546 research outputs found

    Extending OpenMP for NUMA Machines

    Get PDF

    Parallel Sort-Based Matching for Data Distribution Management on Shared-Memory Multiprocessors

    Full text link
    In this paper we consider the problem of identifying intersections between two sets of d-dimensional axis-parallel rectangles. This is a common problem that arises in many agent-based simulation studies, and is of central importance in the context of High Level Architecture (HLA), where it is at the core of the Data Distribution Management (DDM) service. Several realizations of the DDM service have been proposed; however, many of them are either inefficient or inherently sequential. These are serious limitations since multicore processors are now ubiquitous, and DDM algorithms -- being CPU-intensive -- could benefit from additional computing power. We propose a parallel version of the Sort-Based Matching algorithm for shared-memory multiprocessors. Sort-Based Matching is one of the most efficient serial algorithms for the DDM problem, but is quite difficult to parallelize due to data dependencies. We describe the algorithm and compute its asymptotic running time; we complete the analysis by assessing its performance and scalability through extensive experiments on two commodity multicore systems based on a dual socket Intel Xeon processor, and a single socket Intel Core i7 processor.Comment: Proceedings of the 21-th ACM/IEEE International Symposium on Distributed Simulation and Real Time Applications (DS-RT 2017). Best Paper Award @DS-RT 201

    An Efficient OpenMP Loop Scheduler for Irregular Applications on Large-Scale NUMA Machines

    Get PDF
    International audienceNowadays shared memory HPC platforms expose a large number of cores organized in a hierarchical way. Parallel application programmers strug- gle to express more and more fine-grain parallelism and to ensure locality on such NUMA platforms. Independent loops stand as a natural source of paral- lelism. Parallel environments like OpenMP provide ways of parallelizing them efficiently, but the achieved performance is closely related to the choice of pa- rameters like the granularity of work or the loop scheduler. Considering that both can depend on the target computer, the input data and the loop workload, the application programmer most of the time fails at designing both portable and ef- ficient implementations. We propose in this paper a new OpenMP loop scheduler, called adaptive, that dynamically adapts the granularity of work considering the underlying system state. Our scheduler is able to perform dynamic load balancing while taking memory affinity into account on NUMA architectures. Results show that adaptive outperforms state-of-the-art OpenMP loop schedulers on memory- bound irregular applications, while obtaining performance comparable to static on parallel loops with a regular workload

    Scheduling Dynamic OpenMP Applications over Multicore Architectures

    Get PDF
    International audienceApproaching the theoretical performance of hierarchical multicore machines requires a very careful distribution of threads and data among the underlying non-uniform architecture in order to minimize cache misses and NUMA penalties. While it is acknowledged that OpenMP can enhance the quality of thread scheduling on such architectures in a portable way, by transmitting precious information about the affinities between threads and data to the underlying runtime system, most OpenMP runtime systems are actually unable to efficiently support highly irregular, massively parallel applications on NUMA machines. In this paper, we present a thread scheduling policy suited to the execution of OpenMP programs featuring irregular and massive nested parallelism over hierarchical architectures. Our policy enforces a distribution of threads that maximizes the proximity of threads belonging to the same parallel section, and uses a NUMA-aware work stealing strategy when load balancing is needed. It has been developed as a plug-in to the ForestGOMP OpenMP platform. We demonstrate the efficiency of our approach with a highly irregular recursive OpenMP program resulting from the generic parallelization of a surface reconstruction application. We achieve a speedup of 14 on a 16-core machine with no application-level optimization

    CoreTSAR: Task Scheduling for Accelerator-aware Runtimes

    Get PDF
    Heterogeneous supercomputers that incorporate computational accelerators such as GPUs are increasingly popular due to their high peak performance, energy efficiency and comparatively low cost. Unfortunately, the programming models and frameworks designed to extract performance from all computational units still lack the flexibility of their CPU-only counterparts. Accelerated OpenMP improves this situation by supporting natural migration of OpenMP code from CPUs to a GPU. However, these implementations currently lose one of OpenMP’s best features, its flexibility: typical OpenMP applications can run on any number of CPUs. GPU implementations do not transparently employ multiple GPUs on a node or a mix of GPUs and CPUs. To address these shortcomings, we present CoreTSAR, our runtime library for dynamically scheduling tasks across heterogeneous resources, and propose straightforward extensions that incorporate this functionality into Accelerated OpenMP. We show that our approach can provide nearly linear speedup to four GPUs over only using CPUs or one GPU while increasing the overall flexibility of Accelerated OpenMP

    NUMA-ICTM: A parallel version of ICTM exploiting memory placement strategies for NUMA machines

    Full text link

    GHOST: Building blocks for high performance sparse linear algebra on heterogeneous systems

    Get PDF
    While many of the architectural details of future exascale-class high performance computer systems are still a matter of intense research, there appears to be a general consensus that they will be strongly heterogeneous, featuring "standard" as well as "accelerated" resources. Today, such resources are available as multicore processors, graphics processing units (GPUs), and other accelerators such as the Intel Xeon Phi. Any software infrastructure that claims usefulness for such environments must be able to meet their inherent challenges: massive multi-level parallelism, topology, asynchronicity, and abstraction. The "General, Hybrid, and Optimized Sparse Toolkit" (GHOST) is a collection of building blocks that targets algorithms dealing with sparse matrix representations on current and future large-scale systems. It implements the "MPI+X" paradigm, has a pure C interface, and provides hybrid-parallel numerical kernels, intelligent resource management, and truly heterogeneous parallelism for multicore CPUs, Nvidia GPUs, and the Intel Xeon Phi. We describe the details of its design with respect to the challenges posed by modern heterogeneous supercomputers and recent algorithmic developments. Implementation details which are indispensable for achieving high efficiency are pointed out and their necessity is justified by performance measurements or predictions based on performance models. The library code and several applications are available as open source. We also provide instructions on how to make use of GHOST in existing software packages, together with a case study which demonstrates the applicability and performance of GHOST as a component within a larger software stack.Comment: 32 pages, 11 figure

    Description, Implementation and Evaluation of an Affinity Clause for Task Directives

    No full text
    International audienceOpenMP 4.0 introduced dependent tasks, which give the programmer a way to express fine grain parallelism. Using appropriate OS support (such as NUMA libraries), the runtime can rely on the information in the depend clause to dynamically map the tasks to the architecture topology. Controlling data locality is one of the key factors to reach a high level of performance when targeting NUMA architectures. On this topic, OpenMP does not provide a lot of flexibility to the programmer yet, which lets the runtime decide where a task should be executed. In this paper, we present a class of applications which would benefit from having such a control and flexibility over tasks and data placement. We also propose our own interpretation of the new affinity clause for the task directive, which is being discussed by the OpenMP Architecture Review Board. This clause enables the programmer to give hints to the runtime about tasks placement during the program execution, which can be used to control the data mapping on the architecture. In our proposal, the programmer can express affinity between a task and the following resources: a thread, a NUMA node, and a data. We then present an implementation of this proposal in the Clang-3.8 compiler, and an implementation of the corresponding extensions in our OpenMP runtime LIBKOMP. Finally , we present a preliminary evaluation of this work running two task-based OpenMP kernels on a 192-core NUMA architecture, that shows noticeable improvements both in terms of performance and scalability

    Description, Implementation and Evaluation of an Affinity Clause for Task Directives

    Get PDF
    International audienceOpenMP 4.0 introduced dependent tasks, which give the programmer a way to express fine grain parallelism. Using appropriate OS support (such as NUMA libraries), the runtime can rely on the information in the depend clause to dynamically map the tasks to the architecture topology. Controlling data locality is one of the key factors to reach a high level of performance when targeting NUMA architectures. On this topic, OpenMP does not provide a lot of flexibility to the programmer yet, which lets the runtime decide where a task should be executed. In this paper, we present a class of applications which would benefit from having such a control and flexibility over tasks and data placement. We also propose our own interpretation of the new affinity clause for the task directive, which is being discussed by the OpenMP Architecture Review Board. This clause enables the programmer to give hints to the runtime about tasks placement during the program execution, which can be used to control the data mapping on the architecture. In our proposal, the programmer can express affinity between a task and the following resources: a thread, a NUMA node, and a data. We then present an implementation of this proposal in the Clang-3.8 compiler, and an implementation of the corresponding extensions in our OpenMP runtime LIBKOMP. Finally , we present a preliminary evaluation of this work running two task-based OpenMP kernels on a 192-core NUMA architecture, that shows noticeable improvements both in terms of performance and scalability
    • …
    corecore