66 research outputs found

    Analysis of affine motion-compensated prediction and its application in aerial video coding

    Get PDF
    Motion-compensated prediction is used in video coding standards like High Efficiency Video Coding (HEVC) as one key element of data compression. Commonly, a purely translational motion model is employed. In order to also cover non-translational motion types like rotation or scaling (zoom) contained in aerial video sequences such as captured from unmanned aerial vehicles, an affine motion model can be applied. In this work, a model for affine motion-compensated prediction in video coding is derived by extending a model of purely translational motion-compensated prediction. Using the rate-distortion theory and the displacement estimation error caused by inaccurate affine motion parameter estimation, the minimum required bit rate for encoding the prediction error is determined. In this model, the affine transformation parameters are assumed to be affected by statistically independent estimation errors, which all follow a zero-mean Gaussian distributed probability density function (pdf). The joint pdf of the estimation errors is derived and transformed into the pdf of the location-dependent displacement estimation error in the image. The latter is related to the minimum required bit rate for encoding the prediction error. Similar to the derivations of the fully affine motion model, a four-parameter simplified affine model is investigated. It is of particular interest since such a model is considered for the upcoming video coding standard Versatile Video Coding (VVC) succeeding HEVC. As the simplified affine motion model is able to describe most motions contained in aerial surveillance videos, its application in video coding is justified. Both models provide valuable information about the minimum bit rate for encoding the prediction error as a function of affine estimation accuracies. Although the bit rate in motion-compensated prediction can be considerably reduced by using a motion model which is able to describe motion types occurring in the scene, the total video bit rate may remain quite high, depending on the motion estimation accuracy. Thus, at the example of aerial surveillance sequences, a codec independent region of interest- ( ROI -) based aerial video coding system is proposed that exploits the characteristic of such sequences. Assuming the captured scene to be planar, one frame can be projected into another using global motion compensation. Consequently, only new emerging areas have to be encoded. At the decoder, all new areas are registered into a so-called mosaic. From this, reconstructed frames are extracted and concatenated as a video sequence. To also preserve moving objects in the reconstructed video, local motion is detected and encoded in addition to the new areas. The proposed general ROI coding system was evaluated for very low and low bit rates between 100 and 5000 kbit/s for aerial sequences of HD resolution. It is able to reduce the bit rate by 90% compared to common HEVC coding of similar quality. Subjective tests confirm that the overall image quality of the ROI coding system exceeds that of a common HEVC encoder especially at very low bit rates below 1 Mbit/s. To prevent discontinuities introduced by inaccurate global motion estimation, as may be caused by radial lens distortion, a fully automatic in-loop radial distortion compensation is proposed. For this purpose, an unknown radial distortion compensation parameter that is constant for a group of frames is jointly estimated with the global motion. This parameter is optimized to minimize the distortions of the projections of frames in the mosaic. By this approach, the global motion compensation was improved by 0.27dB and discontinuities in the frames extracted from the mosaic are diminished. As an additional benefit, the generation of long-term mosaics becomes possible, constructed by more than 1500 aerial frames with unknown radial lens distortion and without any calibration or manual lens distortion compensation.Bewegungskompensierte Prädiktion wird in Videocodierstandards wie High Efficiency Video Coding (HEVC) als ein Schlüsselelement zur Datenkompression verwendet. Typischerweise kommt dabei ein rein translatorisches Bewegungsmodell zum Einsatz. Um auch nicht-translatorische Bewegungen wie Rotation oder Skalierung (Zoom) beschreiben zu können, welche beispielsweise in von unbemannten Luftfahrzeugen aufgezeichneten Luftbildvideosequenzen enthalten sind, kann ein affines Bewegungsmodell verwendet werden. In dieser Arbeit wird aufbauend auf einem rein translatorischen Bewegungsmodell ein Modell für affine bewegungskompensierte Prädiktion hergeleitet. Unter Verwendung der Raten-Verzerrungs-Theorie und des Verschiebungsschätzfehlers, welcher aus einer inexakten affinen Bewegungsschätzung resultiert, wird die minimal erforderliche Bitrate zur Codierung des Prädiktionsfehlers hergeleitet. Für die Modellierung wird angenommen, dass die sechs Parameter einer affinen Transformation durch statistisch unabhängige Schätzfehler gestört sind. Für jeden dieser Schätzfehler wird angenommen, dass die Wahrscheinlichkeitsdichteverteilung einer mittelwertfreien Gaußverteilung entspricht. Aus der Verbundwahrscheinlichkeitsdichte der Schätzfehler wird die Wahrscheinlichkeitsdichte des ortsabhängigen Verschiebungsschätzfehlers im Bild berechnet. Letztere wird schließlich zu der minimalen Bitrate in Beziehung gesetzt, welche für die Codierung des Prädiktionsfehlers benötigt wird. Analog zur obigen Ableitung des Modells für das voll-affine Bewegungsmodell wird ein vereinfachtes affines Bewegungsmodell mit vier Freiheitsgraden untersucht. Ein solches Modell wird derzeit auch im Rahmen der Standardisierung des HEVC-Nachfolgestandards Versatile Video Coding (VVC) evaluiert. Da das vereinfachte Modell bereits die meisten in Luftbildvideosequenzen vorkommenden Bewegungen abbilden kann, ist der Einsatz des vereinfachten affinen Modells in der Videocodierung gerechtfertigt. Beide Modelle liefern wertvolle Informationen über die minimal benötigte Bitrate zur Codierung des Prädiktionsfehlers in Abhängigkeit von der affinen Schätzgenauigkeit. Zwar kann die Bitrate mittels bewegungskompensierter Prädiktion durch Wahl eines geeigneten Bewegungsmodells und akkurater affiner Bewegungsschätzung stark reduziert werden, die verbleibende Gesamtbitrate kann allerdings dennoch relativ hoch sein. Deshalb wird am Beispiel von Luftbildvideosequenzen ein Regionen-von-Interesse- (ROI-) basiertes Codiersystem vorgeschlagen, welches spezielle Eigenschaften solcher Sequenzen ausnutzt. Unter der Annahme, dass eine aufgenommene Szene planar ist, kann ein Bild durch globale Bewegungskompensation in ein anderes projiziert werden. Deshalb müssen vom aktuellen Bild prinzipiell nur noch neu im Bild erscheinende Bereiche codiert werden. Am Decoder werden alle neuen Bildbereiche in einem gemeinsamen Mosaikbild registriert, aus dem schließlich die Einzelbilder der Videosequenz rekonstruiert werden können. Um auch lokale Bewegungen abzubilden, werden bewegte Objekte detektiert und zusätzlich zu neuen Bildbereichen als ROI codiert. Die Leistungsfähigkeit des ROI-Codiersystems wurde insbesondere für sehr niedrige und niedrige Bitraten von 100 bis 5000 kbit/s für Bilder in HD-Auflösung evaluiert. Im Vergleich zu einer gewöhnlichen HEVC-Codierung kann die Bitrate um 90% reduziert werden. Durch subjektive Tests wurde bestätigt, dass das ROI-Codiersystem insbesondere für sehr niedrige Bitraten von unter 1 Mbit/s deutlich leistungsfähiger in Bezug auf Detailauflösung und Gesamteindruck ist als ein herkömmliches HEVC-Referenzsystem. Um Diskontinuitäten in den rekonstruierten Videobildern zu vermeiden, die durch eine durch Linsenverzeichnungen induzierte ungenaue globale Bewegungsschätzung entstehen können, wird eine automatische Radialverzeichnungskorrektur vorgeschlagen. Dabei wird ein unbekannter, jedoch über mehrere Bilder konstanter Korrekturparameter gemeinsam mit der globalen Bewegung geschätzt. Dieser Parameter wird derart optimiert, dass die Projektionen der Bilder in das Mosaik möglichst wenig verzerrt werden. Daraus resultiert eine um 0,27dB verbesserte globale Bewegungskompensation, wodurch weniger Diskontinuitäten in den aus dem Mosaik rekonstruierten Bildern entstehen. Dieses Verfahren ermöglicht zusätzlich die Erstellung von Langzeitmosaiken aus über 1500 Luftbildern mit unbekannter Radialverzeichnung und ohne manuelle Korrektur

    A comprehensive video codec comparison

    Get PDF
    In this paper, we compare the video codecs AV1 (version 1.0.0-2242 from August 2019), HEVC (HM and x265), AVC (x264), the exploration software JEM which is based on HEVC, and the VVC (successor of HEVC) test model VTM (version 4.0 from February 2019) under two fair and balanced configurations: All Intra for the assessment of intra coding and Maximum Coding Efficiency with all codecs being tuned for their best coding efficiency settings. VTM achieves the highest coding efficiency in both configurations, followed by JEM and AV1. The worst coding efficiency is achieved by x264 and x265, even in the placebo preset for highest coding efficiency. AV1 gained a lot in terms of coding efficiency compared to previous versions and now outperforms HM by 24% BD-Rate gains. VTM gains 5% over AV1 in terms of BD-Rates. By reporting separate numbers for JVET and AOM test sequences, it is ensured that no bias in the test sequences exists. When comparing only intra coding tools, it is observed that the complexity increases exponentially for linearly increasing coding efficiency

    Disparity compensation using geometric transforms

    Get PDF
    This dissertation describes the research and development of some techniques to enhance the disparity compensation in 3D video compression algorithms. Disparity compensation is usually performed using a block matching technique between views, disregarding the various levels of disparity present for objects at different depths in the scene. An alternative coding scheme is proposed, taking advantage of the cameras setup information and the object’s depth in the scene, to compensate more complex spatial distortions, being able to improve disparity compensation even with convergent cameras. In order to perform a more accurate disparity compensation, the reference picture list is enriched with additional geometrically transformed images, for the most relevant object’s levels of depth in the scene, resulting from projections of one view to another. This scheme can be implemented in any state-of-the-art video codec, as H.264/AVC or HEVC, in order to improve the disparity matching accuracy between views. Experimental results, using MV-HEVC extension, show the efficiency of the proposed method for coding stereo video, presenting bitrate savings up to 2.87%, for convergent camera sequences, and 1.52% for parallel camera sequences. Also a method to choose the geometrically transformed inter view reference pictures was developed, in order to reduce unnecessary overhead for unused reference pictures. By selecting and adding to the reference picture list, only the most useful pictures, all results improved, presenting bitrate savings up to 3.06% for convergent camera sequences, and 2% for parallel camera sequences

    Analysis of Affine Motion-Compensated Prediction in Video Coding

    Get PDF
    Motion-compensated prediction is used in video coding standards like High Efficiency Video Coding (HEVC) as one key element of data compression. Commonly, a purely translational motion model is employed. In order to also cover non-translational motion types like rotation or scaling (zoom), e. g. contained in aerial video sequences such as captured from unmanned aerial vehicles (UAV), an affine motion model can be applied. In this work, a model for affine motion-compensated prediction in video coding is derived. Using the rate-distortion theory and the displacement estimation error caused by inaccurate affine motion parameter estimation, the minimum required bit rate for encoding the prediction error is determined. In this model, the affine transformation parameters are assumed to be affected by statistically independent estimation errors, which all follow a zero-mean Gaussian distributed probability density function (pdf). The joint pdf of the estimation errors is derived and transformed into the pdfof the location-dependent displacement estimation error in the image. The latter is related to the minimum required bit rate for encoding the prediction error. Similar to the derivations of the fully affine motion model, a four-parameter simplified affine model is investigated. Both models are of particular interest since they are considered for the upcoming video coding standard Versatile Video Coding (VVC) succeeding HEVC. Both models provide valuable information about the minimum bit rate for encoding the prediction error as a function of affine estimation accuracies. © 1992-2012 IEEE

    Scalable Video Coding for Humans and Machines

    Full text link
    Video content is watched not only by humans, but increasingly also by machines. For example, machine learning models analyze surveillance video for security and traffic monitoring, search through YouTube videos for inappropriate content, and so on. In this paper, we propose a scalable video coding framework that supports machine vision (specifically, object detection) through its base layer bitstream and human vision via its enhancement layer bitstream. The proposed framework includes components from both conventional and Deep Neural Network (DNN)-based video coding. The results show that on object detection, the proposed framework achieves 13-19% bit savings compared to state-of-the-art video codecs, while remaining competitive in terms of MS-SSIM on the human vision task.Comment: 6 pages, 5 figures, IEEE MMSP 202

    Contributions to HEVC Prediction for Medical Image Compression

    Get PDF
    Medical imaging technology and applications are continuously evolving, dealing with images of increasing spatial and temporal resolutions, which allow easier and more accurate medical diagnosis. However, this increase in resolution demands a growing amount of data to be stored and transmitted. Despite the high coding efficiency achieved by the most recent image and video coding standards in lossy compression, they are not well suited for quality-critical medical image compression where either near-lossless or lossless coding is required. In this dissertation, two different approaches to improve lossless coding of volumetric medical images, such as Magnetic Resonance and Computed Tomography, were studied and implemented using the latest standard High Efficiency Video Encoder (HEVC). In a first approach, the use of geometric transformations to perform inter-slice prediction was investigated. For the second approach, a pixel-wise prediction technique, based on Least-Squares prediction, that exploits inter-slice redundancy was proposed to extend the current HEVC lossless tools. Experimental results show a bitrate reduction between 45% and 49%, when compared with DICOM recommended encoders, and 13.7% when compared with standard HEVC

    Mitigation of H.264 and H.265 Video Compression for Reliable PRNU Estimation

    Full text link
    The photo-response non-uniformity (PRNU) is a distinctive image sensor characteristic, and an imaging device inadvertently introduces its sensor's PRNU into all media it captures. Therefore, the PRNU can be regarded as a camera fingerprint and used for source attribution. The imaging pipeline in a camera, however, involves various processing steps that are detrimental to PRNU estimation. In the context of photographic images, these challenges are successfully addressed and the method for estimating a sensor's PRNU pattern is well established. However, various additional challenges related to generation of videos remain largely untackled. With this perspective, this work introduces methods to mitigate disruptive effects of widely deployed H.264 and H.265 video compression standards on PRNU estimation. Our approach involves an intervention in the decoding process to eliminate a filtering procedure applied at the decoder to reduce blockiness. It also utilizes decoding parameters to develop a weighting scheme and adjust the contribution of video frames at the macroblock level to PRNU estimation process. Results obtained on videos captured by 28 cameras show that our approach increases the PRNU matching metric up to more than five times over the conventional estimation method tailored for photos

    Disparity compensation using geometric transforms

    Full text link

    A Neural-network Enhanced Video Coding Framework beyond ECM

    Full text link
    In this paper, a hybrid video compression framework is proposed that serves as a demonstrative showcase of deep learning-based approaches extending beyond the confines of traditional coding methodologies. The proposed hybrid framework is founded upon the Enhanced Compression Model (ECM), which is a further enhancement of the Versatile Video Coding (VVC) standard. We have augmented the latest ECM reference software with well-designed coding techniques, including block partitioning, deep learning-based loop filter, and the activation of block importance mapping (BIM) which was integrated but previously inactive within ECM, further enhancing coding performance. Compared with ECM-10.0, our method achieves 6.26, 13.33, and 12.33 BD-rate savings for the Y, U, and V components under random access (RA) configuration, respectively
    corecore