed literature, associations between two things are not always recognized until commonalities between them become apparent. These commonalities can provide justification for the inference of a new relationship where none was previously known, and are the basis of most observation-based hypothesis formation. It has been shown that the crux of the problem is not finding inferable associations, which are extraordinarily abundant given the scale-free networks that arise from literature-based associations, but determining which ones are informative. The Mutual Information Measure (MIM) is a well-established method to measure how informative an association is, but is limited to direct (i.e. observable) associations. RESULTS: Herein, we attempt to extend the calculation of mutual information to indirect (i.e. inferable) associations by using the MIM of shared associations. Objects of general research interest (e.g. genes, diseases, phenotypes, drugs, ontology categories) found within MEDLINE are used to create a network of associations for evaluation. CONCLUSIONS: Mutual information calculations can be effectively extended into implied relationships and a significance cutoff estimated from analysis of random word networks. Of the models tested, the shared minimum MIM (MMIM) model is found to correlate best with the observed strength and frequency of known associations. Using three test cases, the MMIM method tends to rank more specific relationships higher than counting the number of shared relationships within a network

    Extending the mutual information measure to rank inferred literature relationships

    Get PDF
    BACKGROUND: Within the peer-reviewed literature, associations between two things are not always recognized until commonalities between them become apparent. These commonalities can provide justification for the inference of a new relationship where none was previously known, and are the basis of most observation-based hypothesis formation. It has been shown that the crux of the problem is not finding inferable associations, which are extraordinarily abundant given the scale-free networks that arise from literature-based associations, but determining which ones are informative. The Mutual Information Measure (MIM) is a well-established method to measure how informative an association is, but is limited to direct (i.e. observable) associations. RESULTS: Herein, we attempt to extend the calculation of mutual information to indirect (i.e. inferable) associations by using the MIM of shared associations. Objects of general research interest (e.g. genes, diseases, phenotypes, drugs, ontology categories) found within MEDLINE are used to create a network of associations for evaluation. CONCLUSIONS: Mutual information calculations can be effectively extended into implied relationships and a significance cutoff estimated from analysis of random word networks. Of the models tested, the shared minimum MIM (MMIM) model is found to correlate best with the observed strength and frequency of known associations. Using three test cases, the MMIM method tends to rank more specific relationships higher than counting the number of shared relationships within a network

    Modeling Adoption and Usage of Competing Products

    Full text link
    The emergence and wide-spread use of online social networks has led to a dramatic increase on the availability of social activity data. Importantly, this data can be exploited to investigate, at a microscopic level, some of the problems that have captured the attention of economists, marketers and sociologists for decades, such as, e.g., product adoption, usage and competition. In this paper, we propose a continuous-time probabilistic model, based on temporal point processes, for the adoption and frequency of use of competing products, where the frequency of use of one product can be modulated by those of others. This model allows us to efficiently simulate the adoption and recurrent usages of competing products, and generate traces in which we can easily recognize the effect of social influence, recency and competition. We then develop an inference method to efficiently fit the model parameters by solving a convex program. The problem decouples into a collection of smaller subproblems, thus scaling easily to networks with hundred of thousands of nodes. We validate our model over synthetic and real diffusion data gathered from Twitter, and show that the proposed model does not only provides a good fit to the data and more accurate predictions than alternatives but also provides interpretable model parameters, which allow us to gain insights into some of the factors driving product adoption and frequency of use

    Predicting gene ontology from a global meta-analysis of 1-color microarray experiments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Global meta-analysis (GMA) of microarray data to identify genes with highly similar co-expression profiles is emerging as an accurate method to predict gene function and phenotype, even in the absence of published data on the gene(s) being analyzed. With a third of human genes still uncharacterized, this approach is a promising way to direct experiments and rapidly understand the biological roles of genes. To predict function for genes of interest, GMA relies on a guilt-by-association approach to identify sets of genes with known functions that are consistently co-expressed with it across different experimental conditions, suggesting coordinated regulation for a specific biological purpose. Our goal here is to define how sample, dataset size and ranking parameters affect prediction performance.</p> <p>Results</p> <p>13,000 human 1-color microarrays were downloaded from GEO for GMA analysis. Prediction performance was benchmarked by calculating the distance within the Gene Ontology (GO) tree between predicted function and annotated function for sets of 100 randomly selected genes. We find the number of new predicted functions rises as more datasets are added, but begins to saturate at a sample size of approximately 2,000 experiments. For the gene set used to predict function, we find precision to be higher with smaller set sizes, yet with correspondingly poor recall and, as set size is increased, recall and F-measure also tend to increase but at the cost of precision.</p> <p>Conclusions</p> <p>Of the 20,813 genes expressed in 50 or more experiments, at least one predicted GO category was found for 72.5% of them. Of the 5,720 genes without GO annotation, 4,189 had at least one predicted ontology using top 40 co-expressed genes for prediction analysis. For the remaining 1,531 genes without GO predictions or annotations, ~17% (257 genes) had sufficient co-expression data yet no statistically significantly overrepresented ontologies, suggesting their regulation may be more complex.</p

    Extraction of Conditional Probabilities of the Relationships Between Drugs, Diseases, and Genes from PubMed Guided by Relationships in PharmGKB

    Get PDF
    Guided by curated associations between genes, treatments (i.e., drugs), and diseases in pharmGKB, we constructed n-way Bayesian networks based on conditional probability tables (cpt’s) extracted from co-occurrence statistics over the entire Pubmed corpus, producing a broad-coverage analysis of the relationships between these biological entities. The networks suggest hypotheses regarding drug mechanisms, treatment biomarkers, and/or potential markers of genetic disease. The cpt’s enable Trio, an inferential database, to query indirect (inferred) relationships via an SQL-like query language

    Literature Mining for the Discovery of Hidden Connections between Drugs, Genes and Diseases

    Get PDF
    The scientific literature represents a rich source for retrieval of knowledge on associations between biomedical concepts such as genes, diseases and cellular processes. A commonly used method to establish relationships between biomedical concepts from literature is co-occurrence. Apart from its use in knowledge retrieval, the co-occurrence method is also well-suited to discover new, hidden relationships between biomedical concepts following a simple ABC-principle, in which A and C have no direct relationship, but are connected via shared B-intermediates. In this paper we describe CoPub Discovery, a tool that mines the literature for new relationships between biomedical concepts. Statistical analysis using ROC curves showed that CoPub Discovery performed well over a wide range of settings and keyword thesauri. We subsequently used CoPub Discovery to search for new relationships between genes, drugs, pathways and diseases. Several of the newly found relationships were validated using independent literature sources. In addition, new predicted relationships between compounds and cell proliferation were validated and confirmed experimentally in an in vitro cell proliferation assay. The results show that CoPub Discovery is able to identify novel associations between genes, drugs, pathways and diseases that have a high probability of being biologically valid. This makes CoPub Discovery a useful tool to unravel the mechanisms behind disease, to find novel drug targets, or to find novel applications for existing drugs

    A Survey of Location Prediction on Twitter

    Full text link
    Locations, e.g., countries, states, cities, and point-of-interests, are central to news, emergency events, and people's daily lives. Automatic identification of locations associated with or mentioned in documents has been explored for decades. As one of the most popular online social network platforms, Twitter has attracted a large number of users who send millions of tweets on daily basis. Due to the world-wide coverage of its users and real-time freshness of tweets, location prediction on Twitter has gained significant attention in recent years. Research efforts are spent on dealing with new challenges and opportunities brought by the noisy, short, and context-rich nature of tweets. In this survey, we aim at offering an overall picture of location prediction on Twitter. Specifically, we concentrate on the prediction of user home locations, tweet locations, and mentioned locations. We first define the three tasks and review the evaluation metrics. By summarizing Twitter network, tweet content, and tweet context as potential inputs, we then structurally highlight how the problems depend on these inputs. Each dependency is illustrated by a comprehensive review of the corresponding strategies adopted in state-of-the-art approaches. In addition, we also briefly review two related problems, i.e., semantic location prediction and point-of-interest recommendation. Finally, we list future research directions.Comment: Accepted to TKDE. 30 pages, 1 figur

    A Simultaneous Unobserved Components Analysis of US Output and the Great Moderation

    Get PDF
    In an unobserved components framework of US output trend and cycle, this paper seeks to determine the causal interaction between permanent and transitory innovations. For the purpose of identification, strategies of augmenting the cyclical dynamics as well as allowing for shifts in volatility are proposed. In the early 1980s, substantial predominance of cycle shocks gives way to strong negative spillovers of trend impulses, consistent with real business cycle theories. The coincident reduction of macroeconomic volatility mainly traces back to pronounced dampening of transitory disturbances. This ascribes an important role to the mitigation of policy interventions in explaining the Great Moderation.Unobserved Components; Trend; Cycle; Identification; Great Moderation
    • …
    corecore