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 ABSTRACT 
 

Autonomous Navigation is a technology that had been developing significantly since the 

early 2010’s. It gives the ability to a vehicle to plan its path and execute its plan without 

human interaction. Some of the fields that Unmanned Vehicles may apply in are 

autonomous driving, surveillance, security monitoring, or crisis management and risk 

assessment activities. Despite the wide acceptance in the field of automotive industry, 

there is a limited development of applications for aerial vehicles such as drones, due to 

expensive hardware and complex software synthesis. 

This thesis proposes the design and implementation of a prototype drone stack that is 

able to autonomously navigate through a forest trail path without having prior knowledge 

of the surrounding area. It uses a 3 level vision system: (i) a deep neural network (DNN) 

for estimating the view orientation and lateral offset of the vehicle with respect to the 

trail center, (ii) a DNN for object detection and (iii) a Guidance system for obstacle 

avoidance. 

Our drone stack is consisted of a DJI Matrice 100 drone integrated with sensors such as 

camera, IMU, GPS, collision avoidance system, and is retrofitted with a Jetson TX2 

supercomputer module that runs all computer vision and decision making tasks in real 

time. We provide details on software stack used, as also for implementation. For 

training of the trail path DNN, we used the IDSIA Swiss Alps trail dataset along with our 

custom dataset that we created from footage within the campus. 

 

 

SUBJECT AREA: Machine Learning, Robotics 

KEYWORDS: autonomous navigation, neural networks, DJI Matrice 100, Jetson TX2, 

ROS 



ΠΕΡΙΛΗΨΗ 
 

Η αυτόνομη πλοήγηση είναι μια τεχνολογία που έχει σημειώσει σημαντική ανάπτυξη 

από τις αρχές της δεκαετίας του 2010. Δίνει την δυνατότητα σε ένα όχημα να σχεδιάσει 

την δρομολόγησή του και να εκτελέσει το σχέδιο δρομολόγησης δίχως ανθρώπινη 

παρέμβαση. Κάποια από τα πεδία ειδίκευσης όπου τα Μη Επανδρωμένα Αεροσκάφη 

έχουν εφαρμογή είναι: η αυτόνομη πλοήγηση αυτοκινήτων, συστήματα 

παρακολούθησης, συστήματα ασφαλείας, συστήματα διαχείρισης κρίσεων και 

εκτίμησης κινδύνου. Παρόλη την ευρεία αποδοχή και ανάπτυξη στον χώρο της 

αυτοκινητοβιομηχανίας, η ανάπτυξη εφαρμογών για μη επανδρωμένα εναέρια μέσα 

(τύπου drone) είναι περιορισμένη, λόγω του ακριβού εξοπλισμού και των σύνθετων 

λογισμικών που χρησιμοποιούν. 

Στην παρούσα διπλωματική εργασία, προτείνεται ο σχεδιασμός και η υλοποίηση ενός 

πρότυπου drone που έχει τη δυνατότητα αυτόνομης πλοήγησης σε δασικό μονοπάτι 

χωρίς πρότερη γνώση του περιβάλλοντα χώρου. Χρησιμοποιεί σύστημα τεχνητής 

όρασης τριών επιπέδων: (i) ένα νευρωνικό δίκτυο βάθους (DNN) για εκτίμηση 

πλευρικής μετατόπισης και προσανατολισμού ως προς το κέντρο του μονοπατιού, (ii) 

ένα DNN για αναγνώριση αντικειμένων, και (iii) ένα σύστημα αποφυγής εμποδίων. 

Η πρότυπη κατασκευή μας αποτελείται από την drone πλατφόρμα Matrice 100 της DJI, 

εξοπλισμένη με αισθητήρες όπως μια κάμερα υψηλής ανάλυσης, IMU, GPS, και 

σύστημα αποφυγής εμποδίων. Επιπροσθέτως φέρει την πλακέτα υπέρ-υπολογιστή 

Jetson TX2 της NVIDIA όπου τρέχουν όλες οι εργασίες τεχνητής όρασης και οι 

αλγόριθμοι λήψης αποφάσεων σε πραγματικό χρόνο. Τεχνικές λεπτομέρειες 

παρέχονται για το υλικό και λογισμικό που χρησιμοποιήθηκε. Για την εκπαίδευση του 

DNN εύρεσης μονοπατιού, χρησιμοποιήσαμε ένα σύνολο δεδομένων από τις Ελβετικές 

Άλπεις διαθέσιμο από το ερευνητικό κέντρο IDSIA, σε συνδυασμό με ένα δικό μας που 

δημιουργήσαμε με καταγραφές από δασικά μονοπάτια εντός της Πανεπιστημιούπολης 

Ιλισίων. 

 

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Μηχανική Μάθηση, Ρομποτική 

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: αυτόνομη πλοήγηση, νευρωνικά δίκτυα, DJI Matrice 100, Jetson 

TX2, ROS  
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1. INTRODUCTION 

In recent years, autonomous navigation applications for UAVs have grown significantly 
and are used for industrial, military, civilian and research purposes. Some of the fields 
that these applications for UAVs are been applied are: autonomous driving, 
surveillance, security monitoring, mapping, crisis management, search and rescue 
activities, risk assessment and recreational activities such as personal video shooting. 
In comparison to Ground Vehicles, UAVs stands out for their advantage in flying around 
unstructured outdoor environments giving them the ability to function at higher speeds 
and variable heights, overcome non-traversable ground obstacles, and covering 
distances in a straight line. 

Autonomous flight in unstructured environments such as forests is a challenging task 
that is still under research and development. A solution to this problem could be helpful 
for many applications like wilderness mapping, search and rescue activities, or even for 
fire monitoring during high risk seasons. The most efficient and safest way to explore a 
forested area is by following a trail path (such as hikers and/or moto crossers are 
using). The most suitable vehicle for this task is a MAV flying under the tree canopy, 
which, due to its size, is more collision resilient. It can cover long distances using optical 
sensors with minimal risk. 

Trail following is a complex task. MAV needs to recognize the trail, and make the 
appropriate decisions in order to keep its trajectory close to the centre line. Extracting 
trail figure from a monocular image is an extremely difficult pattern recognition problem, 
sometimes even for humans. Its appearance (shape and width) may vary in the passing 
of seasons; often seamlessly blend with the surrounding area, leading to ambiguous 
boundaries. 

Another problem in autonomous navigation is obstacle avoidance. Low-flying MAVs 
need to be environmentally aware from colliding with branches, hikers, animals or any 
other objects using the trail. This can be dealt as an object detection problem or as a 
depth estimation problem or as a combination of these two. 

In this project: (a) we introduce a hardware/software synthesis of a MAV for 
autonomous navigation in a forested trail path. It uses a DNN architecture specialized in 
trail detection estimating both view orientation and lateral offset. This is the very first 
system of which we are aware of that combines a DJI M100 drone platform with a 
Jetson TX2 module. (b) We created a dataset from footage within the University 
campus for retraining the DNN model to recognize the lateral offset on the trail. This 
also makes the model more adaptive to local vegetation characteristics. (c) For object 
detection service, we did a comparison between well-known algorithms and evaluated 
them in terms of accuracy and efficiency. 

The rest of the thesis is as follows: In Chapter 2 the problem formulation and the 
rationale behind the algorithms used are introduced. The implementation of the 
algorithms, the hardware and software setup, the training and the experiment results 
are provided in Chapter 3. The conclusions and future work are given in Chapter 4. 

 

1.1 Previous Work 

In several previous works, finding trail paths from a single image is treated as a 
semantic segmentation problem. The goal is to extract, group and outline these visual 
features that define a trail path. Rasmussen et al. [3] define these features using 
appearance contrast while Santana et al. [4] relies on image conspicuity. Both 
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approaches can be viewed as a problem of saliency estimation. Saliency quantifies 
each pixel according to its unique colour quality in a colour image. For example a group 
of pixels that represent a specific coloured object on a uniform background will be 
denoted with higher saliency than the pixels on the background. So in case of an image 
that contains a trail path with visual differences to its surrounding areas, saliency 
estimation will output high values for trail pixels and low values for everywhere else. In 
Levin and Weiss [5] salience data are aggregated, using also deep learning techniques 
by considering both top-down and bottom-up cues simultaneously, in order to extract 
segments of the trail and other obstacles in the image. Semantic segmentation 
approach was also followed in another project of Rasmussen et al. [7] that used stereo 
cameras along with a laser range finder device in order to navigate a wheeled robot 
through a trail path. 

Another approach for the trail perception problem is to transform it to an image 
classification problem. Giusti et al. [1] proposed a method of predicting the view 
orientation of the MAV compared to the trail path direction. They developed a DNN that 
was trained with footage from a head-mounted rig consisted by three cameras (each 
one aiming at left/straight/right of the trail path’s center line). Then, the trained DNN was 
outputting steering commands for keeping MAV close to the center line. This project 
was based upon previous work of Rasmussen et al. [7] that used a ground vehicle. 
Smolyanskiy et al. [2] extended this, by enriching the method to travel along trail path’s 
center line by computing the lateral offset from the center of the trail path. They were 
inspired by M. Bojarski et al. [11], an NVIDIA’s DNN-controlled self-driving car that was 
using three different direction cameras on-board. Our project is actually based on DNN 
architectures used in [1] and [2], trained with the IDSIA forest trail dataset [6] and our 
custom dataset that was created from three cameras on a wide baseline rig. This makes 
our system capable of estimating both view orientation and lateral offset within the trail. 

Zhilenkov and Epifantsev [9] proposed a system with autonomous environment 
recognition and decision making for forest trail navigation, equipped with three different 
direction cameras, assisted by pre-image processing. Maciel-Pearson et al. [8] 
proposed a similar method, in which input images were horizontally split into three equal 
parts, and the probability of the existence of the trail is computed for each part, 
concluding to a heading direction. Palossi et al. [10] proposed a neural network for 
distinguishing and follow the running tracks in the image, for use in a low powered on-
board computer. 

Several studies introduce visual-based processing methods for dealing with obstacle 
avoidance. Alvarez et al. [12] uses a structure-from-motion (SfM) algorithm to infer 
depth from a single front camera image. Bry et al. [13] uses a combination of two 
sensors, an IMU with a laser range finder, for localization of the MAV flying in indoor 
environment. Fraundorfer et al. [14] use a combination of front facing stereo-cameras 
with a downward facing single camera for map building and state estimation. 
Scaramuzza et al. [15] use an IMU with three cameras. 

Obstacle avoidance problem is also resolved through feature matching algorithms. Mori 
et al. [16] proposes the SURF (Speeded-Up Robust Features) algorithm and Al-Kaff et 
al. [17] the SIFT (Scale-Invariant Feature Transform). The only drawback of these two 
algorithms is time complexity which is proportional to input image resolution and total 
number of key points. As shown in Drews et al. [18], in complex environments, such as 
forests, more key points are generated that lead to the need of more computational 
power, which makes these algorithms restrictive in running at real-time on such on-
board computer modules. They are also unsuitable on detecting features in case of 
moving obstacles [17]. 
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Smolyanskiy et al. [19] introduce a novel semi-supervised learning algorithm by training 
a deep stereo neural network for depth estimation. They also created a minimized 
version of the same stereo DNN, allowing it to run on an embedded GPU such as 
Jetson TX2. 
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2. RATIONALE AND PROBLEM FORMULATION 

For an MAV, to succeed in autonomous navigation through unseen unstructured 
outdoor environments, it has to develop a logic that, assisted by the sense of sight, will 
keep it focused on its goal. This logic can be expressed through a group of pre-trained 
neural networks. In this chapter we present the strategy followed on how to reach the 
primary goal, by simplifying the use of each neural network separately. 

 
2.1 Definition of the problem 

Consider an image that contains a segment of a trail path somewhere in a forest or a 
mountain, and we need to perceive that trail from that image. We can assume that this 
image is acquired from a single monocular camera from the view-point of a hiker that 
has an average height of 1.7 meters. It is a reasonable choice because in most cases it 
is a height free of obstacles, providing a promising overview of the surrounding area. 

As described in [1], we adopt the same method by considering the problem as 
classification rather than regression. By processing the image as a whole: (i) make data 
acquisition and labelling a simple task, (ii) model is less prone to noise, (iii) there is no 
need in defining separate characteristic features of trails, which is a computational 
needy task given the variability of their appearance. 

 

Figure 1: Left: �⃗� is the trail’s center line. Right: 𝒗��⃗  is the camera’s view point, a,𝒃 are angles (see 
text for details) [1] 

In the left pane of Figure 1, we present the trail’s center line; t⃗ is the horizontal direction 
that a walker should follow in order to traverse the trail path, remaining as close to the 
center of the trail. In the right pane, we define v�⃗  as the direction of the camera’s view 
point, and a�⃗  is the signed angle between v�⃗  and t⃗.  
According to the angle a�⃗  between the view-point of the camera and the trail’s center line 
direction, three classes are defined, each one corresponding to a steering action for the 
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carrier of the camera that needs to follow in order to remain closest to the center of the 
trail. So, the three classes that define the heading directions are: 

• Turn Left (TL): if −900 < 𝑎 < −𝛽 then trail direction is on the left of the image. 

• Go Straight (GS): if −𝛽 ≤ 𝑎 < +𝛽 then trail direction is on (or close to) the center 
of the image. 

• Turn Right (TR): if +𝛽 ≤ 𝑎 < +900 then trail direction is on the right of the image. 

For an input image, the goal is to classify it in one of the pre mentioned classes. Angle β 
is set to 150. For the special case that the absolute value of angle a�⃗  exceeds 900, we 
consider that image does not contain a trail path, so the inferred class is not Go 
Straight. 

In order to increase the performance of trail following by making the UAV to converge to 
the center of the path, we used the modified network as described in [2] that introduces 
an additional three classes as output for lateral offset (shifted left / center / shifted right) 
compared to trail centre. Without these classes, the MAV may fly in parallel to the trail’s 
central line but close to the edge, causing collisions with tree branches or other 
obstacles. DNN will correct this orientation error only if it has the information of the 
lateral offset. 
 
2.2 Trail Following 

The DNN used in the current project for trail following, determines the head direction 
(HD) and recognizes the lateral offset (LO) position of the MAV with respect to the trail 
path. It consists of a modified version of the standard ResNet-18 [24] resulting to a 
double headed fully connected output layer. The overall network architecture is given in 
Figure 2. It consists of successive pairs of convolutional and max-pooling layers, 
followed by several fully connected layers. As outputs it gives three classes for the view 
orientation of the trail and three classes for the lateral offset of the trail. The latest three 
classes are essential to accurate state estimation increasing reliability to trail following. 

 

Figure 2: Trail following DNN architecture [2] 

The input image is resized to a size of 3 × 320 × 1801 pixels, which are fed directly to 
the neurons of the input layer. The DNN outputs probabilities of the input image for the 
classes TL, GS, TR, and predictions of the lateral offset of left, centre and right. 

 

                                              

1 The image size is 320 x 180 and comes in three chrominance of red, green and blue. 
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2.2.1 Dataset Acquisition and Pre-processing 

In order to train our model, we need to collect at first a satisfying amount of 
representative data. The appearance variability of the trail paths and their surrounding 
areas leads to a number of factors that need to be taken into consideration such as: the 
vegetation types, the local topography, lighting conditions, etc. So, our dataset is 
consisted of many different long distance trails, with different times in the day (early 
morning/noon/late afternoon) and weather conditions, covering different locations with 
varying vegetation during different seasons (summer/autumn/spring). 

Dataset acquisition setup is given in Figure 3. For the head direction training, we used 
the IDSIA forest trail dataset [6]. The footage is from a three head-mounted cameras, 
(aiming left 300, straight and right 300), with the FOV (field of view) of each camera 
partially overlapping, and all three cover in total a 1800  view. It covers 7 Km of trails on 
attitudes ranging between 300 m and 1200 m, resulting to an 8 hours Full HD video at 
30 fps. As shown in the left pane of Figure 3, a corresponding label is given to each 
camera according to the direction it shows. An image that shows the left side of the trail 
is labeled as “turn right” and vice-versa. The trained model sorts input images in three 
classes: turn left (TL), go straight (GS), and turn right (TR). These are commands for 
trail following, maintaining the MAV between borderlines. 

 

Figure 3: Data acquisition for: Left: head direction commands Right: lateral offset commands 

For training of the lateral offset layers of our network, we created our own dataset from 
footage within the Ilisia University Campus and the surrounding area of Hymettus 
mountain. As shown in the right pane of Figure 3, we used three Full HD cameras 
mounted on a 1 m baseline rig, with distance between adjacent cameras set to 0.5 m. 
The footage recorded resolution was Full HD (1920 × 1080 ) at 30 fps with FOV 
120o × 90o . Across the entire route, a hiker was holding the rig in front of his chest, 
walking to the center of the path. Because of the fisheye distortion, all videos where 
initially cropped to horizontal 600 FOV, and then used for training the 3 class lateral 
offset layers. A detailed reference on data pre-processing can be found in Appendix II. 
So, in addition to head direction estimation, the trained model also predicts the lateral 
position offset by making a second sort of the input images into categories turn left (TL), 
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go straight (GS), and turn right (TR). These commands help the MAV to get closer to 
the centre of the path. 

 

2.2.2 Training the Network 

The IDSIA trail dataset contains a total of 24.474 frames. A split in training and testing 
sets was done similar to [1] containing 17.119 and 7.355 frames respectively. In each 
set, images from each class are equally distributed. Our dataset contains a total of 
approximately 5.000 images. From these, 4.000 images with their labels were used for 
training and the rest 1.000 were used for testing. 

In the stage of pre-process, data augmentation is done through a set of modifications. 
Horizontal mirroring is applied randomly in some images followed by label changes 
respectively. Also other modifications applied are: random contrast with 0.2 radius, 
random brightness with 0.2 radius, sharpness with 0.3 radius, saturation with 0.4 radius, 
random crops, and random affine distortions with ±10% scaling, ±10% translation, 
±150  rotations. 

In the first step, we train the head direction of the network (hyper-parameters in Table 1) 
through the UI of the NVIDIA DIGITS framework (see Appendix II.D). We use only the 
IDSIA dataset and the DNN is trained with backpropagation for 20 epochs, with a batch 
size of 64, and a base learning rate set to 0.001. In addition, a loss function is used (as 
proposed in [2]) to prevent overconfidence in the network. In the second step, we add 
lateral offset ability by re-training the network exported from the previous step with same 
parameters. This time, we use our custom dataset from the University campus. 

 
Table 1: Hyper-Parameters for training the trail following DNN 

Parameter Value 
Training Epochs (Iterations) 20 
Batch Size 64 
Base Learning Rate 0.001 
Solver Type Nesterov’s accelerated gradient (NAG) 
Policy Polynomial Decay 
Loss Function Cross Entropy (CE) + Entropy Reward 

(ER) + Side Swap Penalty (SSP) 

 

A network (model) that fits exactly against to its training data is called «overfitted». The 
drawback is that it memorizes the noise of the training data and it doesn’t generalize 
well to new data. In our case, the MAV results in delayed turning left or right, due to high 
noise in «Go straight» class. To make our model less confident, we use the loss 
function [2]: 

L = −� pi ∙ ln(yi)
i

− λ1 ∙ �−�yi ∙ ln(yi)
i

�+ λ2 ∙ φ(y) 

It is consisted of three terms: Cross Entropy (CE), Entropy Reward (ER), and Side 
Swap Penalty (SSP). It is used in both head direction and lateral offset training. 
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In Table 2, the parameters that the loss function contains are described. The 
parameters that reduce network confidence are smoothed labels used at first term and 
the entropy reward term. 

 
Table 2: Loss Function Parameters 

Loss Function 
Parameter 

Description 

𝐩𝐢 Smoothed ground truth label 

𝐲𝐢  Category prediction 𝑖 ∈ {𝑙𝑙𝑙𝑙 ,𝑐𝑙𝑐𝑙𝑙𝑐, 𝑐𝑖𝑟ℎ𝑙} 
𝐲 [yi ,λ1 , λ2] 

𝛗(𝐲) 
�

yleft, if ı̂ = right
yright, if ı̂ = left
0, if ı̂ = center

 with ı̂ = argmaxipi���������
ground truth category

 

 

2.2.3 Steering Command Controller (Waypoint Computation) 

The trail following DNN takes as input a monocular camera image, and returns two 
arrays of three items each, representing category predictions for head direction yiHD and 
lateral offset yiLO. Predictions are expressed as softmax values. The standard softmax 
function is used: σ(z)i = ezi

∑ ezjK
j=1

, for i− 1, . . . , K and z = (z1, … , zK)∈ RK. In general, it 

means that for any input, the outputs must be all positive and they must sum to unity. 

Predictions of Head Direction (HD) Predictions of Lateral Offset (LO) 

yleftHD

ystraightHD

yrightHD
�
𝑠𝑠𝑠
����yiHD = 1 

yleftLO

ystraightLO

yrightLO
�
𝑠𝑠𝑠
����yiLO = 1 

 

To translate these predictions to a steering command, we use a controller that 
computes a turning angle ȧ𝑑 counterclockwise: 

ȧ𝑑 = kHD ∙ �yrightHD − yleftHD�+ kLO ∙ �yrightLO − yleftLO� 

It is dependent to the weighted sum of differences between probabilities of the left and 
right turn commands for head direction control and lateral offset control respectively. 
kHD and kLO are positive parameters for adjusting the turning speed and are set to 100. 
It gives a negative angle for turning left and a positive for turning right. 

As a final step, we compute the destination waypoint 𝑃𝑑 relative to MAV’s current 
position. 

𝑃𝑑 = �𝑃𝑑,𝑥
𝑃𝑑,𝑦

� = �𝑃𝑐,𝑥 + 𝑣𝑐 ∙ cos 𝑎𝑑 𝑑𝑙
𝑃𝑐,𝑦 + 𝑣𝑐 ∙ sin 𝑎𝑑 𝑑𝑙

� with 𝑎𝑑 = 𝑎𝑐 + ȧ𝑑 
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Table 3: Waypoint Function Parameters 

Waypoint Function Parameter Description 

𝑷𝒅,𝒙, 𝑷𝒅 ,𝒚 x, y coordinates of desired position 
waypoint 

𝑷𝒄,𝒙, 𝑷𝒄,𝒚 x, y coordinates of current position 
waypoint 

𝒗𝒄 Fixed desired forward speed 

𝒅𝒕 Time sampling 

𝒂𝒄 Current heading angle 

𝒂𝒅 Desired heading angle 

 

In Table 3 the waypoint function parameters are given. When the turning angle is given, 
the destination waypoint 𝑃𝑑 can be computed for a given time sampling e.g. 1 sec, and 
a fixed forward speed e.g. 1 m/s. Then, the vehicle is oriented towards the new 
waypoint direction. The computed waypoint is sent to MAV’s flight controller for flight 
plan execution. 

 
2.3 Environmental Awareness 

One important task in autonomous navigation is to ensure safety during flight. A low 
flying MAV under the forest canopy needs to be environmentally aware of possible 
obstacles in close range, in order to avoid them. Professional solutions may offer 
complete stand-alone obstacle avoidance systems, based on visual and ultrasound 
sensors. This can be enhanced by the parallel use of object detection DNN which may 
detect objects not seen from the obstacle avoidance system in first place. Moving 
objects, like people or animals, is such a case. 
 

2.3.1 Object Detection 

In object detection algorithms, the main goal is to detect and localize with a bounding 
box (BB) the item of interest inside an image. This can be done for multiple items 
representing different objects, and their BBs may overlap. Each of the object detection 
DNN architecture performs differently. We need to focus on objects that are usually 
found inside or near a forest trail path. Through a literature review, we decided to 
examine the most relevant and competitive DNN architectures for object detection, 
running on the Jetson TX2 on-board embedded GPU system. 
 
2.3.1.1 Legacy Networks 

• R-CNN: The Region based Convolutional Neural Network was introduced by 
Girshick et al. (2014) [25] and was the first model that was able to identify 
multiple occurrences of the same object within an image. Unlikely, it is 
computationally source demanding and cannot perform on embedded systems in 
real-time. 
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• Fast R-CNN: An improved version of the same algorithm was published by 
Girshick (2015) [26] in the following year. It constitutes a faster variant of the 
previous version, but it lacks on performance. 

• Faster R-CNN: Both previous networks used the selective search method 
(Gandhi [29]), to determine the region proposals, which made them inefficient 
and computationally expensive. Region Proposal Networks (RPN) introduced by 
Shaoqing et al. (2016) [27] replaces selective search method by generating the 
region proposals and the BBs directly within the image. Faster R-CNN (2016) is 
based on Fast R-CNN combined with RPN, which is trained to generate high 
quality region proposals, resulting in improved performance and accelerated 
computation process. 

• SSD: Single-Shot Detector (2016) [33] is a one stage detector, in contrast to the 
aforementioned Faster R-CNN and its variants. It simultaneously predicts the BB 
and the class as it processes the image. It is more accurate than Faster R-CNN 
and provides enormous speed gains. 

• YOLO v2 and v3: YOLO v2 (You Only Look Once) was introduced by J. Redmon 
et al. (2016) [31] as a one stage detector. In contrast to other CNN algorithms 
which use region proposals for object localization; this one predicts BBs and 
class probabilities using a single convolutional network. It divides images into 
grid cells and predicts BBs using dimension clusters as anchor boxes. In 2018, 
an updated version 3 [32] was published by the same author. As a backbone 
network, yolov3 uses Darknet-53 for feature extraction, which is a residual 
network consisted of 53 convolutional layers. BBs are predicted in 3 different 
scales through extracting features from these scales. This version has an 
improved speed and detection accuracy over small-sized objects in contrast to 
previous one. There is also a tiny port that uses the same concepts but with a 
degraded total of convolutional layers and only 2 scales, leading to much greater 
inference speed with a cost on accuracy. 

 
2.3.1.2 State-Of-The-Art Networks 

• MobileNetv2-SSDLite: MobileNetv1 is an efficient CNN model introduced by 
Google in 2017. It uses a modified version of regular SSD. In SSDLite, regular 
convolutions are replaced by depth-wise separable convolution layers, which 
reduce the model size and the complexity cost of the network. This gives a great 
compatibility for embedded systems, such as mobile devices, because it makes it 
lightweight with high FPS rate. In 2018 MobileNetv2 [40] was introduced. It is an 
improved module with inverted residual structure. It is 20x more efficient and 10x 
smaller than YOLOv2. 

• YOLO v4: YOLOv4 was introduced by Bochkovskiy et al. [35] in 2020. It has an 
improved performance over the previous version. It uses a new backbone named 
CSPDarknet-53, which is a Cross Stage Partial (CSP) network, adding the use of 
Spatial Pyramid Pooling (SPP), Path Aggregation Network (PAN), and mosaic 
data augmentation method. Unfortunately it lacks accuracy when dealing with 
numerous small objects in the scene. A tiny port is also available for low power 
embedded systems. 
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2.3.1.3 Performance Comparison 

Several researchers have been improving their neural networks, seeking higher 
precisions in object detection accompanied by near real time performance. For 
precision evaluation, a standard dataset is used and the common metric is the mean 
Average Precision (mAP). It provides the mean value of the average precision 
generated from all the class objects within the dataset challenge. For performance 
evaluation, the metric used is frames per second (FPS). We assume that a near real 
time speed can be achieved between 15 and 30 fps and a real time speed with above 
30 fps. mAP is inversely proportional to FPS speed, so better accuracy usually comes 
with slower FPS. 

In Table 4 and Table 5, performance results are shown of selected algorithms used for 
object detection. All metrics have been sourced from their initial publications. For each 
architecture we provide: the input image dimensions, the backbone used, the mAP and 
AP-50 metrics of Ms COCO [38] 2017 dataset (80 classes), and the FPS on Jetson 
TX2. From [39], FPS on YOLO v3 and v4 variants is given for Jetson Nano. We 
assumed that TX2 is on average 2.5x faster than Nano. 

TensorRT is a framework provided by NVIDIA and written in CUDA for optimizing deep 
learning models running on embedded systems such as Jetson TX2. By using 
TesnorRT, precision data type of model’s weights and parameters can be reduced, thus 
inference can be performed at half precision floating point (FP16). This is a smart 
technique for increasing model’s speed with exchange a small degradation of the 
accuracy. For some of the selected models, an optimized version is given, that is 
converted into TensorRT format with FP16 precision. For YOLO models we observe 
that TensorRT engine runs at ~4.2 times the speed of the original Darknet model. 

 
Table 4: Performance comparison of object detection DNNs (Legacy Networks) 

Network Architecture Backbone mAP 
@[.5,.95] 

AP-50 
@.5 

FPS on 
TX2 

Faster R-CNN [27] ResNet-101 [24] 27.2 48.4 0.9 
SSD-512 [33] ResNet-101-SSD 31.2 50.4 11~12 
MobileNet-v1-SSDLite 
[40] 

 22.2 – ~21 

YOLOv2-608 [31] Darknet-19 [31] 21.6 44.0 7 
YOLOv2 tiny [31] 
*Pascal VOC 

Darknet-19 – – 15~16 

YOLOv3-288 [37] with TensorRT 7 
(FP16 precision) 33.1 60.1 ~20.4 

YOLOv3-416 [37] with TensorRT 7 
(FP16 precision) 37.3 66.4 ~12.3 

YOLOv3-608 [37] with TensorRT 7 
(FP16 precision) 37.6 66.5 ~6.3 

YOLOv3-tiny-416 [32] Darknet-53 
16.6 33.1 12 

 with TensorRT 7 
(FP16 precision)   37 
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Table 5: Performance comparison of object detection DNNs (State-Of-The-Art Networks) 

Network Architecture Backbone mAP 
@[.5,.95] 

FPS on 
TX2 

MobileNet-v2-SSDLite [40]  22.1 ~28 
YOLOv4-288 [37] CSPDarknet53 37.1 ~4.7 

with TensorRT 7 
(FP16 precision) 

~19.8 

YOLOv4-416 [37] CSPDarknet53 45.3 ~2.75 

with TensorRT 7 
(FP16 precision) 

~11.5 

YOLOv4-608 [37] CSPDarknet53 48.3 ~1.4 

with TensorRT 7 
(FP16 precision) 

~5.88 

YOLOv4-tiny-416 [39] With TesorRT 7 
(FP16 precision) 

19.6 64 

Scaled-YOLOv4-512 [39] With TesorRT 7 
(FP16 precision) 

43.6 10 

 

After evaluation, we ended up using YOLOv4-416 for high accuracy, and YOLOv4-tiny-
416 or MobileNetv2-SSDLite for speed. For an optimized version of these networks 
running on NVIDIA Jetson board, we choose tkDNN [41], that is a Deep Neural Network 
library built with cuDNN and tensorRT primitives. The main goal of tkDNN project is to 
exploit NVIDIA boards as much as possible to obtain the best inference performance. 

 

2.3.2 Obstacle Avoidance System – «Guidance» 

The DJI Matrice 100 framework that we use comes with an integrated collision and 
obstacle avoidance system called «Guidance». DJI’s Guidance system [42] is a sensor-
based navigation aid that can be installed on flying platforms or any other carriers. It 
uses ultrasonic sensors and stereo cameras to gather real time data about its 
surroundings. These sensors are equally shared at five sticks: four to cover all 
horizontal directions for obstacle avoidance plus a fifth aimed at the ground for X/Y 
positioning. Guidance Core collects sensor data, such as velocity, obstacle distance, 
position, IMU readings (acceleration, attitude, etc.), and in continue feeds the processed 
data to the DJI flight control system or to other intelligent systems of the carrier. 
Aircrafts equipped with Guidance system are able to perform hovering and obstacle 
sensing functions in GPS-denied environments. 
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Image 1: DJI’s Guidance Obstacle Avoidance System [42] 

 
2.4 Algorithms Integration 

The framework of algorithm integration is designed as shown in Figure 4. At first, the 
current frame is fed in parallel to all three algorithms for processing. Trail navigation 
algorithm gives as an output, 6 percentages of head direction and lateral offset 
parameters. Through waypoint computation controller, these are translated into 
coordinates of the desired destination position. If there is no obstacle in its path, the 
desired waypoint is forwarded to MAV’s flight controller for flight plan execution. 

The other two algorithms are used for obstacle avoidance. DJI’s «Guidance» system 
explores the surrounding area and if an obstacle is found within a close range, it 
overrides the waypoint commands and immediately stops and hover. In order to 
strengthen its weakness in detecting moving obstacles on time, object detection 
algorithm was added. It is used to detect an object by providing its localization through a 
BB, followed by the label of the category inferred and the confidence percentage. If the 
box exceeds a threshold percentage of the image, i.e. 50%, then the waypoint 
commands are overridden and cause the MAV to stop and hover. 
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Figure 4: Algorithm integration framework 

There is also a controller for teleoperation commands that can override at any time the 
trail following DNN algorithm. This can be used for emergency situation or in training 
session. 
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3. HARDWARE ARCHITECTURE 

In order to set up a robust and flexible platform, flying under the forest canopy, we had 
to make a synthesis from different parts and accessories. Below, we present a detailed 
description of all the hardware used, including the setup procedure that was followed. 

 

3.1 Hardware System Overview 

The MAV that we used in our experiments is shown in Image 2. It uses as baseline 
platform the DJI’s Matrice 100 (M100) quadcopter. It is accompanied with some 
hardware modules critical for its flight capability: N1 flight controller, Zenmuse Z3 
camera with gimbal supporting resolutions up to 4K video @ 30 fps, C1 remote 
controller with an operating range of up to 5 km, and a visual guidance system for 
obstacle avoidance. In addition, it is also equipped with NVIDIA’s Jetson TX2 
supercomputer, which is used for vision processing and other computational demanding 
tasks (ROS, Wi-Fi Network Connectivity, etc.). 

 

 
Image 2: Overview of our custom MAV framework 

 

A hardware overview of our MAV system is shown in Figure 5. It is consisted of the 
following sub-sections:  

• Power Distribution Circuity (PDC) that is seated onto the center frame of the 
platform. It is responsible for the correct power management of its components. 

• Flight Controller (FC) that is responsible for the rotors movement and the 
command navigation execution. It has an embedded processor that receives and 
processes data from sensors such as GPS, IMU, and gimbal with Camera. It also 
offers external communication through RF antennas. 

• Actuators that are 2 front and 2 rear rotors controlling propellers speed. 

• External Peripherals that could be the official C1 Remote Control or a third party 
joypad used for manual navigation. 
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• «Guidance» System that is an optional module mounted on the baseline platform 
supporting data transfer to/from Flight Controller. It is used for obstacle 
avoidance. 

• External Computer Module that is used for autonomous navigation. In our case 
we use NVIDIA’s Jetson TX2 supercomputer that handles process demanding 
vision-based DNN algorithms. It also offers a wireless connection through Wi-Fi 
module and carries a wide angle camera with 4K resolution. It exchanges data 
with N1 FC. 

 

 
Figure 5: System Hardware Block Diagram 

 
In continue we present a more detailed breakdown of hardware parts. 

3.1.1 DJI Matrice 100 (M100) quadcopter 

The Matrice 100 [Image 3] is a stable, flexible, and powerful flying platform, designed 
and produced by Da Jiang Innovation (DJI) Science and Technology Company Ltd, and 
released for first time in 2015. It was DJI’s first fully-integrated UAV platform designed 
for light duty commercial applications, competing small- and mid-sized drones of its 
class. It offers great customizability by allowing developers to make modifications 
according to their specific needs. It has 2 expansion bays that can be configured to 
carry any set of sensors or devices (up to 1 kg). Through DJI SDK, developers have full 
control over the platform with the built-in API Control feature, allowing them to build 
custom mobile apps and advanced flight controls for any requirement. It can carry up to 
2 Intelligent Flight Batteries that would extend the flight time to 40 minutes. The default 
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package of M100 flying platform includes a flight controller, propulsion system, flexible 
cargo bays, GPS, dedicated remote controller, a great mobile app and a rechargeable 
battery. 

 
Image 3: DJI Matrice 100 (M100) baseline platform [43] 

 

The M100’s N1 flight controller [Image 5] receives and processes the data from the local 
sensor suite (i.e., gyroscope, compass, barometer) and GPS receiver prior to sending 
the control information to each individual motor via its electronic speed control (ESC) 
circuits, which are designed to control the motor’s thrust, revolutions per minute (RPM), 
and direction. 

 

 
Image 4: DJI C1 Remote Controller [43] 

 
Image 5: DJI N1 Flight Controller [43] 
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In order for our robot to get a reliable position estimate, we are using DJI’s default 
global positioning system (GPS) [Image 6] to read the robot’s latitude and longitude 
coordinates. 

 
Image 6: DJI’s M100 GPS Module [43] 

 
Image 7: DJI Guidance Sensors and Computing 
Core [42] 

 

The M100 also contains a gimbal camera (Zenmuse Z3) [Image 8Image 6Image 8], 
which provides video feed to the human operator via the radio frequency (RF) up/down 
link. The movement of the M100 quadcopter UAV originates from the remote control 
stick [Image 4]; the signals are sent via RF data up/down link and are passed to the N1 
flight controller to execute the desired movement by directing the ESC and motors to 
increase or decrease speed. 
The movements supported for the M100 are divided into two categories: vertical and 
horizontal axes. In the vertical plane, the UAV is designed to: Hover (stays steady in the 
sky), Ascend (increases its altitude), and Descend (reduces its altitude). In the horizontal 
plane, the UAV is designed to: Yaw (rotate to the left or the right), Pitch (moves forward or 
backward), and Roll (moves sideways left or right). 

 

 
Image 8: DJI Zenmuse Z3 Camera [47] 

 
Image 9: Intelligent Flight Battery 
TB47D/TB48D [43] 
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The M100 is integrated with a Zenmuse Z3 gimbal camera system for live video feed 
during the flight. This Z3 camera contains a Sony complementary metal oxide semi-
conductor (CMOS) sensor with 12.4M pixels, which provides 4K / FHD / HD quality 
video recording to the user. The three-axis gimbal controller receives data from the N1 
flight controller to compute the required angular motion correction to the camera for 
video stabilization during flight, and to make control changes to point the camera 
according to user-defined inputs.  

Table 7 summarizes the key specifications of the DJI Zenmuse Z3 gimbal camera. 

 
Table 6: Key Specifications of the Matrice 100 MAV [43] 

Parameters Values 
Performance 
Hovering Accuracy (P-Mode with GPS)  Vertical: 0.5m, Horizontal: 2.5m  
Max. Angular Velocity  Pitch: 300o/s , Yaw: 150o/s  
Max. Tilt Angle  35o  
Max. Speed of Ascent  5 m/s  
Max. Speed of Descent  4 m/s  
Max. Wind Resistance  10 m/s  
Max. Speed  22 m/s (ATTI mode, no payload)  

17 m/s (GPS mode, no payload)  
Battery Voltage/Capacity  TB47D : 22.8V / 4500 mAh  

TB48D : 22.8V / 5700 mAh  
Hovering Time w/o payload  
(with Zenmuse Z3)  

19 mins with TB47D  

23 mins with TB48D  
RF Data Up/Down Link 
Operating Frequency  5.725 ~ 5.825 GHz (Video)  

2.400 ~ 2.483 GHz (Data)  
Estimated Transmission Distance  
(Line-of-sight)  

CE: 3.5 km  
FCC: 5 km  

Structure 
Diagonal Wheelbase  650 mm  
System Weight  2355 g with TB47D  

2431 g with TB48D  
Maximum Takeoff Weight  3600 g  
Expansion Bay Weight  45 g  
Zenmuse Z3 Gimbal Camera  247 g 
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Table 7: DJI Zenmuse Z3 Gimbal Camera Specifications 

Parameters Values 
Model  Zenmuse Z3 (FC250)  
Sensor  Sony EXMOR 1 / 2.3” CMOS  
Shutter Type  Global Shutter  
Lens  Field of View (FOV): 94o  

Focal Length (35 mm Equivalent): 20 mm  

Aperture: F/2.8  
Video Recording  UHD (4K):  

4096 x 2160  

3840 x 2160:  

FHD (1080p):  
1920 x 1080  

HD (720p)  

1280 x 720  
File Format  Photo: JPEG, DNG Video:MP4 in .MOV  
Photography Modes  Storage on MicroSD Card  

Single Shot, Burst (3, 5, 7 frames per sec)  
Interface  Proprietary of DJI. Undisclosed. 

 
3.1.2 Power Supply and Consumption 
The M100 system is powered by a single TB47D / TB48D [Image 9], 6S LiPo battery 
with voltage rated at 22.8V, and capacity of 4500 mAh / 5700 mAh. The M100 has its 
own power distribution circuitry to provide regulated power to the base unit hardware 
modules. The M100 power circuitry has two additional ports for 22.8V unregulated 
voltage, which can be supplied to additional experimental hardware units. 

The Jetson Development board contains a 5 V DC-DC converter capable of powering 
most sensors, so the only components which require direct power from the main power 
supply is the TX2 itself. The selected Lithium Polymer battery has 6 cells in series, 
meaning the nominal battery voltage is 22.8 V when fully charged. This means that a 12 
V output buck converter is required to step down the DC voltage to a level safe for the 
TX2. This approach was followed by Cookson et al. (2019) [51] for the development of a 
UGV taking part on 2019 Intelligent Ground Vehicle Competition. 

An indicative estimation of peripheral power consumption and battery operation time is 
shown in Table 8 and  
Table 9. We use the Ohm’s law that says power P of an electrical device is equal to 
voltage V multiplied by current I: 𝑃 = 𝑉 ∗ 𝐼. Also amp hours are a measure of electric 
charge Q (the battery capacity): 𝐸 = 𝑉 ∗ 𝑄. As energy E is power P multiplied by time T: 
𝐸 = 𝑃 ∗ 𝑇. All we have to do to find the energy stored in a battery is to multiply both 
sides of the equation by time: 𝐸 = 𝑉 ∗ 𝐼 ∗ 𝑇. 



Autonomous Drones for Trail Navigation using DNNs 

G. Kalampokis   35 

In Table 8, we give details on our computations. We need to estimate the power 
consumption (Watts/hour) of each of the 3 main components: (i) TX2 with all its 
sensors, (ii) DJI Guidance, and (iii) M100 with 1 kg payload and Zenmuse Z3 camera. 
For the first two, we have 99 Wh and 12 Wh given from their technical specifications. 
For M100 we have to make the maths. By using one TB48D battery, we know that its 
max power is 130 Wh. We also have the max hovering time for cases (1), (2), and (3), 
so we can calculate the Wh respectively. Utilizing the Wh for the first three cases, we 
can estimate the Wh for the (4) case, which is the power consumption per hour for the 
M100. At last we calculate the total operation time by dividing the battery energy (130 
Wh) with the sum of the 3 main components power consumption (659.1 Wh). 

 
Table 8: Estimated Peripheral Power Consumption 

Components Voltage (V) Current (mA) Power (W) 
TX2 Dev Kit (B04) 
with: 
- TX2 Module 
- OmniVision 
OV5693 (5MP) 

19 4740 90 + (10% margin) * 
90 = 99 
(Given from TX2 
specs) 

M100 with: 
- GPS 
- Zenmuse Z3 
- N1 FC 
- 1 kg payload 

N/A 5700 493.29+(10% 
margin) * 493.29 = 
548.1 
(Computed in (4)) 

(1) Hovering Time2 (with TB48D) no payload: 
28 min 60 ∗

130
28 = 278.5 

(2) Hovering Time (with TB48D) with 1 kg payload: 
16 min 60 ∗

130
16 = 487.5 

(3) Hovering Time (with TB48D and Zenmuse Z3) no payload: 
23 min 60 ∗

130
23 = 339.1 

(4) Hovering Time (with TB48D and Zenmuse Z3) with 1 kg 
payload: 
N/A min, Power Consumption estimation from (3)-(1)+(2) 

339.1-278.5=60.6 
for Zenmuse Z3 
+ 487.5 = 548.1 

DJI Guidance 11.1 ~ 25 N/A 12 (Given from 
specs) 

DJI C1 RC – – – 
Total Power with 10% margin (W) 659.1 
 

  

                                              

2 The hovering time is based on flying at 10m above sea level in a no-wind environment and landing with 

10% battery level 
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Table 9: Estimated Battery Operation Time 

Total Power Consumption (W) with 10% 
margin 

659.1 

TB48D Battery Energy (Wh) 130 
TB48D Battery Voltage (V) 22.8 
TB48D Battery Capacity (mAh) 5700 
Operation Time (minutes) 130

659.1 ∗ 60 = 𝟏𝟏.𝟖 

 

The total time of operation for our custom framework would last for approximately 11.8 
minutes if we use the TB48D Battery, or twice the time i.e. 23.6 min if we use two 
TD48D batteries. We assumed that the framework flies with a max payload of 1 kg and 
Zenmuse Z3 camera onboard. In our computations we included a landing 10% margin. 
 

3.1.3 NVIDIA Jetson TX2 Development Kit 

The main computer used for vision-based processing is the NVIDIA Jetson TX2 [44]. 
The Jetson is an embedded system-on-module (SoM) with dual NVIDIA Denver2 and 
quad-core ARM Cortex-A57, 8GB 128-bit RAM and integrated 256-core Pascal GPU. 
This platform is ideal for mobile robotics research due to its small size and powerful 
processing capabilities. We use the Jetson, along with the Jetson Development board, 
as the central computer for our MAV. We are using the Development board so the 
Jetson can connect to a Wi-Fi network without additional peripherals, and to allow 
easier access to the built in general purpose input/output (GPIO) pins. The Jetson will 
be responsible for reading in all of the sensor data, running all ROS nodes, computer 
vision algorithms and sending telemetry data through serial connection to the N1 flight 
controller. 
 

 
Image 10: NVIDIA Jetson TX2 Development Kit 
[44] 

 
Image 11: Jetson TX2 Camera Module [45] 
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As video input for our vision-based algorithms, we use the Jetson’s CSI camera module 
Omnivision OV5693 [Image 11], loaded with a 5MP image sensor, delivering DSC 
quality imaging and low-light performance as well as full 1080p high-definition video 
recording at 30 fps. 

The connection between TX2 and N1 flight controller is done through a USB to TTL 
serial converter [Image 13]. We connect the UART TTL output from the flight controller 
to the converter and then to a usb port of TX2 board. 

 
Table 10: Key Specifications of Jetson TX2 module 

Characteristic TX2 
GPU NVidia Pascal™ architecture with 256 

NVidia CUDA cores 
CPU Dual-core Denver 2 64-bit CPU and quad-

core ARM A57 complex 
Memory 8 GB 128-bit LPDDR4 
Storage 32 GB eMMC 5.1 
Video Encode Up to 2 x 4K @ 30 fps 
Video Decode Up to 2 x 4K @ 30 fps, 12-bit support 
JetPack support Jetpack 4.5 

 

 
Image 12: Auvidea J120A-IMU/MCU carrier for 
Jetson TX1/TX2 [46] 

 
Image 13: USB to TTL Serial Converter 

 

A better approach is to replace TX2 dev kit with J120 carrier board [Image 12] for a 
more lightweight solution. 
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4. SOFTWARE ARCHITECTURE 

In this chapter we present the software used for our MAV build. Emphasis is given in the 
subsystems which are represented by ROS nodes. 

 

4.1 Software System Overview 

Software configuration can be broken down into modules residing within the N1 flight 
controller and the NVIDIA Jetson TX2 developer kit. 

N1 flight controller contains the following modules: (a) flight computer, (b) inertial 
measurement unit (IMU) including compass, gyroscope, barometer, accelerometer, and 
(c) GPS. 

Jetson TX2 is used as an external onboard computer mounted on the aircraft, and it 
connects to the flight controller through a direct serial (UART) connection. It provides 
automation of flight through the following modules: (a) trail following model, (b) object 
detection model, (c) camera feed, and (d) waypoint computation. 

 

4.2 Jetpack (Linux4Tegra-L4T) 

Jetpack3 is a suite of useful tools for building AI applications on top of Jetson TX2. It 
includes a Linux OS image for Jetson products, along with libraries and APIs, samples, 
developer tools, and documentation. Some tools are used directly on a Jetson system, 
and others run on a Linux host computer connected to a Jetson system. 

JetPack libraries and APIs include: 

• TensorRT and cuDNN for high-performance deep learning applications 

• CUDA for GPU accelerated applications across multiple domains 

• NVIDIA Container Runtime for containerized GPU accelerated applications 

• Sample applications and other libraries for visual computing tasks. 

For our experiments we used Jetpack version 4.5 that comes with a customized Linux 
distro named Linux4Tegra (L4T) 32.5.0. 

 

4.3 DJI’s Onboard SDK (OSDK) 

The communication between TX2 and N1 FC is done through the DJI’s open-source 
software library, the Onboard SDK4 [49]. The SDK gives access to aircraft telemetry, 
flight control and other aircraft functions, meaning a developer can use the SDK to 
control flight. The SDK comes with a fully featured ROS wrapper compatible with ROS 
standards. The latest compatible version for M100 is 3.9.0. 

                                              

3 https://developer.nvidia.com/embedded/jetpack 

4 https://github.com/dji-sdk/Onboard-SDK 

https://developer.nvidia.com/embedded/jetpack
https://github.com/dji-sdk/Onboard-SDK
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Figure 6 illustrates how the DJI Onboard SDK is used into an application, and how it is 
connected to a DJI aircraft. 

 

 
Figure 6: Connection to User Application and DJI’s Aircraft [49] 

 

4.4 ROS 

For our algorithms implementation, we chose to use ROS [50], an open source 
operating system for robots. ROS can be characterized as a flexible framework for 
writing robot software. It is a collection of tools, libraries, and conventions that aim to 
simplify the task of creating complex and robust robot behaviours [52]. 

In our project we use ROS Noetic. It provides the environment in which the DJI Onboard 
SDK, and each of the vision-based algorithms, will be run as a service. All these 
services are run as ROS nodes. 

 

4.4.1 ROS Nodes 

A ROS node is a process that interacts with ROS network and completes the tasks 
given. It is identified by a unique name and communicates with other nodes through 
topics. In our setup, each node corresponds to a single function and only. So in total we 
have ROS wrappers for (a) camera feed, (b) trail following DNN, (c) object detection 
DNN, (d) waypoint computation, (e) manual Remote Control, and (f) video frame splitter. 

Below we give the ROS nodes dedicated for each of our services. 
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4.4.1.1 Camera node 
The camera node gscam publishes to the /camera/image_raw topic using the standard 
ROS Image message. This is the master source which provides information to other 
nodes like the trail following DNN and object detection DNN. 
 
4.4.1.2 DNN node 
The caffe_ros node provides support for DNN inference using TensorRT library. This 
node currently supports Caffe models such as classification, YOLO-based object 
detection, regression and semantic segmentation. It produces messages in different 
formats depending on the type of the network and post-processing options (e.g. 
TrailFollowing vs YOLO) 
1. TrailFollowing DNN 

This node publishes output of the DNN (e.g. softmax layer) using standard Image 
message. The default topic name is /caffe_ros/network/output. 
The node requires two parameters: 

a. prototxt_path - path to the Caffe model .prototxt file 

b. model_path - path to the Caffe model binary file. In addition, other parameters 
like input/output layer names (input_layer/output_layer) have to be set 
correctly. A command line example would be: 

 
2. Object detection DNN (YOLO, Mobilnet) 

In order to apply an object detection functionality as a post-processing procedure, 
we have to launch the node with post_proc:=YOLO argument. The node publishes 
output of the DNN using standard Image message in a certain format: the output is a 
2D, single-channel "image" that has the following format: WxHx1 (so encoding == 
32FC1) where W is fixed and equals 6, and H is equal to the number of detected 
objects. For example, if the DNN has detected 2 objects, then the output is 6x2 
image. 
For each detected object, the 6 values are the following: 

 
All values are 32-bit floats, including label. Label indices correspond to 20 classes 
from PASCAL VOC 2012 dataset. 

rosrun caffe_ros caffe_ros_node __name:=trails_dnn 
_prototxt_path:=/data/src/autonomous_drones/models/pretrained/Aria
dneNet_SResNet-18.prototxt 
_model_path:=/data/src/autonomous_drones/models/pretrained/Ariadne
Net_SResNet-18.caffemodel _output_layer:=out 

0  : label (class) of the detected object (e.g. person or a dog). 
1  : probability of this object. 
2,3: x and y coordinates of the top left corner of the object in 
image coordinates. 
4,5: width and height of the object in image coordinates. 
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For the making of this node we were also inspired by the Advanced Sensing - Object 
Detection Sample5. 

 
4.4.1.3 Image Publisher node 
The image_pub node is a simple ROS node that reads video or image files and 
publishes frames as a ROS topic as an Image message. There is one mandatory 
parameter, img_path, which specifies the path to an image or video file. This node 
supports setting custom frame rates as well as repeating an image indefinitely. The 
default topic is /camera/image_raw which can be changed using the camera_topic 
parameter. 

An example of publishing frames from the video file using the file's native frame rate: 

 
An example of publishing the same image repeatedly at 30 frames / sec: 

 
 
4.4.1.4 Onboard SDK Controller node 
The osdk_controller node is a ROS node that takes as input the results of DNN nodes 
and then computes waypoints, in order to send them through OSDK connection to the 
N1 flight controller. The OSDK-ROS6 was used. We were inspired from two different 
samples: Flight Control Sample7 and GPS Mission Sample8. A demo_flight_control9 
sample was used for initial testing the connectivity between TX2 and N1 FC. 

 
4.4.1.5 Guidance-SDK-ROS 
The guidance node is a ROS node that processes the Guidance sensor inputs and 
searches for obstacles in a close perimeter. When an obstacle is inside this perimeter, it 
gives a Hover command to Flight Controller overriding any other commands. We used 
the official ROS package of Guidance SDK10 for 32/64 bit Ubuntu. 

                                              

5https://developer.dji.com/onboard-sdk/documentation/sample-doc/advanced-sensing-object-
detection.html 

6 https://github.com/dji-sdk/Onboard-SDK-ROS 

7 https://developer.dji.com/onboard-sdk/documentation/sample-doc/flight-control.html 

8 https://developer.dji.com/onboard-sdk/documentation/sample-doc/missions.html 

9 https://developer.dji.com/onboard-sdk/documentation/development-workflow/sample-setup.html 

10 https://github.com/dji-sdk/Guidance-SDK-ROS 

rosrun image_pub image_pub_node _img_path:=/data/videos/trail_test.mp4 

rosrun image_pub image_pub_node _img_path:=/data/images/trail_right.png 
_pub_rate:=30 _repeat:=true 

https://developer.dji.com/onboard-sdk/documentation/sample-doc/advanced-sensing-object-detection.html
https://developer.dji.com/onboard-sdk/documentation/sample-doc/advanced-sensing-object-detection.html
http://docs.ros.org/api/sensor_msgs/html/msg/Image.html
https://github.com/dji-sdk/Onboard-SDK-ROS
https://developer.dji.com/onboard-sdk/documentation/sample-doc/flight-control.html
https://developer.dji.com/onboard-sdk/documentation/sample-doc/missions.html
https://developer.dji.com/onboard-sdk/documentation/development-workflow/sample-setup.html
https://github.com/dji-sdk/Guidance-SDK-ROS
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4.4.2 ROS Node Hierarchy 

ROS nodes help us to break our software into smaller pieces, communicating each 
other in hierarchy. For a more comprehensive presentation, we give a hierarchy system 
software diagram, that categorizes services into layered subsystems. Subsystems are 
represented as ROS nodes. Each ROS node is categorized according to its functionality 
and connectivity to others. Lowe-level subsystems are usually nodes that read 
information from sensors and publish their data as ROS messages over topics, that in 
continue can be subscribed to higher level subsystems (ROS nodes). Higher level 
nodes receive the information from lower level nodes and use them as input to 
algorithms for final autonomous navigation decisions. Intermediate nodes combine 
multiple low level sources to produce derivatives needed from higher level nodes. 
In Figure 7 the hierarchy of ROS nodes for our system is shown. 
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Figure 7: ROS Nodes Hierarchy Diagram 
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4.5 Docker Support 

Docker is an open source software platform to create, deploy and manage virtualized 
application containers on a common operating system (OS), with an ecosystem of allied 
tools. All tools needed for implementing our system functionalities can be delivered 
through prebuilt Docker images containing ROS, OSDK, L4T, and ML libraries. The use 
of Docker constitutes an alternative solution to native installments on Linux4Tegra (L4T) 
OS (a modified version of Ubuntu 18.04). A detailed configuration guide can be found in 
Appendix III. 

  



Autonomous Drones for Trail Navigation using DNNs 

G. Kalampokis   45 

5. EXPERIMENTS 

For a real flight experiment, we propose the framework described in the previous 
chapter. Due to compatibility issues we had in first place, as also access restrictions to 
the lab during the COVID-19 quarantine, we didn’t manage to fly the drone stack in real-
time environment. We propose two different types of experiments. For autonomous 
navigation, we suggest an experimental flight through a forest trail inside our campus. 
For object detection we did a comparison between object detection algorithms. We used 
an excerpt from a trail runner’s recording found in FullHD on the internet. In the 
following sections, the results of these two experiments are presented. 
 

5.1 Trail Following Experiment 

One way to test our trail following model is to autonomously navigate through an almost 
straight 300 m forest trail path, with some minor turns, somewhere inside the campus. 
The trail has to be 2.5 to 3 m wide and the height of the MAV should be around 1.8 to 2 
m. We must use a steady speed at 1 m/s, and the total time of test flight should have 
duration of 5.5 to 6 minutes. A challenge would be to override the autonomous flight 4 to 
5 times by injecting rotations to the left or right, and if you see that the MAV always 
keeps returning to the center of the path, that would indicate a success to this 
experiment. As said previously, the trail following model and the object detection 
algorithm run on the Jetson TX2, utilizing its CPU and GPU at their max, while obstacle 
avoidance run in parallel as a separate service by Guidance core. 
 
Table 11: Parameters for experiment 

Parameter Value 

𝒌𝑯𝑯 0.04 

𝒌𝑳𝑳 0.02 

𝒗𝒄 1 

 

5.2 Object Detection Experiment 

As described in section 2.3.1.3, we explored the two most famous, state-of-the-art 
architectures, in object detection and their variants: SSD and YOLO. We used an 
excerpt from an online YouTube video [48] recorded from the sight of a trail runner. It is 
a trail run inside the Highbanks Metro Park, a metropolitan park in Central Ohio. It is 
named for its steep banks along the Olentangy River, the park's most unique feature11. 

We clipped the first 5 minutes of this virtual run and tested the two object detection 
algorithms. All architectures were run as an optimized version using TensorRT 7 
(tkDNN framework). In the following table, we give an average of computed FPS on 
TX2. It seems to function at lower speeds than the ones referred in literature. 

 

                                              

11 https://en.wikipedia.org/wiki/Highbanks_Metro_Park 
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Table 12: Comparison of State-Of-The-Art DNN architectures for object detection 

Network Architecture Average FPS on TX2 
YOLOv4-288 3 
YOLOv4-608 1 
YOLOv4-tiny-416 60 
Scaled-YOLOv4-512 8 
MobileNet-v2-SSDLite 25 
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6. CONCLUSIONS AND FUTURE WORK 
6.1 Discussion on Results 

This project presents an autonomous MAV system capable of trail following navigation 
using DNN based algorithms. It was built with parts of unknown compatibility status. The 
most challenging task was to overcome several incompatibilities between the Jetson 
TX2 with the N1 flight controller of DJI’s Matrice 100 quadcopter.  

The DNN architecture used for trail following was based upon existing work [1,2]. 
Initially, the IDSIA forest trail dataset [6] was used for training to enable the estimation 
of view orientation. Then, via transfer learning, our custom dataset was used to 
incorporate 3 additional categories for lateral offset estimation. This also improved the 
accuracy for inference in trails with local vegetation characteristics. With a quick look at 
performance results, trail DNN used gives the highest accuracy in comparison to other 
known trail following algorithms but it lacks in runtime speed, making it a secondary 
option for real time processing on an onboard computer such as Jetson TX2. 

In the context of environmental awareness, two ROS nodes were used; one DNN 
algorithm for object detection (in order to detect known objects), and one for obstacle 
avoidance (in order to estimate depth). For object detection, several well-known DNN 
architectures were explored. YOLO was the most fast and accurate. For obstacle 
avoidance the «Guidance» system was used in default mode. Although it successfully 
detects obstacles of unknown type in real-time, it has significant delays for moving 
objects. This can be surpassed using object detection algorithms, such as YOLO. 

 
6.2 Future Work 
As future work, there are a few tasks that could be done in order to upgrade this project. 

All the software applications used in this work can be integrated to an alternative 
hardware MAV platform in conjunction with a Pixhawk autopilot [20] (flight controller). A 
compatibility list of Pixhawk compatible airframe builds can be found at the online user 
guide documentation. Just for reference, a set of compatible multi-copters are: DJI 
Flame Wheel 450, Lumenier QAV250, DJI Matrice 100, Holybro S500. 

Trail following algorithm that is based on supervised learning is limited to known and 
trained environments. It can be replaced by a deep reinforcement learning algorithm 
that stands out in unseen environments leading to more accurate estimations in trail 
navigation and obstacle avoidance. 

In case of temporal distractions, such as wind disturbances, the MAV may miss its way 
causing the camera to miss the trail and resulting to inability on getting back to track. 
Therefore, autonomous navigation system needs a path recovery service to be run in 
the background, in order to guide the drone back to its trajectory. 

A way of increasing accuracy in depth estimation would be to experiment with different 
sets of sensors. A set of numerous combinations of mono/stereo cameras with laser 
range finder (or additional other sensors) could be evaluated in terms of accuracy and 
efficiency. Relative neural networks and datasets for experiments should be used [19]. 

Support for manual teleoperation is provided through a remote controller. It is used for 
training purposes or emergency override. An innovative idea is to offer the same feature 
of remote teleoperation through an Augmented Reality application that would be running 
under a AR device (i.e. HoloLens). Implementation details can be found in projects [21, 
22].   
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ABBREVIATIONS – ARCTICS – ACRONYMS 

DNN Deep Neural Network 

IMU Inertial Measurement Unit 

GPS Global Positioning System 

IDSIA Italian: Istituto Dalle Molle di Studi sull'Intelligenza Artificiale 

ROS Robot Operating System 

MAV Micro Aerial Vehicle 

AR Augmented Reality 

FOV Field Of View 

mAP mean Average Precision 

FPS Frames Per Second 

BB Bounding Box 

DJI Da Jiang Innovation 

GPIO General Purpose Input/Output 

OSDK DJI’s Onboard SDK 

HD Head Direction 

LO Lateral Offset 

TL Turn Left 

GS Go Straight 

TR Turn Right 
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APPENDIX Ι: Source Code Repository 

 

The source code of this thesis, as also additional documentation, is available at 
https://github.com/gkalam/autonomous_drones 

 
 

https://github.com/gkalam/autonomous_drones
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APPENDIX ΙΙ: Dataset Preparation 
II.A Dataset Creation for use on Lateral Offset Training 

To train the lateral offset layers of the trail following DNN, we need to collect a three-
sided simultaneous video, walking from the centre of the path. As a setup, we used a 
wide rig with 1 m baseline [Image 14]. Three full HD cameras are mounted on each 
edge and the centre, respectively. Each camera records a different front view, and the 
DNN learns to classify drone’s lateral offset position relative to the centre line. It 
produces probabilities of being on the left side, right side or in the middle of the trail. All 
three cameras had same technical specifications: 1200  horizontal FOV lenses and 
recording analysis in full HD (1920 × 1080) at 30 fps. 
 

 
Image 14: Three camera wide baseline rig used for recording our dataset into Ilisia University 

Campus. 

 

II.B Camera Calibration – Intrinsic Parameters 

There is a difference at horizontal FOV between the camera used for inference on the 
MAV and the cameras used for gathering training data. The former usually uses lenses 
of 600 while the later uses lenses of 1200 . Wide angle lenses lead to fisheye distortion, 
which has to be removed prior to training procedure. 

We use a camera calibration application in order to calculate intrinsic parameters of 
each camera. It is written in C++ and uses OpenCV library. Its first version was 
developed by [2] and used OpenCV3.0, while we ported it to support V4.0. We used the 
calibration target in landscape orientation as shown in Image 15, to capture several 
images (around 30) from different viewpoints with the wide angle cameras, in order to 
compute intrinsic camera parameters. 
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Image 15: Chessboard Calibration Target – 8x6 
Landscape Orientation 

 
Image 16: Result of undistorted image with 
checker board corners detected 

 

In calibration, checkboard pattern is widely used because the corners of squares 
provide an easy to detect way of localizing them. They have sharp gradients in two 
directions, and also are at the intersection of checkboard lines. An indicative result of an 
undistorted image is shown in Image 16. The image should be sharp and should cover 
the whole target, in order for the frame to be ideal for selection. 

After running the calibration application with our selected 30 image input, we get the 
intrinsic parameters as an yml file. 
%YAML:1.0 
--- 
Date: "Fri Jul 23 17:23:57 2021\n" 
FrameWidth: 1920 
FrameHeight: 1080 
CameraMatrix: !!opencv-matrix 
   rows: 3 
   cols: 3 
   dt: d 
   data: [ 1.7084553934190224e+03, 0., 8.7222499809355202e+02, 0., 
       1.2787870991072430e+03, 5.5679803246704967e+02, 0., 0., 1. ] 
DistortionCoeffs: [ -2.3848078689012822e-01, 3.2889029218322099e+00, 
    -2.0474728203992445e+01, 4.7210632074976793e+01 ] 
 

 
Figure 8: Intrinsic parameters in .yml file format 

 

II.C Data Pre-Processing: Frame Sampling, Undistorting, Virtual Views 
Extraction 

For the need of DNN training, we split the video captures into single frames, and then 
select 1 frame (out of 30) for each second. For video splitting we use the python script 
«videoParserV3.py». 

As we needed to get a view from recording cameras as close to the FOV of the drone 
camera, we decided to divide each 1200  FOV to three separate virtual 600 FOV. So in 
total there would be 9 simultaneous viewpoints, but only the 3 central views were 
mandatory for use in order to train the lateral offset layer. 
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For undistorting image frames and then split them into three virtual views, we used the 
python script «frameSplitterV3.py». Each 1200  frame is split to three 600 virtual views 
that have orientation 250 left, straight and 250 right. The three central generated virtual 
views are used as input for training the DNN’s lateral offset layers. 
 

   

   

Image 17: Indicative frames from (a) left, (b) center, and (c) right central virtual views of our 
dataset 

II.D Using Eclipse IDE and training with DIGITS 

For our convenience, we used Eclipse IDE (with PyDev module) for developing and 
running the python scripts. In Image 18, an overview from the IDE is shown. It is the 
main panel where you can edit the python code. From “Run Configurations” menu, you 
can choose the python file for execution [Image 19]. You can also pass arguments 
through the “arguments” tab [Image 20]. 
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Image 18: Eclipse IDE – Overview from PyDev perspective 

 

 
Image 19: Eclipse IDE – Run Configurations main tab 

 

 
Image 20: Eclipse IDE – Run Configurations Arguments tab 
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Image 21: Training Head Direction (HD) through DIGITS UI 

As shown in Image 21, we used DIGITS UI for training of the Head Direction (HD). First 
we created a new Image Classification Model. Then we selected the IDSIA dataset. We 
gave all hyper-parameters as shown in Table 1. Then we provided the full path to 
Python layers file located at “autonomous_drones/models/nets/python-layers.py”. On 
Custom Network tab we pasted network definition from “autonomous_drones/models/ 
nets/ResNet/srelu-resnet-18.prototxt”. Then we pushed the “Create” button and wait 
until the training was finished. 
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Image 22: Training Lateral Offset (LO) through DIGITS UI 

For training the Lateral Offset (LO), we followed the above procedure with minor 
changes. We used “TrailNet_SResNet-18.prototxt” model definition file. Then we 
provided full path to pretrained orientation model in Pretrained model(s) field on Custom 
Network tab as shown in Image 22. 
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APPENDIX ΙΙI: Docker Support 

Linux4Tegra comes with a preinstalled set of system components, one of which is the 
nvidia-container. NVIDIA offers a repository for building and running docker jetson-
containers12. 

For our experiments, we decided to work with ROS Noetic targeted for Ubuntu 20.04 
with End-Of-Life in May 2025. For our Jetpack (version 32.5) we choose from 
Dusty’sNV DockerHub the ROS Noetic13 with tag ros:noetic-ros-base-l4t-r32.5.0. 

In path ~pcomp\nvidia-tutorials\ you can find run_rosnoetic_docker.sh which fires up 
a docker container for ros-noetic image. ROS nodes can be started inside the 
container’s console. Files and documents can be found in our github repo [Appendix I], 
in folder docker-run-scripts. 

 
Figure 9: Docker commands for managing images, containers and other functionalities 

 

Another repository containing Docker Images is the NVIDIA GPU CLOUD14 (NGC). You 
can navigate through CATALOG | CONTAINERS and use as query parameter “l4t”. 
Some of the containers used are: 

                                              

12 https://github.com/dusty-nv/jetson-containers 

13 https://hub.docker.com/r/dustynv/ros 

14https://ngc.nvidia.com/catalog/containers/?orderBy=scoreDESC&pageNumber=0&query=l4t&quickFilter

=&filters= 

$ sudo service docker start 
$ service --status-all | grep docker 
$ docker version 
$ docker info 
$ sudo service docker restart 
 
#Clear dangling images 
$ docker system prune --all --volumes --force 
#freed up disk space from volumes 
$ docker volume rm $(docker volume ls -qf dangling=true) 
 
#removing all docker logs files from my containers 
$ find /var/lib/docker/containers/ -type f -name “*.log” -delete 
$ sudo sh -c "truncate -s 0 /var/lib/docker/containers/*/*-json.log" 
#restart the docker containers 
$ docker-compose down && docker-compose up -d 
#clean up the builder cache 
$ docker builder prune –all 
 
#docker basic commands 
$ docker image ls 
$ docker container ls 
$ docker volume ls  # mounted paths 
 
# docker remove image 
$ docker image rm <docker_image_id> 
$ docker image rm c74a2c7e3669 

https://github.com/dusty-nv/jetson-containers
https://github.com/dusty-nv/jetson-containers
https://hub.docker.com/r/dustynv/ros
https://ngc.nvidia.com/catalog/containers/?orderBy=scoreDESC&pageNumber=0&query=l4t&quickFilter=&filters=
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DLI Getting Started with AI on Jetson Nano15: A series of introductory lessons on how to 
use basic functionalities and features on Jetson Nano and TX2. 

NVIDIA L4T Base16: The Linux4Tegra OS inside a Docker image. 

NVIDIA L4T ML17: The l4t-ml docker image contains TensorFlow, PyTorch, 
JupyterLab, and other popular ML and data science frameworks such as scikit-learn, 
scipy, and Pandas pre-installed in a Python 3.6 environment. 
Libraries included in JetPack 4.5 (L4T R32.5.0) 

 
NVIDIA Deep Learning GPU Training System (DIGITS)18: DIGITS is a web app for 
training deep learning models, and currently supports the TensorFlow framework. 
DIGITS can be used to rapidly train highly accurate deep neural network (DNNs) for 
image classification, segmentation, object detection tasks, and more. For the needs of 
this project we use the caffe framework with tag “20.03-caffe-py3”. 

                                              

15 https://ngc.nvidia.com/catalog/containers/nvidia:dli:dli-nano-ai 
16 https://ngc.nvidia.com/catalog/containers/nvidia:l4t-base 

17 https://ngc.nvidia.com/catalog/containers/nvidia:l4t-ml 

18 https://ngc.nvidia.com/catalog/containers/nvidia:digits 

    l4t-ml:r32.5.0-py3 
        TensorFlow 1.15 
        PyTorch v1.7.0 
        torchvision v0.8.0 
        torchaudio v0.7.0 
        onnx 1.8.0 
        CuPy 8.0.0 
        numpy 1.19.4 
        numba 0.52.0 
        OpenCV 4.1.1 
        pandas 1.1.5 
        scipy 1.5.4 
        scikit-learn 0.23.2 
        JupyterLab 2.2.9 

https://ngc.nvidia.com/catalog/containers/nvidia:dli:dli-nano-ai
https://ngc.nvidia.com/catalog/containers/nvidia:l4t-base
https://ngc.nvidia.com/catalog/containers/nvidia:l4t-ml
https://ngc.nvidia.com/catalog/containers/nvidia:digits
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