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ABSTRACT

SAT Modulo Theories (SMT) is the problem of determining
the satisfiability of a formula in which constraints, drawn
from a given constraint theory T , are composed with logical
connectives. The DPLL(T ) approach to SMT has risen to
prominence as a technique for solving these quantifier-free
problems. The key idea in DPLL(T ) is to closely couple unit
propagation in the propositional part of the problem with
theory propagation in the constraint component. In this pa-
per it is demonstrated how reification provides a natural way
for orchestrating this in the setting of logic programming.
This allows an elegant implementation of DPLL(T ) solvers
in Prolog. The work is motivated by a problem in reverse en-
gineering, that of type recovery from binaries. The solution
to this problem requires an SMT solver where the theory
is that of rational-tree constraints, a theory not supported
in off-the-shelf SMT solvers, but realised as unification in
many Prolog systems. The solver is benchmarked against a
number of type recovery problems, and compared against a
lazy-basic SMT solver built on PicoSAT.

Categories and Subject Descriptors

[Software notations and tools]: Constraint and logic lan-
guages; [Software and application security]: Software
reverse engineering; [Semantics and reasoning]: Pro-
gram analysis

General Terms

Theory of Computation, Software and its Engineering

Keywords

SAT solving, reverse engineering

1. INTRODUCTION
DPLL-based SAT solvers have advanced to the point where

they can rapidly decide the satisfiability of structured prob-
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lems that involve thousands of variables. SAT Modulo Theo-
ries (SMT) seeks to extend these ideas beyond propositional
formulae to formulae that are constructed from logical con-
nectives that combine constraints drawn from a given under-
lying theory. This section introduces the motivating prob-
lem of type recovery and explains why it leads to work on
theory propagation in a Prolog SMT solver.

1.1 Type recovery with SMT
The current work is motived by reverse engineering and

the problem of type recovery from binaries. Reversing exe-
cutable code is of increasing relevance for a range of appli-
cations:

• Exposing flaws and vulnerabilities in commercial soft-
ware, especially prior to deployment in government or
industry [9, 13];

• Reuse of legacy software without source code for guar-
anteed compliance with hardware IO and/or timing
behaviour, for example, for hardware drivers [7] or con-
trol systems [4];

• Understanding the operation of, and threat posed by,
viruses and other malicious code by anti-virus compa-
nies [40].

An important problem in reverse engineering is that of type
recovery [35]. A fragment of binary code will almost cer-
tainly have multiple source code equivalents, will contain a
variety of complex addressing schemes, and during compila-
tion will have lost most, if not all, of the type information
explicit in the original source code. Additionally, container-
like entities, analogous to high level source code variables
and objects, cannot be readily extracted from binary code.
The recovery of variables and their types is an essential com-
ponent of reverse engineering, which makes understanding
the semantics of the program considerably easier.

This paper observes that type recovery can be formulated
as an SMT problem over rational-trees, a theory that in the
context of type checking is referred to as circular unification
[31]. Circular unification allows recursive types to be dis-
covered in which a type variable can be unified with a term
containing it. The use of rational-trees for type inference
is not a new idea [31], but its application to the recovery
recursive types from an executable is far from straightfor-
ward because each instruction can be assigned many differ-
ent types. Many SMT solvers include the theory of equality
logic over uninterpreted functors [24, 37] which is strictly
weaker than circular unification and cannot capture recur-
sive types. Unfortunately the theory of rational-trees is not



currently supported in any off-the-shelf SMT solver, hence
this investigation into how to prototype a solver.

1.2 SMT solving with lazy-basic
One straightforward approach to SMT solving is to apply

the so-called lazy-basic technique which decouples SAT solv-
ing from theory solving. To illustrate, consider the SMT for-
mula f = (x ≤ −1∨−x ≤ −1)∧(y ≤ −1∨−y ≤ −1) and the
SAT formula g = (p∨q)∧(r∨s) that corresponds to its propo-
sitional skeleton. In the skeleton, the propositional vari-
ables p, q, r and s, respectively, indicate whether the theory
constraints (x ≤ −1), (−x ≤ −1), (y ≤ −1) and (−y ≤ −1)
hold. In this approach, a model is found for (p∨ q)∧ (r∨ s),
for instance, {p 7→ true, q 7→ true, r 7→ true, s 7→ false}.
Then, from the model, a conjunction of theory constraints
(x ≤ −1) ∧ (−x ≤ −1) ∧ (y ≤ −1) ∧ ¬(−y ≤ −1) is con-
structed, with the polarity of the constraints reflecting the
truth assignment. This conjunction is then tested for satis-
fiability in the theory component. In this case it is unsat-
isfiable, which triggers a diagnostic stage. This amounts to
finding a conjunct, in this case (x ≤ −1) ∧ (−x ≤ −1), which
is also unsatisfiable, that identifies a source of the inconsis-
tency. From this conjunct, a blocking clause (¬p ∨ ¬q) is
added to g to give g′ which ensures that conflict between the
theory constraints is never encountered again. Then, solving
the augmented propositional formula g′ might, for example,
yield the model {p 7→ false, q 7→ true, r 7→ true, s 7→ true},
from which a second clause (¬r ∨ ¬s) is added to g′. Any
model subsequently found, for instance, {p 7→ false, q 7→
true, r 7→ true, s 7→ false}, will give a conjunction that
is satisfiable in the theory component, thereby solving the
SMT problem.

The lazy-basic approach is particularly attractive when
combining an existing SAT solver with an existing decision
procedure, for instance, a solver provided by a constraint
library. By using a foreign language interface a SAT solver
can be invoked from Prolog [8] and a constraint library can
be used to check satisfiability of the conjunction of theory
constraints. A layer of code can then be added to diagnose
the source of any inconsistency. This provides a simple way
to construct an SMT solver that compares very favourably
with the coding effort required to integrate a new theory
into an existing open source SMT solver. The latter is nor-
mally a major undertaking and often can only be achieved
in conjunction with the expert who is responsible for main-
taining the solver. Furthermore, few open source solvers are
actively maintained. Thus, although one might expect im-
plementing a new theory to be merely an engineering task,
it is actually far from straightforward.

Prolog has rich support for implementing decision pro-
cedures for theories, for instance, attributed variables [14,
15]. (Attributed variables provide an interface between Pro-
log and a constraint solver by permitting logical variables
to be associated with state, for instance, the range of val-
ues that a variable can possibly assume.) Several theories
come prepackaged with many Prolog systems. This raises
the questions of how to best integrate a theory solver with
a SAT solver, and how powerful an SMT solver written in a
declarative language can actually be. This motivates further
study of the coupling between the theory and the proposi-
tional component of the SAT solver which goes beyond the
lazy-basic approach, to the roots of logic programming itself.

The equation Algorithm = Logic + Control [26] expresses

the idea that in logic programming algorithm design can be
decoupled into two separate steps: specifying the logic of the
problem, classically as Horn clauses, and orchestrating con-
trol of the sub-goals. The problem of satisfying a SAT for-
mula is conceptually one of synchronising activity between a
collection of processes where each process checks the satisfi-
ability of a single clause. Therefore it is perhaps no surprise
that control primitives such as delay declarations [36] can
be used to succinctly specify the watched literal technique
[34]. In this technique, a process is set up to monitor two
variables of each clause. To illustrate, consider the clause
(x ∨ y ∨ ¬z). The process for this clause will suspend on
two of its variables, say x and y, until one of them is bound
to a truth-value. Suppose x is bound. If x is bound to true

then the clause is satisfied, and the process terminates; if x

is bound to false, then the process suspends until either y

or z is bound. Suppose z is subsequently bound, either by
another process or by labelling. If z is true then y is bound
to true since otherwise the clause is not satisfied; if z is false

then the clause is satisfied and the process closes down with-
out inferring any value for y. Note that in these steps the
process only waits on two variables at any one time. Unit
propagation is at the heart of SAT solving and when imple-
mented by watched literals combined with backtracking, the
resulting solver is efficient enough to solve some non-trivial
propositional formulae [16, 17, 19]. In addition to issues of
performance the correctness of this approach has been exam-
ined [12]. To summarise, Prolog not only provides constraint
libraries, but also the facility to implement a succinct SAT
solver [19]. The resulting solver can be regarded as a glass
box, as opposed to a black one, which allows a solver to be
extended to support, among other things, new theories and
theory propagation.

1.3 SMT solving with theory propagation
The lazy-basic approach to SMT alternates between SAT

solving and checking whether a conjunction of theory con-
straints is satisfiable which, though having conceptual and
implementation advantages, is potentially inefficient. With
a glass box solver it is possible to refine this interaction
by applying theory propagation. In theory propagation, the
SAT solving and theory checking are interleaved. The solver
not only checks the satisfiability of a conjunction of the-
ory constraints, but decides whether a conjunction of some
constraints entails or disentails others. Returning to the
earlier example, observe that (x ≤ −1) ∧ (−x ≤ −1) is un-
satisfiable, hence for the partial assignment {p 7→ true} it
follows that (x ≤ −1) holds in the theory component, there-
fore (−x ≤ −1) is disentailed and the assignment can be
extended to {p 7→ true, q 7→ false}. Theory propagation
is essentially the coordination problem of scheduling unit
propagation with the simultaneous checking of whether the-
ory constraints are entailed or disentailed. This paper shows
how this synchronisation can be realised straightforwardly in
Prolog, again using control primitives. The resulting solver
is capable of solving some non-trivial problems and outper-
forms an SMT solver constructed from PicoSAT [3] and a
Prolog coded theory solver using the lazy-basic approach.

1.4 Contributions
This paper shows how to integrate theory propagation and

unit propagation in Prolog using reification and thereby re-
alise an SMT solver in Prolog which can solve type recovery



problems. Reification is a constraint handling mechanism
in which a constraint is augmented with a boolean variable
that indicates whether the constraint is entailed (implied
by the store) or disentailed (is inconsistent with the store).
Building on this mechanism, the paper makes the following
contributions:

• A framework for using reification as a mechanism to re-
alise theory propagation is presented. The idea is sim-
ple in hindsight and can be realised straightforwardly
in Prolog. The simplicity of the code contrasts with
the investment required to integrate a theory into an
existing open source SMT solver.

• This framework is realised for two theories. The first
theory is that of rational-trees [32], where the control
provided by block and when-declarations can realise
reification. Efficient rational-tree unification [21] is in-
tegral to many Prolog systems, hence the theory part
of the solver is provided essentially for free. The sec-
ond theory is that of quantifier-free linear real arith-
metic, where CLP(R) provides a decision procedure
for the theory part of the solver; reification is achieved
using a combination of delay declarations and entail-
ment checking.

• Theory propagation for rational-trees provides the key
motivation for the paper. Standard SMT packages do
not include the theory of rational-trees, but SMT prob-
lems over rational-trees arise in reverse engineering,
in particular type recovery. It is demonstrated that
an elegant Prolog-based solver is capable of recovering
types for a range of binaries. It is also shown how the
failed literal technique [29] is simply realised in Pro-
log to optimise the search. The solver is benchmarked
on these type recovery problems and also compared
against an SMT solver constructed from PicoSAT us-
ing the lazy-basic approach.

• Cutting through all of these contributions, the paper
also argues that SMT has a role in type recovery, in-
deed an SMT formula is a natural medium for express-
ing the disjunctive nature of the types that arise in
reverse engineering.

2. MOTIVATION:

APPLICATION IN TYPE RECOVERY
During compilation code is translated to low level oper-

ations on registers and memory addresses, and all type in-
formation is lost. When source code is not available, type
information is of great use to reverse engineers in determin-
ing the operation of a program, and tooling for recovery
of high level types is of significant utility. The problem is
hard, since the typing of most assembly instructions can be
interpreted in multiple ways, and progress on the problem
has been comparatively slow [2, 6, 28, 30, 35, 39], stopping
short of recovering recursive types.

Consider the problem of inferring types for the registers
in the following x86 assembly code function for summing the
elements in a linked list of type struct A {int value; struct
A ∗next}. Note this function is based on Mycroft’s Register
Transfer Language (RTL) example [35].

1 mov edx , [ esp+0x4 ]
2 mov eax , 0x0
3 loop : test edx , edx
4 jz end
5 add eax , [ edx ]
6 mov edx , [ edx+0x4 ]
7 jmp loop
8 end : ret

The function is simple: first edx is set to point at the first
list item (from the argument carried at [esp + 0x4]) and
eax, the accumulator, is initialised to 0 (lines 1 and 2). In
the loop body the value of the item is added to eax (line
5) and edx is set to point to the next item by dereferencing
the next field from [edx + 0x4] (line 6). This repeats until
a NULL pointer is found by the test on line 3, whereupon
execution jumps to end and the function returns.

Before typing the function, indirect addressing is simpli-
fied by introducing new operations on fresh intermediate
variables. This reduction ensures that indirect addressing
only ever occurs on mov instructions, thus simplifies the
constraints on all other instructions. Registers are then bro-
ken into live ranges by transforming into Single Static As-
signment (SSA) form. This gives each variable a new index
whenever it is written to, and joins variables at control flow
merge points with φ functions [10]. The listing below shows
the result of applying these transformations:

1 mov A1 , esp0

2 add A2 , 0x4
3 mov edx1 , [A2 ]
4 mov eax1 , 0x0
5 loop : mov (eax2, edx2) ,

φ((eax1, edx1), (eax3, edx3))

6 test edx2 , edx2

7 jz end
8 mov B1 , [ edx2 ]
9 add eax3 , B1

10 mov C1 , edx2

11 add C2 , 0x4
12 mov edx3 , [C2 ]
13 jmp loop
14 end : ret

Rational-tree expressions [20], constraints describing unifi-
cation of terms and type variables, are now derived for each
instruction. These are similar to the disjunctive constraints
described by [35] for RTL, but include a memory model
that tracks pointer manipulation by representing memory
in ‘pointed to’ locations as a 3-tuple. The type of the spe-
cific location being pointed to is the middle element, the
first element is a list of types for the bytes preceding the
location, and the last the types for the bytes succeeding.
The lists are open, as indicated by the ellipsis (. . . ), since
the areas of memory extending to either side are unknown.
For example, consider add on line 11. This gives rise to two
constraints, one for each possible meaning of the code:

(TC2
= basic( , int, 4) ∧ TC1

= TC2
)

∨

„

TC1
= ptr(〈[... ], β0, [β1, β2, β3, β4, ...]〉) ∧

TC2
= ptr(〈[... , β0, β1, β2, β3], β4, [...]〉)

«

The first clause of the disjunction states that C2 is of basic
type, specifically a four byte integer (derived from the reg-
ister size) with unknown signedness (as indicated by a sign
parameter that is an uninstantiated variable), the result of



adding 4 to C1, which has the same type. This is disjoint
from the second clause, that asserts that C1 is a pointer to
an unknown type β0, whose address is incremented by 4 by
the add operation so that its new instance, C2, points to
another location of type β4. Observe how TC1

prescribes
types of objects that follow the object of type β0 in memory
whereas TC2

details types of objects that precede the object
of type β4. If further information is later added to TC2

due
to unification it will propagate into TC1

, and vice-versa, thus
aggregate types analogous to C structs are derived.

The table below shows all constraints generated for the
program. Note that some type variables have been relaxed
to , indicating an uninstantiated variable, so as to sim-
plify the presentation of the types. The complete problem
is described by the conjunction of these constraints. Type
recovery then amounts to solving the constraints such that
the type equations remain consistent, whilst also ensuring
that the propositional skeleton of the problem is satisfied.

Line Generated Constraints
1 TA1

= Tesp0

2 (TA2
= basic( , int, 4) ∧ TA1

= TA2
) ∨

„

TA1
= ptr(〈[... ], α0, [ , , , α1, ...]〉) ∧

TA2
= ptr(〈[... , α0, , , ], α1, [...]〉)

«

3 TA2
= ptr(〈[...], Tedx1

, [ , , , ...]〉)
4 Teax1

= basic( , int, 4) ∨ Teax1
= ptr(〈[...], α2, [...]〉)

5 (Teax2
= Teax1

∧ Tedx2
= Tedx1

) ∨
(Teax2

= Teax3
∧ Tedx2

= Tedx3
)

8 Tedx2
= ptr(〈[...], TB1

, [...]〉)

9

„

Teax3
= basic( ,int,4) ∧

Teax2
= Teax3

∧ TB1
= Teax3

«

∨
0

@

Teax3
= ptr(〈[...], α3, [...]〉) ∧

Teax2
= ptr(〈[...], α4, [...]〉) ∧

TB1
= basic( ,int,4))

1

A∨

0

@

Teax3
= ptr(〈[...], α5, [...]〉) ∧

Teax2
= basic( ,int,4) ∧

TB1
= ptr(〈[...], α6, [...]〉)

1

A

10 Tedx2
= TC1

11 (TC2
= basic( , int, 4) ∧ TC1

= TC2
) ∨

„

TC1
= ptr(〈[... ], α7, [ , , , α8, ...]〉) ∧

TC2
= ptr(〈[... , α7, , , ], α8, [...]〉)

«

12 TC2
= ptr(〈[...], Tedx3

, [ , , , ...]〉)

For the register corresponding to struct A, constraint solv-
ing will derive a recursive type:

Tedx1
= ptr(〈[...], basic( , int, 4), [ , , , Tedx1

, , , , ...]〉)

which requires rational-tree unification.
Observe that there may be multiple solutions; in fact

the problem outlined above has two solutions, which dif-
fer in typing eax1, eax2 and eax3. The first correctly in-
fers that they are (like B1) integers of size 4 bytes, while
the second defines them as pointers to an unknown type,
ptr(〈[...], α5, [...]〉). Both solutions have the following typ-
ings in common:

TB1
= basic( ,int,4)

Tedx1
= Tedx2

= Tedx3
= TC1

=

ptr(〈[...], basic( , int, 4), [ , , , Tedx1
, , , , ...]〉)

TC2
= ptr(〈[..., basic( ,int,4), , , ], Tedx1

, [ , , , ...]〉)

TA2
= ptr(〈[..., α0, , , ], Tedx1

, [ , , , ...]〉)

TA1
= Tesp0

= ptr(〈[...], α0, [ , , , Tedx1
, , , , ...]〉)

The second solution is equivalent to typing eax as void∗ and
performing addition using pointer arithmetic. In the wider
context of a program, this solution is removed by constraints
derived from the main() function.

3. SMT AND THEORY PROPAGATION

3.1 SAT solving and unit propagation
The Boolean satisfiability problem (SAT) is the problem

of determining whether for a given Boolean formula, there
is a truth assignment to the variables of the formula un-
der which the formula evaluates to true. Most recent SAT
solvers are based on the Davis, Putnam, Logemann, Love-
land (DPLL) algorithm [11] with watched literals [34]; this
includes the solver in [18] that this paper extends.

At the heart of the DPLL approach is unit propagation.
Let f be a propositional formula in CNF over a set of propo-
sitional variables X. Let θ : X → {true, false} be a partial
(truth) function. Unit propagation examines each clause
in f to deduce a truth assignment θ′ that extends θ and
necessarily holds for f to be satisfiable. For example, sup-
pose f = (¬x ∨ z) ∧ (u ∨ ¬v ∨ w) ∧ (¬w ∨ y ∨ ¬z) so
that X = {u, v, w, x, y, z} and θ is the partial function θ =
{x 7→ true, y 7→ false}. In this instance for the clause
(¬x ∨ z) to be satisfiable, hence f as a whole, it is nec-
essary that z 7→ true. Moreover, for (¬w ∨ y ∨ ¬z) to be
satisfiable, it follows that w 7→ false. The satisfiability of
(u ∨ ¬v ∨ w) depends on two unknowns, u and v, hence no
further information can be deduced from this clause. There-
fore θ′ = θ ∪ {w 7→ false, z 7→ true}.

Searching for a satisfying assignment proceeds as follows:
starting from an empty truth function θ, an unassigned vari-
able occurring in f , x, is selected and x 7→ true is added to
θ. Unit propagation extends θ until either no further prop-
agation is possible or a contradiction is established. In the
first case, if all clauses are satisfied then f is satisfied, else
another unassigned variable is selected. In the second case,
x 7→ false is added to θ; if this fails search backtracks to
a previous assignment. Further details can be found in [18,
44].

3.2 SMT solving, the lazy-basic approach
SAT modulo theories (SMT) gives a general scheme for

determining the satisfiability of problems consisting of a for-
mula over atomic constraints in some theory T , whose set
of literals is denoted Σ [38, 43]. The scheme separates the
propositional skeleton – the logical structure of combina-
tions of theory literals – and the meaning of the literals. A
bijective encoder mapping e : Σ → X associates each lit-
eral with a unique propositional variable. Then the encoder
mapping e is lifted to theory formulae, using e(φ) to denote
the propositional skeleton of a theory formula φ.

Consider the theory of quantifier-free linear real arith-
metic where the constants are numbers, the functors are
interpreted as addition and subtraction, and the predicates
include equality, disequality and both strict and non-strict
inequalities. The problem of checking the entailment (a <

b)∧ (a = 0∨ a = 1)∧ (b = 0∨ b = 1) |= (a + b = 1) amounts
to determining that the theory formula φ = (a < b) ∧ (a =
0∨a = 1) ∧ (b = 0∨b = 1)∧¬(a+b = 1) is not satisfiable. For
this problem, the set of literals is Σ = {a < b, ... , a+ b = 1}.



Suppose, in addition, that the encoder mapping is defined:

e(a < b)=x, e(a = 0)=y, e(a = 1)=z,

e(b = 0)=u, e(b = 1)=v, e(a + b = 1)=w

Then the propositional skeleton of φ, given e, is e(φ) =
x ∧ (y ∨ z) ∧ (u ∨ v) ∧ ¬w. A SAT solver gives a truth as-
signment θ satisfying the propositional skeleton. From this,
a conjunction of theory literals, T̂ hΣ(θ, e) is constructed.
Where ℓ ∈ Σ, a conjunct is the literal ℓ if θ(e(ℓ)) = true and
¬ℓ if θ(e(ℓ)) = false. The subscript will be omitted when
Σ refers to all literals in a problem. This problem is passed
to a solver for the theory that can determine satisfiability of
conjunctions of constraints. Either satisfiability or unsatis-
fiability is determined, in the latter case the SAT solver is
asked for further satisfying truth assignments. This formu-
lation is known as the lazy-basic approach and details on its
Prolog implementation can be found in [19].

3.3 SMT, the DPLL(T ) approach
The approach detailed in the previous section finds com-

plete satisfying assignments to the SAT problem given by
the propositional skeleton before computing the satisfiabil-
ity of the theory problem T̂ h(θ, e). Another approach is
to couple the SAT problem and the theory problem more
tightly by determining constraints entailed by the theory
and propagating the bindings back into the SAT problem.
This is known as theory propagation and is encapsulated in
the DPLL(T ) approach. Figure 1 gives a recursive formu-
lation of DPLL(T ) deriving of Algorithm 11.2.3 from [27].
A more general formulation of DPLL(T ) might replace lines
(11)-(15) with a conflict analysis step that would encapsu-
late not just the approach presented, but also backjumping
and clause learning heuristics. However, the key component
of DPLL(T ) is the interleaving of unit and theory propaga-
tion and the choice of conflict analysis is an orthogonal issue.
The instantiation to chronological backtracking presented in
Figure 1 was chosen to match the implementation work.

The first argument to the function DPLL(T ) is a Boolean
formula f , its second a partial truth assignment, θ, and its
third an encoder mapping, e. In the initial call, f is the
propositional skeleton of input the problem, e(φ), and θ is
empty. DPLL(T ) returns a truth assignment if the problem
is satisfiable and constant ⊥ otherwise.

The call to propagate is the key operation. The func-
tion returns a pair consisting of a truth assignment and res

taking value ⊤ or ⊥ indicating the satisfiability of f and
T̂ h(θ, e). The fourth argument to propagate is a set of the-
ory literals, D, and the function begins by extending the
truth assignment by assigning propositional variables iden-
tified by the encoder mapping. Next, unit propagation as
described in section 3.1 is applied. The deduction function
then infers those literals that hold as a consequence of the
extended truth assignment. The function returns a pair con-
sisting of a set of theory literals entailed by T̂ h(θ2, e) and a

flag res whose value is ⊥ if T̂ h(θ2, e) or θ2 is inconsistent and
⊤ otherwise. The function propagate calls itself recursively
until no further propagation is possible. After deduction re-
turns, if f is not yet satisfied then a further truth assignment
is made and DPLL(T ) calls itself recursively.

The key difference between the lazy-basic approach and
the DPLL(T ) approach is that where the lazy-basic ap-
proach computes a complete satisfying assignment to the
variables of the propositional skeleton before investigating

the satisfiability of the corresponding theory formula, the
DPLL(T ) approach incrementally investigates the consis-
tency of the posted constraints as propositional variables
are assigned. Further, it identifies literals, ℓ, such that
T̂ h(θ, e) |= ℓ, allowing e(ℓ) to be assigned during propaga-
tion. It is the interplay between propositional satisfiability,
posting constraints and the consistency of the store T̂ h(θ, e)
that is at the heart of this investigation.

4. PROPAGATION AND REIFICATION
This section provides a framework for incorporating the-

ory propagation into the propagation framework of the SAT
solver from [19]. The approach is based on reifying theory
literals with logical variables. As will be illustrated in sub-
sequent sections, this allows the use of the control provided
by delay declarations to realise theory propagation. The in-
tegration is almost seamless since the base SAT solver is also
realised using logical variables and by exploiting the control
provided by delay declarations.

4.1 Theory propagation
There are three major steps in setting up a DPLL(T )

solver for some problem φ: setting up the encoder map e,
linking each theory literal in a problem with a logical vari-
able; posting theory propagators (adding constraints) that
reify the theory literals with the logical variables provided
by e; posting the SAT problem defined by the propositional
skeleton e(φ), then solving this problem. The code in Fig-
ure 2 describes the high level call to the solver.

Set up.
Where Prob is an SMT formula over some theory, let

lit(Prob) be the set of literals occurring in Prob. Theo-

ryLiteral is a list of pairs ℓ − e(ℓ) (or rather, ℓ ↔ e(ℓ)),
where ℓ ∈ lit(Prob), that defines the encoder mapping e.
Skeleton represents the propositional skeleton of the prob-
lem, e(Prob). Vars represents the set of variables e(ℓ), where
ℓ ∈ lit(Prob). The role of the predicate setup(+,-,-,-) is,
given Prob, to instantiate the remaining variables.

Theory propagators.
The role of post_theory is to set up predicates to reify

each theory literal. The control on these predicates is key;
the predicates need to be blocked until either e(ℓ) is assigned,
or the literal (or its negation) is entailed by the constraint

store T̂ h(θ, e). That is, the predicate for ℓ − e(ℓ) will prop-
agate in one of four ways:

• If T̂ h(θ, e) |= ℓ then e(ℓ) 7→ true

• If T̂ h(θ, e) |= ¬ℓ then e(ℓ) 7→ false

• If e(ℓ) = true then the store is updated to T̂ h(θ ∪
{e(ℓ) 7→ true}, e)

• If e(ℓ) = false then the store is updated to T̂ h(θ ∪
{e(ℓ) 7→ false}, e)

Boolean propagators.
The role of post_boolean is to set up propagators for the

SAT part of the problem e(Prob). This is a call to prob-

lem_setup as described in [19]. Search is then driven by
assignments to the variables using elim_vars.



(1) function DPLL(T )(f : CNF formula, θ : truth assignment, e : Σ → X)
(2) begin
(3) (θ3, res) := propagate(f , θ, e, ∅);
(4) if (is-satisfied(f , θ3)) then
(5) return θ3;
(6) else if (res = ⊥) then
(7) return ⊥;
(8) else
(9) x := choose-free-variable(f , θ3);
(10) (θ4, res) := DPLL(T )(f , θ3 ∪ {x 7→ true}, e);
(11) if (res = ⊤) then
(12) return θ4;
(13) else
(14) return DPLL(T )(f , θ3 ∪ {x 7→ false}, e);
(15) endif
(16) endif
(17) end

(1) function propagate(f : CNF formula, θ : truth assignment, e : Σ → X, D : set of theory literals)
(2) begin
(3) θ1 := θ ∪ {e(ℓ) 7→ true | ℓ ∈ D ∩ Σ} ∪ {e(ℓ) 7→ false | ¬ℓ ∈ D ∧ ℓ ∈ Σ};
(4) θ2 := θ1∪ unit-propagation(f ,θ1);

(5) 〈D, res〉 := deduction(T̂ h(θ2, e));
(6) if (D = ∅ ∨ res = ⊥)
(7) return (θ2, res);
(8) else
(9) return propagate(f , θ2, e, D);
(10) endif
(11) end

Figure 1: Recursive formulation of the DPLL(T ) algorithm

dpll_t(Prob):-

setup(Prob, TheoryLiterals, Skeleton, Vars),

post_theory(TheoryLiterals),

post_boolean(Skeleton),

elim_var(Vars).

Figure 2: Interface to the DPLL(T ) solver

Implementing the interface provided by predicates setup

and post_theory, together with the SAT solver from [19] re-
sults in a DPLL(T ) SMT solver. Note that the propagators
posted for the theory and Boolean components are intended
to capture the spirit of the function propagate from Figure 1.
Indeed, the integration between theory and Boolean propa-
gation is even tighter than the algorithm indicates. Rather
than performing unit propagation to completion, then per-
forming theory propagation, then repeating, here the assign-
ment of a Boolean variable is immediately communicated to
the theory. This tactic is known as immediate propagation
and is a natural consequence of using Prolog’s control to
implement propagators. Immediate propagation does away
with the need to analyse failure to determine an unsatisfi-
able core when a set of theory constraints is unsatisfiable,
but attracts a cost in monitoring the entailment status of
the theory literals.

4.2 Labelling strategies
The solvers presented in [19] maintain Boolean variables

in a list and elim_vars assigns them values in the order in
which they occur; the list has typically been ordered by the
number of occurrences of the variables in the SAT instance
before the search begins, the most frequently occurring as-
signed first. This tactic is straightforward to accommodate
into a solver coded in Prolog. The desire for improved
performance motivates the adoption of more sophisticated
heuristics for variable assignment. Although orthogonal to
the theme of theory propagation, the description of the SMT
solver would be incomplete without explanation of labelling.

One classic strategy for labelling that is also straightfor-
ward to incorporate into a solver written in a declarative
language is to rank variables by their number of occurrences
in clauses of minimal size [23]. This associates a weight to
each unbound variable according to the number of its occur-
rences in the unsatisfied clauses of the (Boolean) problem.
The ranking weights variables with fewer unbound literals
less heavily than those in clauses with a greater number of
unbound literals. A variable with greatest weight is selected
for labelling, the aim being to assign one that is more likely
to lead to propagation.

A refinement of this idea is to apply lookahead [29] in
conjunction with this labelling tactic. Each variable with
greatest weight, and therefore each candidate for labelling,
is speculatively assigned a truth value. For example, if X

is assigned true and this results in failure, then in order to
satisfy the propositional formula (skeleton) then X must be
assigned false. Likewise, if failure occurs when X is assigned
false then X must be true. Moreover, if one variable can be



assigned using lookahead, then often so can others, hence
this tactic is repeatedly applied until no further variables
can be bound. Thus lookahead is tried before any variable
is assigned by search.

Scoping this activity over the variables of greatest weight
limits the overhead of lookahead. The net effect is to direct
search away from variable assignments that will ultimately
fail. Lookahead can be considered to be dual of clause learn-
ing since the former seeks to avoid inconsistency by consid-
ering assignments that are still to be made, whereas the
latter diagnoses an inconsistency from an assignment that
has previously been made. The case for lookahead versus
learning has been studied [29], but in a declarative context,
particularly one where backtracking is supported, lookahead
is very simple to implement, requiring less than 20 lines of
additional code in the SAT solver.

4.3 Calculating an unsatisfiable core
Given an unsatisfiable SMT problem, it can be useful to

find an unsatisfiable core of this problem, that is, a subset
of the theory literals, Σ′ ⊆ Σ, such that T̂ hΣ′(θ, e) is not
satisfiable for any assignment θ, and for all Σ′′ ⊂ Σ′ there
exists a θ such that T̂ hΣ′′(θ, e) is satisfiable.

The unsatisfiable core needs to be calculated in the lazy-
basic approach (in [19] an algorithm adapted from [22] was
used). Further, in the application to type recovery problems,
it is useful to be able to diagnose the cause of unsatisfiability.
An unsatisfiable core for the type recovery problems is typi-
cally small and this motivates an algorithm that attempts to
aggressively prune out literals that are not in a core. Such
an algorithm is presented in Figure 3.

The first argument to findcore is (an ordered representa-
tion of) a partial encoder mapping from theory literals to
propositional variables; the second argument is a proposi-
tional formula, namely e(φ) the propositional skeleton of the
initial problem; the third argument is an integer, giving the
number of elements of the mapping on literals that will be
pruned from one end (and then the other) in order to investi-
gate satisfiability; the fourth argument is a partial mapping
from theory literals to propositional variables, where the the-
ory literals are part of the unsatisfiable core. The initial call
to the function is findcore(e,e(φ),⌈m

2
⌉,∅), where e is the com-

plete encoder map for Σ, [t1 7→ e(t1), ... , tm 7→ e(tm)].
The algorithm removes c elements from the beginning of

the mapping (represented as a list) and tests the resulting
problem for satisfiability. If the problem remains unsatisfi-
able, the c elements removed are not part of the unsatisfiable
core and can be pruned all at once. This is repeated for the
end of the mapping. The c value begins large and is logarith-
mically reduced until it has value 0, at which point the first
and last elements of the list representing the mapping must
be in the core. The function findcore is then again recur-
sively called with these end points removed and the process
continues until a core has been found.

5. INSTANTIATION FOR

RATIONAL-TREES
The theory component of an SMT solver requires a de-

cision procedure for determining the satisfiability of a con-
junction of theory literals. Unification is at the heart of
Prolog and many Prolog systems are based on rational-tree
unification, hence a decision procedure for conjunctions of

rational-tree constraints comes essentially for free. This can
be coupled with the control provided by delay declarations
to reify rational-tree constraints, hence implementing the in-
terface described in section 4. The code in Figure 4 demon-
strates the use of delay to realise theory propagation over
rational-tree constraints via reification.

An SMT problem over rational-trees consists of Boolean
combinations of theory literals ℓ. The call to setup/4 will
instantiate TheoryLiterals to a list of pairs of the form
ℓ − e(ℓ); the propositional skeleton and a list of the e(ℓ)
variables are also produced. In the following, a labelled lit-
eral eqn(Term1, Term2)-X is discussed. post_theory sets up
propagators for each theory literal in two steps. theory_wait
propagates from the theory constraints into the Boolean
variables.
theory_wait uses the builtin control predicate when/2,

which blocks the goal in its second argument until the first
argument evaluates to true. In this instance the condi-
tion ?=(Term1, Term2) is true either if Term1 and Term2

are identical, or if the terms cannot be unified. That is,
if Term1=Term2 is entailed by the store then theory_prop

is called and assigns X=true. Similarly, if the constraint is
not consistent with the store, then Term1 and Term2 cannot
be unified and again theory_prop reflects this by assigning
X=false. In the opposite direction, bool_wait communi-
cates assignments made to Boolean variables to the theory
literals. The predicate is blocked on the instantiation of the
logical variables, waking when they become true or false.
When true the constraint must hold so Term1 and Term2 are
unified. When false, it is not possible for the two terms to
be unified, hence the constraint is discarded and the call to
bool_wait succeeds. Note that it is not possible to post
a constraint that asserts that two terms cannot be unified,
since the control predicate dif/2 is defined as:

dif(X, Y) :- when(?=(X, Y), X \== Y).

That is, it blocks until either X and Y are identical or they
cannot be unified, then tests whether or not they are iden-
tical. Hence dif/2 acts as a test, rather than a propagat-
ing constraint. Consistency of the store is maintained by
theory_wait; if X=false and the constraint is discarded,
then later it is determined that Term1=Term2, theory_wait
will attempt to unify X with true, which will fail. Finally,
post_boolean sets up the propositional skeleton for the solver
from [18].

6. INSTANTIATION FOR

LINEAR REAL ARITHMETIC
Many Prolog systems come with the CLP(R) constraints

package, which can determine consistency of conjunctions of
linear arithmetic constraints. This decision procedure makes
quantifier-free linear real arithmetic a sensible theory for
the solver. The challenge is to implement reification for the
constraints, an operation not directly supported.

The code in Figure 5 demonstrates the integration of lin-
ear real arithmetic as realised by CLP(R) into the DPLL(T )
scheme. It assumes that the input problem has been nor-
malised so that all the constraint predicates are drawn from
=, =< and <. The propagators, theory_wait, are blocked
on two variables. The first of these is the labelling vari-
able e(C) – if this is instantiated, the appropriate constraint
is posted. To complete the reification, the propagators need



(1) function findcore (e = [t1 7→ x1, ... , tn 7→ xn] : Σ → X, f : CNF formula, c : int, core : Σ → X)
(2) begin
(3) if (e = [ ])
(4) return core;
(5) else if (c = 0)
(6) core′ := [t1 7→ x1, tn 7→ xn] ∪ core;
(7) findcore([t2 7→ x2, ... , tn−1 7→ xn−1], f , ⌊n−1

2
⌋, core′);

(8) else
(9) i := 1; j := n;
(10) if (¬DPLL(T )(f , ∅, [tc+1 7→ xc+1, ... , tn 7→ xn] ∪ core))
(11) i := c + 1;
(12) if (¬DPLL(T )(f , ∅, [ti 7→ xi, ... , tn−c 7→ xn−c] ∪ core))
(13) j := n − c;
(14) if (c = 1)
(15) c′ := 0;
(16) else
(17) c′ := ⌊ c+1

2
⌋;

(18) endif
(19) findcore([ti 7→ xi, ... , tj 7→ xj ], f , c′, core);
(20) endif
(21) end

Figure 3: Finding an unsatisfiable core

post_theory([]).

post_theory([eqn(Term1,Term2)-X|Rest]) :-

setup_reify(X, Term1, Term2),

post_theory(Rest).

setup_reify(X, Term1, Term2) :-

bool_wait(X, Term1, Term2),

theory_wait(X, Term1, Term2).

:- block bool_wait(-, ?, ?).

bool_wait(true, Term1, Term2) :-

Term1 = Term2, !.

bool_wait(false, _Term1, _Term2).

theory_wait(X, Term1, Term2) :-

when(?=(Term1, Term2),

theory_prop(X, Term1, Term2)).

theory_prop(X, Term1, Term2) :-

Term1 == Term2 ->

X = true

;

X = false

.

Figure 4: Theory propagation for rational-tree con-
straints

to detect the entailment of the linear constraint (or its nega-
tion). This can be achieved using the builtin entailed/1,
however the control for ensuring that this is called at an
appopriate time is less obvious.

Once a new constraint has been posted (or once the con-
straint store has changed) other constraints or their nega-
tions might be entailed and this needs to be detected and
propagated. The communication between the propagators
to capture this is achieved with the second argument to
theory_wait. Each propagator is set with its second ar-
gument the same logical variable (Y in the code) and the
propagators are blocked on this second argument. When
a constraint is posted, Y is instantiated, Y = prop(_). This
wakes all active propagators which either propagate or block
again on the new variable. An alternative approach, which
would invoke the propagators less frequently, would be to
only wake up the activate propagators for those constraints
that share a variable with the posted constraint.

It should be emphasised, however, that although a linear
solver is interesting for self-contained Prolog applications,
this theory is supported by a number of off-the-shelf SMT
solvers; the approach presented in this paper is primarily
designed for constraint theories that are unavailable in stan-
dard SMT distributions.

7. EXPERIMENTAL RESULTS
The DPLL(T ) solver for rational-trees has been coded in

SICStus Prolog 4.2.1, as described in section 5. Henceforth
this will be called the Prolog solver. To assess the solver it
has been applied to a benchmark suite of 84 type recovery
problems, its target application. The first eight benchmarks
are drawn from compilations at different optimisation levels
of three small programs manufactured to check their types
against those derived by the solver. These benchmarks are
designed to check that the inferred types match against those
prescribed in the source file, and also assess the robustness of



post_theory(TheoryLiterals):-

setup_reify(TheoryLiterals, _).

setup_reify([], _).

setup_reify([C-V|Cs], Y) :-

negate(C, NegC),

theory_wait(V, Y, C, NegC),

setup_reify(Cs, Y).

negate(X =< Y, X > Y).

negate(X < Y, X >= Y).

negate(X = Y, X =\= Y).

next_var(Y, Z) :-

var(Y), !,

Y = Z.

next_var(prop(Y), Z) :-

next_var(Y, Z).

:- block theory_wait(-, -, ?, ?).

theory_wait(V, Y, C, _NegC) :-

V == true, !,

{C}, Y = prop(_).

theory_wait(V, Y, _C, NegC) :-

V == false, !,

{NegC}, Y = prop(_).

theory_wait(V, Y, C, _NegC) :-

nonvar(Y),

entailed(C), !,

V = true.

theory_wait(V, Y, _C, NegC) :-

nonvar(Y),

entailed(NegC), !,

V = false.

theory_wait(V, Y, C, NegC) :-

next_var(Y, U),

theory_wait(V, U, C, NegC).

Figure 5: Theory propagation for linear real arith-
metic

the type recovery in the face of various compilation modes.
The remaining benchmarks are taken from version 8.9 of
the coreutils suite of programs, standard UNIX command
line utilities such as wc, uniq, echo etc. With an eye to the
future, the DynInst toolkit [33] was used to parse the bi-
naries and reconstruct the CFGs. This toolkit can recover
the full CFG for many obfuscated, packed and stripped bina-
ries, and even succeeds at determining indirect jump targets.
CFG recovery is followed by SSA conversion which, in turn,
is followed by the generation of the type constraints, and the
corresponding SMT formula complete with its propositional
skeleton. The latter rewriting steps are naturally realised as
a set of Prolog rules.

To the best of the authors’ knowledge, this paper repre-
sents the first time that recursive types have been automati-
cally derived, hence it is not possible to compare to previous
approaches. Furthermore, no comparison is made with an
open source SMT solver equipped with rational-trees since
the authors are unaware of any such system. Nevertheless,
to provide a comparative evaluation a lazy-basic SMT solver
based on an off-the-shelf SAT solver, PicoSAT [3], has been

constructed. This solver is also implemented in SICStus
Prolog 4.2.1 but uses bindings to PicoSAT to solve the SAT
formulae. PicoSAT, though small by comparison with some
solvers at approximately 6000 lines of C, applies learning,
random restarts, etc, a range of tactics not employed in
the Prolog SAT solver. This SMT solver will henceforth
be called the hybrid solver. However, crucially, the hybrid
solver does not apply theory propagation; it simply alter-
nates SAT solving with satisfiability testing following the
lazy-basic approach, which is all one can do when the SAT
solver is used as a black box.

The experiments were run on a single core of a MacBook
Pro with a 2.4GHz Intel Core 2 Duo processor and 4GB
of memory. A selection of the results are given in Table 1.
To clarify the meaning of the columns of Table 1, consider
benchmark 1. The SMT formula is satisfiable, hence a core
is not derived, and the problem is solved with just one call
to the Prolog SMT solver. The hybrid solver also requires
just one call but this, in turn, requires PicoSAT to be in-
voked 796 times, on all but the last occasion adding a single
blocking clause to the propositional skeleton. By way of con-
trast, benchmark 9 is unsatisfiable hence a core is computed
that pinpoints a type conflict. The Prolog SMT solver is in-
voked 51 times to identify this core; the hybrid SMT solver
requires exactly the same number of calls, hence the num-
ber is not repeated in the table. However, these 51 calls
to the hybrid solver cumulatively require 536 invocations of
PicoSAT. On occasions the hybrid solver terminated with
a memory error1, indicated by seg, invariably after several
hours of computation. The fault is repeatable.

In addition to these timing results, the recursive types
inferred for mergesort, as well as those for iterative-sum
and recursive-sum, have been checked against the types pre-
scribed in the source. The sum programs both build list of
integers but then traverse them in different ways. Another
point not revealed from the table is that the largest bench-
marks can take over 20 minutes to parse, reconstruct the
CFG, perform SSA conversion and then generate the SMT
formula. Thus the time required to solve the SMT formulae
does not exceed the time required to generate them, at least
for the Prolog solver.

8. DISCUSSION
The results in Table 1 demonstrate that an SMT solver

equipped with an appropriate theory can be used to success-
ful automate the recovery of recursive types, a problem not
previously solved.

On no occasion is the hybrid solver faster than the Pro-
log solver, which suggests that a succinct implementation
of theory propagation is more powerful than deploying an
off-the-shelf SAT solver as a black box in combination with
a handcrafted theory solver using the lazy-basic approach.

It can be observed in Table 1 that many of the problems
are unsatisfiable. For these problems an explanation for a
type conflict is returned rather than a satisfying type assign-
ment. As a strength test of the solver these problems are
good since the exhaustive search required to demonstrate
unsatisfiability is more demanding than search for a first
satisfying assignment. There are two results that require
discussion. Benchmark 4 has an unsatisfiable core of 26 con-
straints, whereas most cores have less than 10 constraints.

1This bug has been fixed in the forthcoming SICStus 4.3.



Table 1: Benchmarking for a selection of type recovery problems
benchmarka instrucb clausesc prop-varsd theory-varse timef SMT callsg timeh SAT callsi

1 iterative-sum.O1 296 2047 564 779 14.57 (SAT) 1 413.36 796
2 iterative-sum.O2 312 2132 586 812 52.34 (SAT) 1 seg
3 recursive-sum.O1 302 2129 588 809 15.37 (SAT) 1 6382.50 998
4 mergesort.O0 480 3216 888 1220 585.89 70 seg
5 mergesort.O1 387 2636 718 1011 20.05 (SAT) 1 1176.58 1720
6 mergesort.O2 395 2628 713 1017 20.30 (SAT) 1 805.93 860
7 mergesort.Os 444 3275 907 1244 >14400 seg
8 mergesort.O3 2586 15696 3741 6670 1551.23 31 >14400
9 false 3747 27645 5357 12957 19.46 51 3250.05 536
10 true 3747 27645 5357 12955 19.27 51 3247.02 536
11 tty 3825 28255 5417 13373 20.02 51 3509.06 552
12 sync 3901 28706 5571 13466 70.76 52 3607.01 553
15 hostid 3912 28973 5576 13634 62.70 52 3651.77 550
19 basename 4114 30125 5829 14212 69.48 53 3939.21 544
20 env 4016 29670 5589 13956 22.69 53 3914.54 544
22 uname 4074 31048 5653 15034 32.28 52 3676.94 534
23 cksum 4259 31973 5975 15370 101.85 52 4516.21 554
24 sleep 4442 32993 6343 15637 84.89 51 4876.85 566
29 echo 4310 33087 6064 15571 41.41 51 4723.52 564
30 nice 4397 33057 6000 15719 11.23 51 4907.31 581
33 nl 5719 43834 7692 21240 17.20 56 seg
34 comm 5563 45401 7790 22797 108.09 53 10667.25 650
42 wc 6377 52105 8818 26713 93.91 52 12681.63 575
43 uniq 6595 52779 9013 27190 35.46 53 13281.49 581
51 join 7946 67168 10844 34688 85.93 60 >14400
53 sha384sum 11612 78776 16419 36153 191.87 53 >14400
54 cut 8173 68332 11248 36736 185.84 60 >14400
58 ln 9369 83877 12668 44935 292.21 54 >14400
61 getlimits 10797 92504 14856 47845 396.81 54 >14000
66 timeout 12063 98544 16306 50019 126.79 53 >14000
78 ptx 15919 141197 21850 76881 702.67 55 >14000
84 mbslen 25895 257132 35148 148102 1935.12 56 >14400

athe name of the binary from which the constraints were generated
bthe number of instructions in the binary, over which the constraints were drawn
cthe number of propositional clauses in the problem
dthe number of propositional variables
ethe number of theory variables
fthe runtime in seconds to find a model or a core for the Prolog solver
gthe number of times the Prolog SMT solver was called
hthe runtime in seconds to find a model or a core for the hybrid solver
ithe number of times the PicoSAT propositional solver was called

This explains why it is relatively slow. Benchmark 7 has
timed out, a reminder that large SMT problems can be hard
to solve.

Note that the time require for type recovery is sensitive
to optimisation level, though it is not obvious why differ-
ent optimisation levels impact on the difficulty of the SMT
instance, apart from the obvious effect on code size.

For the unsatisfiable problems, a core of unsatisfiable con-
straints is calculated using multiple calls to the DPLL(T )
solver as indicated. This core can be used to diagnose un-
satisfiability, in turn allowing the analysis to be refined to
return meaningful information despite the initial result. In
the benchmarks unsatisfiability is typically owing to nop
instructions such as nop [rax+rax+0x0]. This instruction
does nothing, but has been generated by the compiler with
an encoded operand in order to make it a specific size for op-
timal performance. The indirect addressing is broken down

and constraints generated as follows:

mov A1, rax1 TA1
= Trax1

add A2, rax1

„

TA2
= basic( ,int,4) ∧ TA1

= TA2
∧

Trax1
= TA2

«

∨

0

@

TA2
= ptr(〈[...], α1, [...]〉) ∧

TA1
= ptr(〈[...], α2, [...]〉) ∧

Trax1
= basic( ,int,4)

1

A∨

0

@

TA2
= ptr(〈[...], α3, [...]〉) ∧

TA1
= basic( ,int,4) ∧

Trax1
= ptr(〈[...], α4, [...]〉)

1

A

mov A3, [A2] TA2
= ptr(〈[...], TA3

, [ , , , ...]〉)

nop A3



The final constraint states that A2 must have pointer type,
hence those for the add dictate that one of A1 and rax1

must be of basic type, and the other a pointer; however, the
first constraint says they have the same type, so the system
is inconsistent.

Another unexpected source of inconsistency is the hard-
coded pointer addresses sometimes found in mov instruc-
tions. These are often addresses of strings included in the
binary, but also include constructor and destructor lists,
added by the linker for construction and destruction of ob-
jects. For example, the instruction mov ebx1, 0x605e38 ap-
pears in the cksum binary, and moves the address of a string
into ebx1 resulting in the constraint Tebx1

= basic( ,int,4).
Later however, ebx1 is dereferenced, which implies that it
is a pointer, and conflicts with the earlier inference.

Quite apart from the disjunctive nature of constraints,
the sheer number of x86 instructions pose an engineering
challenge when writing a type recovery tool; indeed the con-
straint generator module has taken longer to develop than
both SMT solvers together. Moreover, as the above two ex-
amples illustrate, type conflicts stem from type interactions
between different instructions which makes the type con-
flicts difficult to anticipate. The result produced from the
solver is either a successful recovery of types, or a core of in-
consistent types, both of which can be achieved sufficiently
quickly. Since the core is typically small, it is of great util-
ity in pinpointing omissions in the type generation phase. It
seems attractive to augment the solver with a domain spe-
cific language for expressing and editing the type constraints
so that they can be refined, if necessary, by a user.

9. CONCLUSIONS AND FUTURE WORK
This paper has presented a DPLL(T ) SMT solver coded

in Prolog for two theories – rational-tree unification and
quantifier-free linear real arithmetic. The motivation for
this work is the need for an SMT solver over rational-tree
unification in order to recover types from x86 binaries; with
Prolog providing a decision procedure for rational-tree unifi-
cation the integration with the SAT solver in [19] is a natu-
ral development. The effectiveness of the approach has been
demonstrated by the successful application of the solver to
a suite of type recovery problems.

The solver can be extended by providing decision proce-
dures for further theories. Finite domain solvers, such as
SICStus CLP(FD), often allow reified constraints [5], hence
finite domain constraints might appear a good candidate to
incorporate into the DPLL(T ) framework. Unfortunately,
finite domain constraint solvers typically maintain stores
that are potentially inconsistent, hence without labelling (an
unattractive step) a decision procedure for conjunctions of
theory constraints is not readily available.

The approach to theory propagation described in this pa-
per is not necessarily tied to DPLL-based SAT solvers and
future work is to describe how to integrate it into a gen-
eralisation [42] of St̊almarck’s proof procedure [41]. Other
future work is to add certification, as in [1]. That is, for
unsatisfiable instances not only is the result returned, but
also a demonstration of unsatisfiability that can be deter-
mined by a small trusted computing base. Another line of
inquiry will be to investigate how to systematically relax
the SMT instance so that a type assignment can be always
found, without manual intervention, even in the presence
of conflicting constraints. MaxSMT techniques seem to be

well-suited to this task.
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