142 research outputs found

    Towards Next Generation Sequential and Parallel SAT Solvers

    Get PDF
    This thesis focuses on improving the SAT solving technology. The improvements focus on two major subjects: sequential SAT solving and parallel SAT solving. To better understand sequential SAT algorithms, the abstract reduction system Generic CDCL is introduced. With Generic CDCL, the soundness of solving techniques can be modeled. Next, the conflict driven clause learning algorithm is extended with the three techniques local look-ahead, local probing and all UIP learning that allow more global reasoning during search. These techniques improve the performance of the sequential SAT solver Riss. Then, the formula simplification techniques bounded variable addition, covered literal elimination and an advanced cardinality constraint extraction are introduced. By using these techniques, the reasoning of the overall SAT solving tool chain becomes stronger than plain resolution. When using these three techniques in the formula simplification tool Coprocessor before using Riss to solve a formula, the performance can be improved further. Due to the increasing number of cores in CPUs, the scalable parallel SAT solving approach iterative partitioning has been implemented in Pcasso for the multi-core architecture. Related work on parallel SAT solving has been studied to extract main ideas that can improve Pcasso. Besides parallel formula simplification with bounded variable elimination, the major extension is the extended clause sharing level based clause tagging, which builds the basis for conflict driven node killing. The latter allows to better identify unsatisfiable search space partitions. Another improvement is to combine scattering and look-ahead as a superior search space partitioning function. In combination with Coprocessor, the introduced extensions increase the performance of the parallel solver Pcasso. The implemented system turns out to be scalable for the multi-core architecture. Hence iterative partitioning is interesting for future parallel SAT solvers. The implemented solvers participated in international SAT competitions. In 2013 and 2014 Pcasso showed a good performance. Riss in combination with Copro- cessor won several first, second and third prices, including two Kurt-Gödel-Medals. Hence, the introduced algorithms improved modern SAT solving technology

    Boosting local search thanks to {CDCL}

    Get PDF
    International audienceIn this paper, a novel hybrid and complete approach for propositional satisfiability, called SAT HYS (Sat Hybrid Solver), is introduced. It efficiently combines the strength of both local search and CDCL based SAT solvers. Considering the consistent partial assignment under construction by the CDCL SAT solver, local search is used to extend it to a model of the Boolean formula, while the CDCL component is used by the local search one as a strategy to escape from a local minimum. Additionally, both solvers heavily cooperate thanks to relevant information gathered during search. Experimentations on SAT instances taken from the last competitions demonstrate the efficiency and the robustness of our hybrid solver with respect to the state-of-the-art CDCL based, local search and hybrid SAT solvers

    Parallelizing a SAT-Based Product Configurator

    Get PDF
    This paper presents how state-of-the-art parallel algorithms designed to solve the Satisfiability (SAT) problem can be applied in the domain of product configuration. During an interactive configuration process, a user selects features step-by-step to find a suitable configuration that fulfills his desires and the set of product constraints. A configuration system can be used to guide the user through the process by validating the selections and providing feedback. Each validation of a user selection is formulated as a SAT problem. Furthermore, an optimization problem is identified to find solutions with the minimum amount of changes compared to the previous configuration. Another additional constraint is deterministic computation, which is not trivial to achieve in well performing parallel SAT solvers. In the paper we propose five new deterministic parallel algorithms and experimentally compare them. Experiments show that reasonable speedups are achieved by using multiple threads over the sequential counterpart

    Extending SAT solver with parity constraints

    Get PDF
    Current methods for solving Boolean satisfiability problem (SAT) are scalable enough to solve discrete nonlinear problems involving hundreds of thousands of variables. However, modern SAT solvers scale poorly with problems involving parity constraints (linear equations modulo 2). Gaussian elimination can be used to solve a system of linear equation effectively but it cannot be applied as such when the problem description also contains nonlinear constraints. A SAT solver typically reads the problem description in conjunctive normal form (CNF). Representing parity constraints in CNF results in an inefficient encoding which partly makes solving the problem harder. Also, the deduction methods used in SAT solvers are not efficient when solving problems involving parity constraints. This report develops an efficient xor-reasoning module for deciding the satisfiability of a conjunction of parity constraints and studies alternative ways to integrate the xor-reasoning module into a modern conflict-driven clause learning SAT solver. The novelty of the approach is the combination of conflict-driven clause learning techniques (CDCL) with equivalence reasoning enhancing deduction capabilities of CDCL SAT solvers beyond unit propagation on the CNF formula. The presented proof system and the abstract model for computing clausal explanations for inconsistent valuations of variables allow for different possible implementations. Key design principles along with alternative ways to compute clausal explanations and to integrate the xor-reasoning module into a SAT solver are presented, analyzed, and compared. We have integrated the xor-reasoning module into a state-of-the-art CDCL SAT solver, minisat. The applicability of the hybrid approach is evaluated experimentally and compared with a number of modern SAT solvers on three challenging benchmarks: randomly generated regular linear problems, a known keystream attack on the stream cipher Trivium, and a known plaintext attack on the block cipher DES. The results are promising: the number of heuristics decisions needed typically decreases without causing unbearable computational overhead. Larger problem instances may even be solved faster by minisat with the xor-reasoning module than by the unmodified version
    • …
    corecore