4 research outputs found

    Optimal non-perfect uniform secret sharing schemes

    Get PDF
    A secret sharing scheme is non-perfect if some subsets of participants that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes. To this end, we extend the known connections between polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information that every subset of participants obtains about the secret value. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, the ones whose values depend only on the number of participants, generalize the threshold access structures. Our main result is to determine the optimal information ratio of the uniform access functions. Moreover, we present a construction of linear secret sharing schemes with optimal information ratio for the rational uniform access functions.Peer ReviewedPostprint (author's final draft

    Extending Brickell-Davenport Theorem to Non-Perfect Secret Sharing Schemes

    Get PDF
    One important result in secret sharing is Brickell-Davenport Theorem: every ideal perfect secret sharing scheme defines a matroid that is uniquely determined by the access structure. Even though a few attempts have been made, there is no satisfactory definition of ideal secret sharing scheme for the general case, in which non-perfect schemes are considered as well. Without providing another unsatisfactory definition of ideal non-perfect secret sharing scheme, we present a generalization of Brickell-Davenport Theorem to the general case. After analyzing that result under a new point of view and identifying its combinatorial nature, we present a characterization of the (not necessarily perfect) secret sharing schemes that are associated to matroids. Some optimality properties of such schemes are discussed. Key words. Secret sharing, Non-perfect secret sharing scheme, Matroid, Polymatroid.

    Extending Brickell-Davenport theorem to non-perfect secret sharing schemes

    No full text
    One important result in secret sharing is the Brickell-Davenport Theorem: every ideal perfect secret sharing scheme de nes a matroid that is uniquely determined by the access structure. Even though a few attempts have been made, there is no satisfactory de nition of ideal secret sharing scheme for the general case, in which non-perfect schemes are considered as well. Without providing another unsatisfactory de nition of ideal non-perfect secret sharing scheme, we present a generalization of the Brickell-Davenport Theorem to the general case. After analyzing that result under a new point of view and identifying its combinatorial nature, we present a characterization of the (not necessarily perfect) secret sharing schemes that are associated to matroids. Some optimality properties of such schemes are discussed.Peer Reviewe

    On the information ratio of non-perfect secret sharing schemes

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00453-016-0217-9A secret sharing scheme is non-perfect if some subsets of players that cannot recover the secret value have partial information about it. The information ratio of a secret sharing scheme is the ratio between the maximum length of the shares and the length of the secret. This work is dedicated to the search of bounds on the information ratio of non-perfect secret sharing schemes and the construction of efficient linear non-perfect secret sharing schemes. To this end, we extend the known connections between matroids, polymatroids and perfect secret sharing schemes to the non-perfect case. In order to study non-perfect secret sharing schemes in all generality, we describe their structure through their access function, a real function that measures the amount of information on the secret value that is obtained by each subset of players. We prove that there exists a secret sharing scheme for every access function. Uniform access functions, that is, access functions whose values depend only on the number of players, generalize the threshold access structures. The optimal information ratio of the uniform access functions with rational values has been determined by Yoshida, Fujiwara and Fossorier. By using the tools that are described in our work, we provide a much simpler proof of that result and we extend it to access functions with real values.Peer ReviewedPostprint (author's final draft
    corecore