149 research outputs found

    Autonomous Drones for Trail Navigation using DNNs

    Get PDF
    Στην παρούσα διπλωματική εργασία, προτείνεται ο σχεδιασμός και η υλοποίηση ενός πρότυπου drone που έχει τη δυνατότητα αυτόνομης πλοήγησης σε δασικό μονοπάτι χωρίς πρότερη γνώση του περιβάλλοντα χώρου. Χρησιμοποιεί σύστημα τεχνητής όρασης τριών επιπέδων: (i) ένα νευρωνικό δίκτυο βάθους (DNN) για εκτίμηση πλευρικής μετατόπισης και προσανατολισμού ως προς το κέντρο του μονοπατιού, (ii) ένα DNN για αναγνώριση αντικειμένων, και (iii) ένα σύστημα αποφυγής εμποδίων. Η σύνθεση του μικρού εναέριου σκάφους (MAV) έγινε από διαθέσιμα εξαρτήματα (hardware) του εργαστηρίου. Για τον αλγόριθμο ακολουθίας δασικών μονοπατιών, ως βάση νευρωνικού δικτύου χρησιμοποιήθηκε το TrailNet. Στη συνέχεια επανεκπαιδεύτηκε και εμπλουτίστηκε με σύνολο δεδομένων που δημιουργήθηκε από την δασική περιοχή της Πανεπιστημιούπολης Ιλισίων, προσαρμόζοντάς το στην τοπική βλάστηση. Για την επιλογή των βέλτιστων αλγορίθμων αναγνώρισης αντικειμένων, έγινε δοκιμή και αξιολόγηση από αντίστοιχους της τελευταίας γενιάς στην πλακέτα επεξεργασίας Jetson TX2 της NVIDIA. Τέλος δίνεται πρόταση πειραματικής πτήσης με συγκεκριμένες παραμέτρους για την αξιολόγηση της ορθής λειτουργίας.This thesis proposes the design and implementation of a prototype drone stack that is able to autonomously navigate through a forest trail path without having prior knowledge of the surrounding area. It uses a 3 level vision system: (i) a deep neural network (DNN) for estimating the view orientation and lateral offset of the vehicle with respect to the trail center, (ii) a DNN for object detection and (iii) a Guidance system for obstacle avoidance. Hardware synthesis of the Micro Aerial Vehicle (MAV) was built upon hardware parts, available from the lab. Trail following algorithm makes use of TrailNet’s neural network. It was also retrained and enriched by a newly created dataset, formed with footage from the nearby forest canopy of Ilisia Univesity Campus. This also made the model more adaptive to local vegetation characteristics. For object detection service, a comparison between well-known algorithms was made and an evaluation was done in terms of accuracy and efficiency. These were tested on NVIDIA’s Jetson TX2 Dev Kit board. At last, a suggestion of an experimental flight is given with particular parameters, for the evaluation of the proper operation

    Logging Trail Segmentation via a Novel U-Net Convolutional Neural Network and High-Density Laser Scanning Data

    Get PDF
    Logging trails are one of the main components of modern forestry. However, spotting the accurate locations of old logging trails through common approaches is challenging and time consuming. This study was established to develop an approach, using cutting-edge deep-learning convolutional neural networks and high-density laser scanning data, to detect logging trails in different stages of commercial thinning, in Southern Finland. We constructed a U-Net architecture, consisting of encoder and decoder paths with several convolutional layers, pooling and non-linear operations. The canopy height model (CHM), digital surface model (DSM), and digital elevation models (DEMs) were derived from the laser scanning data and were used as image datasets for training the model. The labeled dataset for the logging trails was generated from different references as well. Three forest areas were selected to test the efficiency of the algorithm that was developed for detecting logging trails. We designed 21 routes, including 390 samples of the logging trails and non-logging trails, covering all logging trails inside the stands. The results indicated that the trained U-Net using DSM (k = 0.846 and IoU = 0.867) shows superior performance over the trained model using CHM (k = 0.734 and IoU = 0.782), DEMavg (k = 0.542 and IoU = 0.667), and DEMmin (k = 0.136 and IoU = 0.155) in distinguishing logging trails from non-logging trails. Although the efficiency of the developed approach in young and mature stands that had undergone the commercial thinning is approximately perfect, it needs to be improved in old stands that have not received the second or third commercial thinning

    Logging Trail Segmentation via a Novel U-Net Convolutional Neural Network and High-Density Laser Scanning Data

    Get PDF
    Logging trails are one of the main components of modern forestry. However, spotting the accurate locations of old logging trails through common approaches is challenging and time consuming. This study was established to develop an approach, using cutting-edge deep-learning convolutional neural networks and high-density laser scanning data, to detect logging trails in different stages of commercial thinning, in Southern Finland. We constructed a U-Net architecture, consisting of encoder and decoder paths with several convolutional layers, pooling and non-linear operations. The canopy height model (CHM), digital surface model (DSM), and digital elevation models (DEMs) were derived from the laser scanning data and were used as image datasets for training the model. The labeled dataset for the logging trails was generated from different references as well. Three forest areas were selected to test the efficiency of the algorithm that was developed for detecting logging trails. We designed 21 routes, including 390 samples of the logging trails and non-logging trails, covering all logging trails inside the stands. The results indicated that the trained U-Net using DSM (k = 0.846 and IoU = 0.867) shows superior performance over the trained model using CHM (k = 0.734 and IoU = 0.782), DEMavg (k = 0.542 and IoU = 0.667), and DEMmin (k = 0.136 and IoU = 0.155) in distinguishing logging trails from non-logging trails. Although the efficiency of the developed approach in young and mature stands that had undergone the commercial thinning is approximately perfect, it needs to be improved in old stands that have not received the second or third commercial thinning

    UAVs for the Environmental Sciences

    Get PDF
    This book gives an overview of the usage of UAVs in environmental sciences covering technical basics, data acquisition with different sensors, data processing schemes and illustrating various examples of application

    Visual Guidance for Unmanned Aerial Vehicles with Deep Learning

    Full text link
    Unmanned Aerial Vehicles (UAVs) have been widely applied in the military and civilian domains. In recent years, the operation mode of UAVs is evolving from teleoperation to autonomous flight. In order to fulfill the goal of autonomous flight, a reliable guidance system is essential. Since the combination of Global Positioning System (GPS) and Inertial Navigation System (INS) systems cannot sustain autonomous flight in some situations where GPS can be degraded or unavailable, using computer vision as a primary method for UAV guidance has been widely explored. Moreover, GPS does not provide any information to the robot on the presence of obstacles. Stereo cameras have complex architecture and need a minimum baseline to generate disparity map. By contrast, monocular cameras are simple and require less hardware resources. Benefiting from state-of-the-art Deep Learning (DL) techniques, especially Convolutional Neural Networks (CNNs), a monocular camera is sufficient to extrapolate mid-level visual representations such as depth maps and optical flow (OF) maps from the environment. Therefore, the objective of this thesis is to develop a real-time visual guidance method for UAVs in cluttered environments using a monocular camera and DL. The three major tasks performed in this thesis are investigating the development of DL techniques and monocular depth estimation (MDE), developing real-time CNNs for MDE, and developing visual guidance methods on the basis of the developed MDE system. A comprehensive survey is conducted, which covers Structure from Motion (SfM)-based methods, traditional handcrafted feature-based methods, and state-of-the-art DL-based methods. More importantly, it also investigates the application of MDE in robotics. Based on the survey, two CNNs for MDE are developed. In addition to promising accuracy performance, these two CNNs run at high frame rates (126 fps and 90 fps respectively), on a single modest power Graphical Processing Unit (GPU). As regards the third task, the visual guidance for UAVs is first developed on top of the designed MDE networks. To improve the robustness of UAV guidance, OF maps are integrated into the developed visual guidance method. A cross-attention module is applied to fuse the features learned from the depth maps and OF maps. The fused features are then passed through a deep reinforcement learning (DRL) network to generate the policy for guiding the flight of UAV. Additionally, a simulation framework is developed which integrates AirSim, Unreal Engine and PyTorch. The effectiveness of the developed visual guidance method is validated through extensive experiments in the simulation framework
    corecore