8 research outputs found

    A belief-desire-intention architechture with a logic-based planner for agents in stochastic domains

    Get PDF
    This dissertation investigates high-level decision making for agents that are both goal and utility driven. We develop a partially observable Markov decision process (POMDP) planner which is an extension of an agent programming language called DTGolog, itself an extension of the Golog language. Golog is based on a logic for reasoning about action—the situation calculus. A POMDP planner on its own cannot cope well with dynamically changing environments and complicated goals. This is exactly a strength of the belief-desire-intention (BDI) model: BDI theory has been developed to design agents that can select goals intelligently, dynamically abandon and adopt new goals, and yet commit to intentions for achieving goals. The contribution of this research is twofold: (1) developing a relational POMDP planner for cognitive robotics, (2) specifying a preliminary BDI architecture that can deal with stochasticity in action and perception, by employing the planner.ComputingM. Sc. (Computer Science

    Agent programming in the cognitive era

    Get PDF
    It is claimed that, in the nascent ‘Cognitive Era’, intelligent systems will be trained using machine learning techniques rather than programmed by software developers. A contrary point of view argues that machine learning has limitations, and, taken in isolation, cannot form the basis of autonomous systems capable of intelligent behaviour in complex environments. In this paper, we explore the contributions that agent-oriented programming can make to the development of future intelligent systems. We briefly review the state of the art in agent programming, focussing particularly on BDI-based agent programming languages, and discuss previous work on integrating AI techniques (including machine learning) in agent-oriented programming. We argue that the unique strengths of BDI agent languages provide an ideal framework for integrating the wide range of AI capabilities necessary for progress towards the next-generation of intelligent systems. We identify a range of possible approaches to integrating AI into a BDI agent architecture. Some of these approaches, e.g., ‘AI as a service’, exploit immediate synergies between rapidly maturing AI techniques and agent programming, while others, e.g., ‘AI embedded into agents’ raise more fundamental research questions, and we sketch a programme of research directed towards identifying the most appropriate ways of integrating AI capabilities into agent programs

    Formalisms for agents reasoning with stochastic actions and perceptions.

    Get PDF
    Ph. D. University of KwaZulu-Natal, Durban 2014.The thesis reports on the development of a sequence of logics (formal languages based on mathematical logic) to deal with a class of uncertainty that agents may encounter. More accurately, the logics are meant to be used for allowing robots or software agents to reason about the uncertainty they have about the effects of their actions and the noisiness of their observations. The approach is to take the well-established formalism called the partially observable Markov decision process (POMDP) as an underlying formalism and then design a modal logic based on POMDP theory to allow an agent to reason with a knowledge-base (including knowledge about the uncertainties). First, three logics are designed, each one adding one or more important features for reasoning in the class of domains of interest (i.e., domains where stochastic action and sensing are considered). The final logic, called the Stochastic Decision Logic (SDL) combines the three logics into a coherent formalism, adding three important notions for reasoning about stochastic decision-theoretic domains: (i) representation of and reasoning about degrees of belief in a statement, given stochastic knowledge, (ii) representation of and reasoning about the expected future rewards of a sequence of actions and (iii) the progression or update of an agent’s epistemic, stochastic knowledge. For all the logics developed in this thesis, entailment is defined, that is, whether a sentence logically follows from a knowledge-base. Decision procedures for determining entailment are developed, and they are all proved sound, complete and terminating. The decision procedures all employ tableau calculi to deal with the traditional logical aspects, and systems of equations and inequalities to deal with the probabilistic aspects. Besides promoting the compact representation of POMDP models, and the power that logic brings to the automation of reasoning, the Stochastic Decision Logic is novel and significant in that it allows the agent to determine whether or not a set of sentences is entailed by an arbitrarily precise specification of a POMDP model, where this is not possible with standard POMDPs. The research conducted for this thesis has resulted in several publications and has been presented at several workshops, symposia and conferences

    Simulation and statistical model-checking of logic-based multi-agent system models

    Get PDF
    This thesis presents SALMA (Simulation and Analysis of Logic-Based Multi- Agent Models), a new approach for simulation and statistical model checking of multi-agent system models. Statistical model checking is a relatively new branch of model-based approximative verification methods that help to overcome the well-known scalability problems of exact model checking. In contrast to existing solutions, SALMA specifies the mechanisms of the simulated system by means of logical axioms based upon the well-established situation calculus. Leveraging the resulting first-order logic structure of the system model, the simulation is coupled with a statistical model-checker that uses a first-order variant of time-bounded linear temporal logic (LTL) for describing properties. This is combined with a procedural and process-based language for describing agent behavior. Together, these parts create a very expressive framework for modeling and verification that allows direct fine-grained reasoning about the agents’ interaction with each other and with their (physical) environment. SALMA extends the classical situation calculus and linear temporal logic (LTL) with means to address the specific requirements of multi-agent simulation models. In particular, cyber-physical domains are considered where the agents interact with their physical environment. Among other things, the thesis describes a generic situation calculus axiomatization that encompasses sensing and information transfer in multi agent systems, for instance sensor measurements or inter-agent messages. The proposed model explicitly accounts for real-time constraints and stochastic effects that are inevitable in cyber-physical systems. In order to make SALMA’s statistical model checking facilities usable also for more complex problems, a mechanism for the efficient on-the-fly evaluation of first-order LTL properties was developed. In particular, the presented algorithm uses an interval-based representation of the formula evaluation state together with several other optimization techniques to avoid unnecessary computation. Altogether, the goal of this thesis was to create an approach for simulation and statistical model checking of multi-agent systems that builds upon well-proven logical and statistical foundations, but at the same time takes a pragmatic software engineering perspective that considers factors like usability, scalability, and extensibility. In fact, experience gained during several small to mid-sized experiments that are presented in this thesis suggest that the SALMA approach seems to be able to live up to these expectations.In dieser Dissertation wird SALMA (Simulation and Analysis of Logic-Based Multi-Agent Models) vorgestellt, ein im Rahmen dieser Arbeit entwickelter Ansatz für die Simulation und die statistische Modellprüfung (Model Checking) von Multiagentensystemen. Der Begriff „Statistisches Model Checking” beschreibt modellbasierte approximative Verifikationsmethoden, die insbesondere dazu eingesetzt werden können, um den unvermeidlichen Skalierbarkeitsproblemen von exakten Methoden zu entgehen. Im Gegensatz zu bisherigen AnsĂ€tzen werden in SALMA die Mechanismen des simulierten Systems mithilfe logischer Axiome beschrieben, die auf dem etablierten Situationskalkül aufbauen. Die dadurch entstehende prĂ€dikatenlogische Struktur des Systemmodells wird ausgenutzt um ein Model Checking Modul zu integrieren, das seinerseits eine prĂ€dikatenlogische Variante der linearen temporalen Logik (LTL) verwendet. In Kombination mit einer prozeduralen und prozessorientierten Sprache für die Beschreibung von Agentenverhalten entsteht eine ausdrucksstarke und flexible Plattform für die Modellierung und Verifikation von Multiagentensystemen. Sie ermöglicht eine direkte und feingranulare Beschreibung der Interaktionen sowohl zwischen Agenten als auch von Agenten mit ihrer (physischen) Umgebung. SALMA erweitert den klassischen Situationskalkül und die lineare temporale Logik (LTL) um Elemente und Konzepte, die auf die spezifischen Anforderungen bei der Simulation und Modellierung von Multiagentensystemen ausgelegt sind. Insbesondere werden cyber-physische Systeme (CPS) unterstützt, in denen Agenten mit ihrer physischen Umgebung interagieren. Unter anderem wird eine generische, auf dem Situationskalkül basierende, Axiomatisierung von Prozessen beschrieben, in denen Informationen innerhalb von Multiagentensystemen transferiert werden – beispielsweise in Form von Sensor- Messwerten oder Netzwerkpaketen. Dabei werden ausdrücklich die unvermeidbaren stochastischen Effekte und Echtzeitanforderungen in cyber-physischen Systemen berücksichtigt. Um statistisches Model Checking mit SALMA auch für komplexere Problemstellungen zu ermöglichen, wurde ein Mechanismus für die effiziente Auswertung von prĂ€dikatenlogischen LTL-Formeln entwickelt. Insbesondere beinhaltet der vorgestellte Algorithmus eine Intervall-basierte ReprĂ€sentation des Auswertungszustands, sowie einige andere OptimierungsansĂ€tze zur Vermeidung von unnötigen Berechnungsschritten. Insgesamt war es das Ziel dieser Dissertation, eine Lösung für Simulation und statistisches Model Checking zu schaffen, die einerseits auf fundierten logischen und statistischen Grundlagen aufbaut, auf der anderen Seite jedoch auch pragmatischen Gesichtspunkten wie Benutzbarkeit oder Erweiterbarkeit genügt. TatsĂ€chlich legen erste Ergebnisse und Erfahrungen aus mehreren kleinen bis mittelgroßen Experimenten nahe, dass SALMA diesen Zielen gerecht wird

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Simulation and statistical model-checking of logic-based multi-agent system models

    Get PDF
    This thesis presents SALMA (Simulation and Analysis of Logic-Based Multi- Agent Models), a new approach for simulation and statistical model checking of multi-agent system models. Statistical model checking is a relatively new branch of model-based approximative verification methods that help to overcome the well-known scalability problems of exact model checking. In contrast to existing solutions, SALMA specifies the mechanisms of the simulated system by means of logical axioms based upon the well-established situation calculus. Leveraging the resulting first-order logic structure of the system model, the simulation is coupled with a statistical model-checker that uses a first-order variant of time-bounded linear temporal logic (LTL) for describing properties. This is combined with a procedural and process-based language for describing agent behavior. Together, these parts create a very expressive framework for modeling and verification that allows direct fine-grained reasoning about the agents’ interaction with each other and with their (physical) environment. SALMA extends the classical situation calculus and linear temporal logic (LTL) with means to address the specific requirements of multi-agent simulation models. In particular, cyber-physical domains are considered where the agents interact with their physical environment. Among other things, the thesis describes a generic situation calculus axiomatization that encompasses sensing and information transfer in multi agent systems, for instance sensor measurements or inter-agent messages. The proposed model explicitly accounts for real-time constraints and stochastic effects that are inevitable in cyber-physical systems. In order to make SALMA’s statistical model checking facilities usable also for more complex problems, a mechanism for the efficient on-the-fly evaluation of first-order LTL properties was developed. In particular, the presented algorithm uses an interval-based representation of the formula evaluation state together with several other optimization techniques to avoid unnecessary computation. Altogether, the goal of this thesis was to create an approach for simulation and statistical model checking of multi-agent systems that builds upon well-proven logical and statistical foundations, but at the same time takes a pragmatic software engineering perspective that considers factors like usability, scalability, and extensibility. In fact, experience gained during several small to mid-sized experiments that are presented in this thesis suggest that the SALMA approach seems to be able to live up to these expectations.In dieser Dissertation wird SALMA (Simulation and Analysis of Logic-Based Multi-Agent Models) vorgestellt, ein im Rahmen dieser Arbeit entwickelter Ansatz für die Simulation und die statistische Modellprüfung (Model Checking) von Multiagentensystemen. Der Begriff „Statistisches Model Checking” beschreibt modellbasierte approximative Verifikationsmethoden, die insbesondere dazu eingesetzt werden können, um den unvermeidlichen Skalierbarkeitsproblemen von exakten Methoden zu entgehen. Im Gegensatz zu bisherigen AnsĂ€tzen werden in SALMA die Mechanismen des simulierten Systems mithilfe logischer Axiome beschrieben, die auf dem etablierten Situationskalkül aufbauen. Die dadurch entstehende prĂ€dikatenlogische Struktur des Systemmodells wird ausgenutzt um ein Model Checking Modul zu integrieren, das seinerseits eine prĂ€dikatenlogische Variante der linearen temporalen Logik (LTL) verwendet. In Kombination mit einer prozeduralen und prozessorientierten Sprache für die Beschreibung von Agentenverhalten entsteht eine ausdrucksstarke und flexible Plattform für die Modellierung und Verifikation von Multiagentensystemen. Sie ermöglicht eine direkte und feingranulare Beschreibung der Interaktionen sowohl zwischen Agenten als auch von Agenten mit ihrer (physischen) Umgebung. SALMA erweitert den klassischen Situationskalkül und die lineare temporale Logik (LTL) um Elemente und Konzepte, die auf die spezifischen Anforderungen bei der Simulation und Modellierung von Multiagentensystemen ausgelegt sind. Insbesondere werden cyber-physische Systeme (CPS) unterstützt, in denen Agenten mit ihrer physischen Umgebung interagieren. Unter anderem wird eine generische, auf dem Situationskalkül basierende, Axiomatisierung von Prozessen beschrieben, in denen Informationen innerhalb von Multiagentensystemen transferiert werden – beispielsweise in Form von Sensor- Messwerten oder Netzwerkpaketen. Dabei werden ausdrücklich die unvermeidbaren stochastischen Effekte und Echtzeitanforderungen in cyber-physischen Systemen berücksichtigt. Um statistisches Model Checking mit SALMA auch für komplexere Problemstellungen zu ermöglichen, wurde ein Mechanismus für die effiziente Auswertung von prĂ€dikatenlogischen LTL-Formeln entwickelt. Insbesondere beinhaltet der vorgestellte Algorithmus eine Intervall-basierte ReprĂ€sentation des Auswertungszustands, sowie einige andere OptimierungsansĂ€tze zur Vermeidung von unnötigen Berechnungsschritten. Insgesamt war es das Ziel dieser Dissertation, eine Lösung für Simulation und statistisches Model Checking zu schaffen, die einerseits auf fundierten logischen und statistischen Grundlagen aufbaut, auf der anderen Seite jedoch auch pragmatischen Gesichtspunkten wie Benutzbarkeit oder Erweiterbarkeit genügt. TatsĂ€chlich legen erste Ergebnisse und Erfahrungen aus mehreren kleinen bis mittelgroßen Experimenten nahe, dass SALMA diesen Zielen gerecht wird

    Extending DTGolog with options

    No full text
    Recently Boutilier et al. (2000) proposed the language DT-GOLOG which combines explicit agent programming with decision theory. The motivation is that a user often has some idea about how to go about solving a particular problem yet a
    corecore